File size: 23,477 Bytes
1ccd57b 77c0c51 1ccd57b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 |
---
license: mit
language:
- en
- ar
base_model:
- qwen2-VL-7B
pipeline_tag: image-text-to-text
tags:
- LMM
- Arabic
- OCR
library_name: transformers
---
<div style="display: flex; align-items: center;">
<img src="assets_hf/AIN.png" width="10%" alt="logo" style="margin-right: 10px;" />
<h1 style="margin: 0; font-size: 28px;";">AIN: The Arabic INclusive Large Multimodal Model</h1>
</div>
[Ahmed Heakl](https://huggingface.co/ahmedheakl) <sup> * </sup>
[Sara Ghaboura](https://huggingface.co/SLMLAH) <sup> * </sup>
[Omkar Thawakar](https://omkarthawakar.github.io)
[Fahad Shahbaz Khan](https://scholar.google.com/citations?hl=en&user=zvaeYnUAAAAJ)
[Hisham Cholakkal](https://scholar.google.com/citations?hl=en&user=bZ3YBRcAAAAJ)
[Rao M. Anwer](https://scholar.google.com/citations?hl=en&user=_KlvMVoAAAAJ)
[Salman Khan](https://scholar.google.com/citations?hl=en&user=M59O9lkAAAAJ)
<br>
<em> <sup> *Equal Contribution </sup> </em>
<br>
#### **Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI), UAE**
[](https://arxiv.org/abs/2502.00094)
[](https://mbzuai-oryx.github.io/AIN/)
[](https://github.com/mbzuai-oryx/AIN)
[](https://github.com/mbzuai-oryx/AIN/issues)
[](https://github.com/mbzuai-oryx/AIN/stargazers)
[](https://github.com/mbzuai-oryx/AIN/blob/main/LICENSE)
---
<div class="abstract-container">
<h2>Abstract</h2>
<div class="abstract-content">
<p>
Amid the swift progress of large language models (LLMs) and their evolution into large multimodal models (LMMs), significant strides have been made in high-resource languages such as English and Chinese. While Arabic LLMs have seen notable progress, Arabic LMMs remain largely unexplored, often narrowly focusing on a few specific aspects of the language and visual understanding. To bridge this gap, we introduce <b><em>AIN - the Arabic Inclusive Multimodal Model-</em></b> designed to excel across diverse domains.
AIN is an English-Arabic <b>bilingual LMM</b> designed to excel in English and Arabic, leveraging carefully constructed <b>3.6 million</b> high-quality Arabic-English multimodal data samples. AIN demonstrates state-of-the-art Arabic performance, while also possessing strong English-language visual capabilities.
</p>
</div>
</div>
## π Key Features
- The **first Arabic-centric inclusive Large Multimodal Model (LMM)** trained on **3.6M samples**.
- Includes **35% authentic Arabic data** within its Arabic data subset.
- Achieves **superior performance compared to open- and closed-source models** (e.g., GPT-4o) and open-source models (e.g., Qwen2-VL-7B) across tasks such as OCR and specialized domains.
- Demonstrates **robust bilingual capabilities** (Arabic/English), **validated** through **comprehensive testing** and **human evaluation** across 17 Arab countries.
- Exhibits **advanced cultural understanding** and domain expertise in fields such as **medical imaging**, **agriculture**, and **scientific visualization**.
<p align="center">
<img src="assets_hf/intro_bar.png" width="70%" alt="intro_bar" style="margin-right: 2px";/>
<h6>
<em> <b>Figure 1.</b> Comparative performance of AIN-7B against other models across key domains, including OCR & Document Understanding, Remote Sensing, Agricultural Understanding, and overall performance across all domains. </em>
</h6>
</p>
<p align="center" >
<img src="assets_hf/radar_chart.png" width="52%" alt="radar_chart" style="margin-right: 2px";/>
<h6>
<em> <b>Figure 2.</b> showcases a comprehensive performance analysis of AIN-7B across CAMEL-Bench domains, comparing it with prominent closed-source models as well as open-source counterparts. <strong>OCR:</strong> "OCR & Document Understanding", <strong>Video:</strong> "General Video & Multi-Image Understanding", <strong>RS:</strong> "Remote Sensing Understanding", <strong>CDT:</strong> "Chart, Diagram & Table Understanding", <strong>Agro.:</strong> "Agricultural Image Understanding", <strong>Cultural:</strong> "Cultural-Specific Understanding", <strong>Medical:</strong> "Medical Image Understanding".
