VisoLearn commited on
Commit
c5a6199
·
verified ·
1 Parent(s): 9f96149

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +157 -150
README.md CHANGED
@@ -13,190 +13,197 @@ tags:
13
  pipeline_tag: text-generation
14
  ---
15
 
16
- # OpenCodeReasoning-Nemotron-32B Overview
17
 
18
- ## Description: <br>
19
- OpenCodeReasoning-Nemotron-32B is a large language model (LLM) which is a derivative of Qwen2.5-32B-Instruct (AKA the reference model). It is a reasoning model that is post-trained for reasoning for code generation. The model supports a context length of 32K tokens. <br>
20
 
21
- This model is ready for commercial/non-commercial use. <br>
22
-
23
- ![Evaluation Results](./results.png)
24
 
 
25
 
26
- ## Results from [OpenCodeReasoning](https://arxiv.org/abs/2504.01943)
27
 
28
- Below results are the average of **64 evaluations** on each benchmark.
29
 
30
- | Model | LiveCodeBench Avg. | CodeContest All |
31
- |------------------------|--------------------|-----------------|
32
- | DeepSeek-R1 | 65.6 | 26.2 |
33
- | QwQ-32B | 61.3 | 20.2 |
34
- | | | |
35
- | **Distilled 7B+ Models** | | |
36
- | | | |
37
- | Bespoke-Stratos-7B | 14.7 | 2.0 |
38
- | OpenThinker-7B | 25.5 | 5.0 |
39
- | R1-Distill-Qwen-7B | 38.0 | 11.1 |
40
- | OlympicCoder-7B | 40.9 | 10.6 |
41
- | **OCR-Qwen-7B** | **48.5** | **16.3** |
42
- | **OCR-Qwen-7B-Instruct** | **51.3** | **18.1** |
43
- | | | |
44
- | **Distilled 14B+ Models**| | |
45
- | | | |
46
- | R1-Distill-Qwen-14B | 51.3 | 17.6 |
47
- | **OCR-Qwen-14B** | **57.7** | **22.6** |
48
- | **OCR-Qwen-14B-Instruct**| **59.4** | **23.6** |
49
- | | | |
50
- | **Distilled 32B+ Models**| | |
51
- | | | |
52
- | Bespoke-Stratos-32B | 30.1 | 6.3 |
53
- | OpenThinker-32B | 54.1 | 16.4 |
54
- | R1-Distill-Qwen-32B | 58.1 | 18.3 |
55
- | OlympicCoder-32B | 57.4 | 18.0 |
56
- | **OCR-Qwen-32B** | **61.8** | **24.6** |
57
- | **OCR-Qwen-32B-Instruct**| **61.7** | **24.4** |
58
-
59
- ## Reproducing our results
60
-
61
- * [Models](https://huggingface.co/collections/nvidia/opencodereasoning-2-68168f37cd7c6beb1e3f92e7)
62
- * [Dataset](https://huggingface.co/datasets/nvidia/OpenCodeReasoning)
63
- * [Paper](https://arxiv.org/abs/2504.01943)
64
-
65
-
66
- ## How to use the models?
67
-
68
- To run inference on coding problems:
69
 
70
- ````python
71
- import transformers
72
- import torch
73
 
74
- model_id = "nvidia/OpenCodeReasoning-Nemotron-32B"
75
-
76
- pipeline = transformers.pipeline(
77
- "text-generation",
78
- model=model_id,
79
- model_kwargs={"torch_dtype": torch.bfloat16},
80
- device_map="auto",
81
- )
82
 
83
- prompt = """You are a helpful and harmless assistant. You should think step-by-step before responding to the instruction below.
84
 
85
- Please use python programming language only.
86
 
87
- You must use ```python for just the final solution code block with the following format:
88
- ```python
89
- # Your code here
90
- ```
91
 
92
- {user}
93
- """
94
 
95
- messages = [
96
- {
97
- "role": "user",
98
- "content": prompt.format(user="Write a program to calculate the sum of the first $N$ fibonacci numbers")},
99
- ]
100
 
101
- outputs = pipeline(
102
- messages,
103
- max_new_tokens=32768,
104
- )
105
- print(outputs[0]["generated_text"][-1]['content'])
106
 
107
- ````
108
 
 
109
 
 
110
 
111
- ## Citation
112
 
113
- If you find the data useful, please cite:
114
- ```
115
- @article{ahmad2025opencodereasoning,
116
- title={OpenCodeReasoning: Advancing Data Distillation for Competitive Coding},
117
- author={Wasi Uddin Ahmad, Sean Narenthiran, Somshubra Majumdar, Aleksander Ficek, Siddhartha Jain, Jocelyn Huang, Vahid Noroozi, Boris Ginsburg},
118
- year={2025},
119
- eprint={2504.01943},
120
- archivePrefix={arXiv},
121
- primaryClass={cs.CL},
122
- url={https://arxiv.org/abs/2504.01943},
123
- }
124
- ```
125
-
126
- ## Additional Information
127
-
128
- ## Model Architecture: <br>
129
- Architecture Type: Dense decoder-only Transformer model
130
- Network Architecture: Qwen-32B-Instruct
131
- <br>
132
- **This model was developed based on Qwen2.5-32B-Instruct and has 32B model parameters. <br>**
133
- **OpenCodeReasoning-Nemotron-32B was developed based on Qwen2.5-32B-Instruct and has 32B model parameters. <br>**
134
-
135
- ## Input: <br>
136
- **Input Type(s):** Text <br>
137
- **Input Format(s):** String <br>
138
- **Input Parameters:** One-Dimensional (1D) <br>
139
- **Other Properties Related to Input:** Context length up to 32,768 tokens <br>
140
 
