Update README.md
Browse files
README.md
CHANGED
|
@@ -20,10 +20,28 @@ tags:
|
|
| 20 |
|
| 21 |
## Usage
|
| 22 |
|
| 23 |
-
###
|
| 24 |
|
| 25 |
```python
|
| 26 |
-
!pip install
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
from diffusers import UNet2DModel, DDIMScheduler, VQModel
|
| 28 |
import torch
|
| 29 |
import PIL.Image
|
|
@@ -33,9 +51,9 @@ import tqdm
|
|
| 33 |
seed = 3
|
| 34 |
|
| 35 |
# load all models
|
| 36 |
-
unet = UNet2DModel.from_pretrained("CompVis/
|
| 37 |
-
vqvae = VQModel.from_pretrained("CompVis/
|
| 38 |
-
scheduler = DDIMScheduler.from_config("CompVis/
|
| 39 |
|
| 40 |
# set to cuda
|
| 41 |
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
@@ -46,7 +64,7 @@ vqvae.to(torch_device)
|
|
| 46 |
# generate gaussian noise to be decoded
|
| 47 |
generator = torch.manual_seed(seed)
|
| 48 |
noise = torch.randn(
|
| 49 |
-
(1, unet.in_channels, unet.
|
| 50 |
generator=generator,
|
| 51 |
).to(torch_device)
|
| 52 |
|
|
@@ -78,36 +96,10 @@ image_pil = PIL.Image.fromarray(image_processed[0])
|
|
| 78 |
image_pil.save(f"generated_image_{seed}.png")
|
| 79 |
```
|
| 80 |
|
| 81 |
-
### pipeline
|
| 82 |
-
|
| 83 |
-
```python
|
| 84 |
-
!pip install git+https://github.com/huggingface/diffusers.git
|
| 85 |
-
from diffusers import LatentDiffusionUncondPipeline
|
| 86 |
-
import torch
|
| 87 |
-
import PIL.Image
|
| 88 |
-
import numpy as np
|
| 89 |
-
import tqdm
|
| 90 |
-
|
| 91 |
-
seed = 3
|
| 92 |
-
|
| 93 |
-
pipeline = LatentDiffusionUncondPipeline.from_pretrained("CompVis/latent-diffusion-celeba-256")
|
| 94 |
-
|
| 95 |
-
# generatae image by calling the pipeline
|
| 96 |
-
generator = torch.manual_seed(seed)
|
| 97 |
-
image = pipeline(generator=generator, num_inference_steps=200)["sample"]
|
| 98 |
-
|
| 99 |
-
# process image
|
| 100 |
-
image_processed = image.cpu().permute(0, 2, 3, 1)
|
| 101 |
-
image_processed = (image_processed + 1.0) * 127.5
|
| 102 |
-
image_processed = image_processed.clamp(0, 255).numpy().astype(np.uint8)
|
| 103 |
-
image_pil = PIL.Image.fromarray(image_processed[0])
|
| 104 |
-
|
| 105 |
-
image_pil.save(f"generated_image_{seed}.png")
|
| 106 |
-
```
|
| 107 |
|
| 108 |
## Samples
|
| 109 |
|
| 110 |
-
1. 
|
| 112 |
-
3. ![
|
| 113 |
-
4. ![
|
|
|
|
| 20 |
|
| 21 |
## Usage
|
| 22 |
|
| 23 |
+
### Inference with a pipeline
|
| 24 |
|
| 25 |
```python
|
| 26 |
+
!pip install diffusers
|
| 27 |
+
from diffusers import DiffusionPipeline
|
| 28 |
+
|
| 29 |
+
model_id = "CompVis/ldm-celebahq-256"
|
| 30 |
+
|
| 31 |
+
# load model and scheduler
|
| 32 |
+
pipeline = DiffusionPipeline.from_pretrained(model_id)
|
| 33 |
+
|
| 34 |
+
# run pipeline in inference (sample random noise and denoise)
|
| 35 |
+
image = pipeline(num_inference_steps=200)["sample"]
|
| 36 |
+
|
| 37 |
+
# save image
|
| 38 |
+
image[0].save("ldm_generated_image.png")
|
| 39 |
+
```
|
| 40 |
+
|
| 41 |
+
### Inference with an unrolled loop
|
| 42 |
+
|
| 43 |
+
```python
|
| 44 |
+
!pip install diffusers
|
| 45 |
from diffusers import UNet2DModel, DDIMScheduler, VQModel
|
| 46 |
import torch
|
| 47 |
import PIL.Image
|
|
|
|
| 51 |
seed = 3
|
| 52 |
|
| 53 |
# load all models
|
| 54 |
+
unet = UNet2DModel.from_pretrained("CompVis/ldm-celebahq-256", subfolder="unet")
|
| 55 |
+
vqvae = VQModel.from_pretrained("CompVis/ldm-celebahq-256", subfolder="vqvae")
|
| 56 |
+
scheduler = DDIMScheduler.from_config("CompVis/ldm-celebahq-256", subfolder="scheduler")
|
| 57 |
|
| 58 |
# set to cuda
|
| 59 |
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 64 |
# generate gaussian noise to be decoded
|
| 65 |
generator = torch.manual_seed(seed)
|
| 66 |
noise = torch.randn(
|
| 67 |
+
(1, unet.in_channels, unet.sample_size, unet.sample_size),
|
| 68 |
generator=generator,
|
| 69 |
).to(torch_device)
|
| 70 |
|
|
|
|
| 96 |
image_pil.save(f"generated_image_{seed}.png")
|
| 97 |
```
|
| 98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
## Samples
|
| 101 |
|
| 102 |
+
1. 
|
| 103 |
+
2. 
|
| 104 |
+
3. 
|
| 105 |
+
4. 
|