</em>
</h6>
---
## βοΈ Quick Start
Please install the qwen vision kit. This includes base64, URLs, and interleaved images and videos. You can install it using the following command:
```bash
pip install qwen-vl-utils
```
Here we show a code snippet to show you how to use the chat model with `transformers` and `qwen_vl_utils`:
```python
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info
# default: Load the model on the available device(s)
model = Qwen2VLForConditionalGeneration.from_pretrained(
"MBZUAI/AIN", torch_dtype="auto", device_map="auto"
)
# We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
# model = Qwen2VLForConditionalGeneration.from_pretrained(
# "MBZUAI/AIN",
# torch_dtype=torch.bfloat16,
# attn_implementation="flash_attention_2",
# device_map="auto",
# )
# default processer
processor = AutoProcessor.from_pretrained("MBZUAI/AIN")
# The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory usage.
# min_pixels = 256*28*28
# max_pixels = 1280*28*28
# processor = AutoProcessor.from_pretrained("MBZUAI/AIN", min_pixels=min_pixels, max_pixels=max_pixels)
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://huggingface.co/MBZUAI/AIN/resolve/main/assets_hf/demo_image.jpeg",
},
{"type": "text", "text": "ΩΨ±Ψ¬Ω ΩΨ΅Ω ΩΨ°Ω Ψ§ΩΨ΅ΩΨ±Ψ©."},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
```
<details>
<summary>Without qwen_vl_utils</summary>
```python
from PIL import Image
import requests
import torch
from torchvision import io
from typing import Dict
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
# Load the model in half-precision on the available device(s)
model = Qwen2VLForConditionalGeneration.from_pretrained(
"MBZUAI/AIN", torch_dtype="auto", device_map="auto"
)
processor = AutoProcessor.from_pretrained("MBZUAI/AIN")
# Image
url = "https://huggingface.co/MBZUAI/AIN/resolve/main/assets_hf/demo_image.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
conversation = [
{
"role": "user",
"content": [
{
"type": "image",
},
{"type": "text", "text": "Describe this image in Arabic."},
],
}
]
# Preprocess the inputs
text_prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
# Excepted output: '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Describe this image.<|im_end|>\n<|im_start|>assistant\n'
inputs = processor(
text=[text_prompt], images=[image], padding=True, return_tensors="pt"
)
inputs = inputs.to("cuda")
# Inference: Generation of the output
output_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids = [
output_ids[len(input_ids) :]
for input_ids, output_ids in zip(inputs.input_ids, output_ids)
]
output_text = processor.batch_decode(
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
print(output_text)
```
</details>
<details>
<summary>Multi image inference</summary>
```python
# Messages containing multiple images and a text query
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": "file:///path/to/image1.jpg"},
{"type": "image", "image": "file:///path/to/image2.jpg"},
{"type": "text", "text": "Identify the similarities between these images."},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
```
</details>
<details>
<summary>Video inference</summary>
```python
# Messages containing a images list as a video and a text query
messages = [
{
"role": "user",
"content": [
{
"type": "video",
"video": [
"file:///path/to/frame1.jpg",
"file:///path/to/frame2.jpg",
"file:///path/to/frame3.jpg",
"file:///path/to/frame4.jpg",
],
"fps": 1.0,
},
{"type": "text", "text": "Describe this video."},
],
}
]
# Messages containing a video and a text query
messages = [
{
"role": "user",
"content": [
{
"type": "video",
"video": "file:///path/to/video1.mp4",
"max_pixels": 360 * 420,
"fps": 1.0,
},
{"type": "text", "text": "Describe this video."},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
```
</details>
<details>
<summary>Batch inference</summary>
```python
# Sample messages for batch inference
messages1 = [
{
"role": "user",
"content": [
{"type": "image", "image": "file:///path/to/image1.jpg"},
{"type": "image", "image": "file:///path/to/image2.jpg"},
{"type": "text", "text": "What are the common elements in these pictures?"},
],
}
]
messages2 = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Who are you?"},
]
# Combine messages for batch processing
messages = [messages1, messages1]
# Preparation for batch inference
texts = [
processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True)
for msg in messages
]
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=texts,
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Batch Inference
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_texts = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_texts)
```
</details>
### More Usage Tips
For input images, we support local files, base64, and URLs. For videos, we currently only support local files.
```python
# You can directly insert a local file path, a URL, or a base64-encoded image into the position where you want in the text.
