Create temp_predictor.py
Browse files- src/temp_predictor.py +76 -0
src/temp_predictor.py
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spacy
|
| 2 |
+
import transformers
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
class TempPredictor:
|
| 6 |
+
def __init__(self, model, tokenizer, device,
|
| 7 |
+
spacy_model="en_core_web_sm"):
|
| 8 |
+
self._model = model
|
| 9 |
+
self._model.to(device)
|
| 10 |
+
self._model.eval()
|
| 11 |
+
self._tokenizer = tokenizer
|
| 12 |
+
self._mtoken = self._tokenizer.mask_token
|
| 13 |
+
self.unmasker = transformers.pipeline("fill-mask", model=self._model, tokenizer=self._tokenizer, device=0)
|
| 14 |
+
try:
|
| 15 |
+
self._spacy = spacy.load(spacy_model)
|
| 16 |
+
except Exception as e:
|
| 17 |
+
self._spacy = spacy.load("en_core_web_sm")
|
| 18 |
+
print(f"Failed to load spacy model {spacy_model}, use default 'en_core_web_sm'\n{e}")
|
| 19 |
+
|
| 20 |
+
def _extract_token_prob(self, arr, token, crop=1):
|
| 21 |
+
for it in arr:
|
| 22 |
+
if len(it["token_str"]) >= crop and (token == it["token_str"][crop:]):
|
| 23 |
+
return it["score"]
|
| 24 |
+
return 0.
|
| 25 |
+
|
| 26 |
+
def _sent_lowercase(self, s):
|
| 27 |
+
try:
|
| 28 |
+
return s[0].lower() + s[1:]
|
| 29 |
+
except:
|
| 30 |
+
return s
|
| 31 |
+
|
| 32 |
+
def _remove_punct(self, s):
|
| 33 |
+
try:
|
| 34 |
+
return s[:-1]
|
| 35 |
+
except:
|
| 36 |
+
return s
|
| 37 |
+
|
| 38 |
+
def predict(self, e1, e2, top_k=5):
|
| 39 |
+
txt = self._remove_punct(e1) + " " + self._mtoken + " " + self._sent_lowercase(e2)
|
| 40 |
+
return self.unmasker(txt, top_k=top_k)
|
| 41 |
+
|
| 42 |
+
def batch_predict(self, instances, top_k=5):
|
| 43 |
+
txt = [self._remove_punct(e1) + " " + self._mtoken + " " + self._sent_lowercase(e2)
|
| 44 |
+
for (e1, e2) in instances]
|
| 45 |
+
return self.unmasker(txt, top_k=top_k)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def get_temp(self, e1, e2, top_k=5, crop=1):
|
| 49 |
+
inst1 = self.predict(e1, e2, top_k)
|
| 50 |
+
inst2 = self.predict(e2, e1, top_k)
|
| 51 |
+
|
| 52 |
+
# e1 before e2
|
| 53 |
+
b1 = self._extract_token_prob(inst1, "before", crop=crop)
|
| 54 |
+
b2 = self._extract_token_prob(inst2, "after", crop=crop)
|
| 55 |
+
|
| 56 |
+
# e1 after e2
|
| 57 |
+
a1 = self._extract_token_prob(inst1, "after", crop=crop)
|
| 58 |
+
a2 = self._extract_token_prob(inst2, "before", crop=crop)
|
| 59 |
+
|
| 60 |
+
return (b1+b2)/2, (a1+a2)/2
|
| 61 |
+
|
| 62 |
+
def get_temp_batch(self, instances, top_k=5, crop=1):
|
| 63 |
+
reverse_instances = [(e2, e1) for (e1, e2) in instances]
|
| 64 |
+
fwd_preds = self.batch_predict(instances, top_k=top_k)
|
| 65 |
+
bwd_preds = self.batch_predict(reverse_instances, top_k=top_k)
|
| 66 |
+
|
| 67 |
+
b1s = np.array([ self._extract_token_prob(pred, "before", crop=crop) for pred in fwd_preds ])
|
| 68 |
+
b2s = np.array([ self._extract_token_prob(pred, "before", crop=crop) for pred in bwd_preds ])
|
| 69 |
+
a1s = np.array([ self._extract_token_prob(pred, "after", crop=crop) for pred in fwd_preds ])
|
| 70 |
+
a2s = np.array([ self._extract_token_prob(pred, "after", crop=crop) for pred in bwd_preds ])
|
| 71 |
+
|
| 72 |
+
return np.array([np.array(b1s+b2s)/2, np.array(a1s+a2s)/2]).T
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def __call__(self, *args, **kwargs):
|
| 76 |
+
return self.get_temp(*args, **kwargs)
|