## Local file path
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": "file:///path/to/your/image.jpg"},
{"type": "text", "text": "Describe this image."},
],
}
]
## Image URL
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": "http://path/to/your/image.jpg"},
{"type": "text", "text": "Describe this image."},
],
}
]
## Base64 encoded image
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": "data:image;base64,/9j/..."},
{"type": "text", "text": "Describe this image."},
],
}
]
```
#### Image Resolution for performance boost
The model supports a wide range of resolution inputs. By default, it uses the native resolution for input, but higher resolutions can enhance performance at the cost of more computation. Users can set the minimum and maximum number of pixels to achieve an optimal configuration for their needs, such as a token count range of 256-1280, to balance speed and memory usage.
```python
min_pixels = 256 * 28 * 28
max_pixels = 1280 * 28 * 28
processor = AutoProcessor.from_pretrained(
"MBZUAI/AIN", min_pixels=min_pixels, max_pixels=max_pixels
)
```
Besides, We provide two methods for fine-grained control over the image size input to the model:
1. Define min_pixels and max_pixels: Images will be resized to maintain their aspect ratio within the range of min_pixels and max_pixels.
2. Specify exact dimensions: Directly set `resized_height` and `resized_width`. These values will be rounded to the nearest multiple of 28.
```python
# min_pixels and max_pixels
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "file:///path/to/your/image.jpg",
"resized_height": 280,
"resized_width": 420,
},
{"type": "text", "text": "Describe this image."},
],
}
]
# resized_height and resized_width
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "file:///path/to/your/image.jpg",
"min_pixels": 50176,
"max_pixels": 50176,
},
{"type": "text", "text": "Describe this image."},
],
}
]
```
---
## βοΈ Quantitative Evaluation and Results
AIN demonstrates state-of-the-art performance across diverse domains, surpassing both open- and closed-source models. Notably, it achieves an aggregate performance score of 63.77%, with significant gains in OCR, remote sensing, and agricultural image understanding.
<div align="center" >
<table>
<caption>
<h6>
<strong>Table 1. Performance comparison of AIN and different closed- and open-source LMMs across CAMEL-Bench domains.</strong>
<br> <em>Best performance is marked with π₯; second-best is π₯.</em>
<strong>OCR</strong>: "OCR & Document Understanding",
<strong>Video</strong>: "General Video & Multi-Image Understanding",
<strong>RS</strong>: "Remote Sensing Understanding",
<strong>CDT</strong>: "Chart, Diagram & Table Understanding",
<strong>Agro.</strong>: "Agricultural Image Understanding",
<strong>Cult.</strong>: "Cultural-Specific Understanding",
<strong>Med.</strong>: "Medical Image Understanding".
</h6>
</caption>
<thead>
<tr style="background-color: #e0e0e0;">
<th>Models</th>
<th>VQA</th>
<th>OCR</th>
<th>Video</th>
<th>RS</th>
<th>CDT</th>
<th>Agro.</th>
<th>Cult.</th>
<th>Med.</th>
<th style="background-color: #d0d0d0;">Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPT-4o</td>
<td>π₯55.15</td>
<td>π₯54.98</td>
<td>π₯69.65</td>
<td>π₯27.36</td>
<td>π₯62.35</td>
<td>π₯80.75</td>
<td>π₯80.86</td>
<td>π₯49.91</td>
<td style="background-color: #d0d0d0;">π₯60.13</td>
</tr>
<tr>
<td>GPT-4o-mini</td>
<td>48.83</td>
<td>39.38</td>
<td>π₯66.28</td>
<td>16.93</td>
<td>56.37</td>
<td>78.80</td>
<td>65.92</td>
<td>π₯47.37</td>
<td style="background-color: #d0d0d0;">52.49</td>
</tr>
<tr>
<td>Gemini-1.5-Pro</td>
<td>46.68</td>
<td>28.68</td>
<td>42.95</td>
<td>17.07</td>
<td>47.06</td>
<td>72.14</td>
<td>56.24</td>
<td>33.78</td>
<td style="background-color: #d0d0d0;">52.38</td>
</tr>
<tr>
<td>Gemini-1.5-flash</td>
<td>45.59</td>
<td>27.58</td>
<td>53.31</td>
<td>14.95</td>
<td>48.26</td>
<td>76.07</td>
<td>46.54</td>
<td>42.87</td>
<td style="background-color: #d0d0d0;">44.40</td>
</tr>
<tr>
<td>InternVL-8B </td>
<td>30.41 </td>
<td>15.91 </td>
<td>51.42 </td>
<td>5.36 </td>
<td>30.27 </td>
<td>44.47 </td>
<td>20.88 </td>
<td>29.48 </td>
<td style="background-color: #d0d0d0;">28.52 </td>
</tr>
<tr>
<td>InternVL2.5-1B </td>
<td>27.22 </td>
<td>19.45 </td>
<td>38.20 </td>
<td>3.39 </td>
<td>30.75 </td>
<td>39.53 </td>
<td>35.68 </td>
<td>21.27 </td>
<td style="background-color: #d0d0d0;">26.94 </td>
</tr>
<tr>
<td>Qwen-VL-2B </td>
<td>41.02 </td>
<td>22.93 </td>
<td>38.90 </td>
<td>12.56 </td>
<td>27.83 </td>
<td>52.02 </td>
<td>34.28 </td>
<td>29.12 </td>
<td style="background-color: #d0d0d0;">32.33 </td>
</tr>
<tr>
<td>Qwen2-VL-7B </td>
<td>48.76 </td>
<td>42.73 </td>
<td>61.97 </td>
<td>21.30 </td>
<td>54.67 </td>
<td>79.32 </td>
<td>75.96 </td>
<td>35.81 </td>
<td style="background-color: #d0d0d0;">52.57 </td>
</tr>
<tr>
<td>AIN-7B <em>(ours)</em> </td>
<td>π₯56.78 </td>
<td>π₯72.35 </td>
<td>64.09 </td>
<td>π₯45.92 </td>
<td>π₯64.10 </td>
<td>π₯85.05 </td>
<td>π₯78.09 </td>
<td>43.77 </td>
<td style="background-color: #d0d0d0;">π63.77 </td>
</tr>
</tbody>
</table>
</div>
---
## π― Qualitative Evaluation
The qualitative evaluation showcases AIN's advanced capabilities in handling diverse, complex tasks, including OCR, medical imaging, remote sensing, and cultural-specific understanding, with remarkable precision and contextual relevance. Unlike GPT-4o and LLaVA, AIN demonstrates superior performance in identifying intricate details and maintaining accuracy across varied query formats and multi-domain challenges.
<div align="center">
<img src="assets_hf/qualitative.png" width="75%" alt="qualitative" />
<h6>
<em> <b>Figure 3.</b> Qualitative examples showcasing AIN-7Bβs capabilities across various domains, including general VQA, OCR & Document Understanding, Remote Sensing, Medical Imaging, Agricultural Understanding, and Cultural-Specific tasks. </em>
</h6>
</div>
---
## π§ Data Verification and Toxicity Filtering
A multi-step verification pipeline was implemented to ensure high-quality translations and safe visual data. Translation accuracy was assessed through human evaluation, where native Arabic speakers rated outputs against reference translations, and semantic similarity checks were conducted using **LaBSE**. Additionally, translated samples were reverse-translated and validated using **BLEU, METEOR, and ROUGE scores** to measure correctness, correlation, and overlap. For visual data, toxicity filtering was applied using **LLavaGuardβs safety policies and GPT-4o**, identifying and removing unsafe content related to violence, substance abuse, and harmful imagery, ensuring compliance with ethical AI standards.
<p align="center">
<img src="assets_hf/verify_pipeline.png" width="75%" alt="verify" style="margin-right: 2px";/>
<h6>
<em> <b>Figure 4.</b> Data verification and filtering pipeline for textual and visual data, ensuring high-quality training data through semantic similarity checks, translation quality evaluations, and toxicity screening for safety compliance. </em>
</h6>
</p>
<p align="center">
<img src="assets_hf/toxicity.png" width=48%" alt="verify" style="margin-right: 2px";/>
<h6>
<em> <b>Figure 5.</b> Distribution of visual data toxicity filtering results, showing that 95% of the data is classified as safe, while 5% is identified as unsafe due to categories like weapons or substance abuse, violence, and animal cruelty. </em>
</h6>
</p>
---
## π License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
## π¬ Contact us
For questions or suggestions, feel free to reach out to us on [GitHub Discussions](https://github.com/mbzuai-oryx/AIN/discussions).
---
If you use AIN in your research, please cite our work as follows:
```
@misc{heakl2025ainarabicinclusivelarge,
title={AIN: The Arabic INclusive Large Multimodal Model},
author={Ahmed Heakl and Sara Ghaboura and Omkar Thawkar and Fahad Shahbaz Khan and Hisham Cholakkal and Rao Muhammad Anwer and Salman Khan},
year={2025},
eprint={2502.00094},
url={https://arxiv.org/abs/2502.00094},
```
--- |