141
- ## Output: <br>
142
- **Output Type(s):** Text <br>
143
- **Output Format:** String <br>
144
- **Output Parameters:** One-Dimensional (1D) <br>
145
- **Other Properties Related to Output:** Context length up to 32,768 tokens <br>
146
 
147
- Our AI models are designed and/or optimized to run on NVIDIA GPU-accelerated systems. By leveraging NVIDIA’s hardware (e.g. GPU cores) and software frameworks (e.g., CUDA libraries), the model achieves faster training and inference times compared to CPU-only solutions. <br>
148
 
149
- ## Software Integration : <br>
150
- * Runtime Engine: NeMo 2.3.0 <br>
151
- * Recommended Hardware Microarchitecture Compatibility: <br>
152
- NVIDIA Ampere <br>
153
- NVIDIA Hopper <br>
154
- * Preferred/Supported Operating System(s): Linux <br>
155
 
156
- ## Model Version(s):
157
- 1.0 (4/25/2025) <br>
158
- OpenCodeReasoning-Nemotron-7B<br>
159
- OpenCodeReasoning-Nemotron-14B<br>
160
- OpenCodeReasoning-Nemotron-32B<br>
161
- OpenCodeReasoning-Nemotron-32B-IOI<br>
162
 
 
163
 
164
- # Training and Evaluation Datasets: <br>
165
 
166
- ## Training Dataset:
167
 
168
- The training corpus for OpenCodeReasoning-Nemotron-32B is [OpenCodeReasoning](https://huggingface.co/datasets/nvidia/OpenCodeReasoning) dataset, which is composed of competitive programming questions and DeepSeek-R1 generated responses.
169
 
170
- Data Collection Method: Hybrid: Automated, Human, Synthetic <br>
171
- Labeling Method: Hybrid: Automated, Human, Synthetic <br>
172
- Properties: 736k samples from OpenCodeReasoning (https://huggingface.co/datasets/nvidia/OpenCodeReasoning)
173
 
174
- ## Evaluation Dataset:
175
- We used the datasets listed in the next section to evaluate OpenCodeReasoning-Nemotron-32B. <br>
176
- **Data Collection Method: Hybrid: Automated, Human, Synthetic <br>**
177
- **Labeling Method: Hybrid: Automated, Human, Synthetic <br>**
178
 
179
- ### License/Terms of Use: <br>
180
- GOVERNING TERMS: Use of this model is governed by [Apache 2.0](https://huggingface.co/nvidia/OpenCode-Nemotron-2-7B/blob/main/LICENSE).
181
 
182
- ### Deployment Geography:
183
- Global<br>
184
 
185
- ### Use Case: <br>
186
- This model is intended for developers and researchers building LLMs. <br>
187
 
188
- ### Release Date: <br>
189
- Huggingface [04/25/2025] via https://huggingface.co/nvidia/OpenCodeReasoning-Nemotron-32B/ <br>
190
 
191
- ## Reference(s):
192
- [2504.01943] OpenCodeReasoning: Advancing Data Distillation for Competitive Coding
193
- <br>
194
 
195
- ## Inference:
196
- **Engine:** vLLM <br>
197
- **Test Hardware** NVIDIA H100-80GB <br>
198
 
199
- ## Ethical Considerations:
200
- NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.
201
 
202
- Please report security vulnerabilities or NVIDIA AI Concerns here.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  pipeline_tag: text-generation
14
  ---
15
 
16
+ # Model Card for Model ID
17
 
18
+ <!-- Provide a quick summary of what the model is/does. -->
 
19
 
20
+ This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
 
 
21
 
22
+ ## Model Details
23
 
24
+ ### Model Description
25
 
26
+ <!-- Provide a longer summary of what this model is. -->
27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
 
 
 
 
29
 
30
+ - **Developed by:** [More Information Needed]
31
+ - **Funded by [optional]:** [More Information Needed]
32
+ - **Shared by [optional]:** [More Information Needed]
33
+ - **Model type:** [More Information Needed]
34
+ - **Language(s) (NLP):** [More Information Needed]
35
+ - **License:** [More Information Needed]
36
+ - **Finetuned from model [optional]:** [More Information Needed]
 
37
 
38
+ ### Model Sources [optional]
39
 
40
+ <!-- Provide the basic links for the model. -->
41
 
42
+ - **Repository:** [More Information Needed]
43
+ - **Paper [optional]:** [More Information Needed]
44
+ - **Demo [optional]:** [More Information Needed]
 
45
 
46
+ ## Uses
 
47
 
48
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
 
 
49
 
50
+ ### Direct Use
 
 
 
 
51
 
52
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
53
 
54
+ [More Information Needed]
55
 
56
+ ### Downstream Use [optional]
57
 
58
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
59
 
60
+ [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
62
+ ### Out-of-Scope Use
 
 
 
 
63
 
64
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
65
 
66
+ [More Information Needed]
 
 
 
 
 
67
 
68
+ ## Bias, Risks, and Limitations
 
 
 
 
 
69
 
70
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
71
 
72
+ [More Information Needed]
73
 
74
+ ### Recommendations
75
 
76
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
77
 
78
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
79
 
80
+ ## How to Get Started with the Model
 
 
 
81
 
82
+ Use the code below to get started with the model.
 
83
 
84
+ [More Information Needed]
 
85
 
86
+ ## Training Details
 
87
 
88
+ ### Training Data
 
89
 
90
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
 
 
91
 
92
+ [More Information Needed]
 
 
93
 
94
+ ### Training Procedure
 
95
 
96
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
97
+
98
+ #### Preprocessing [optional]
99
+
100
+ [More Information Needed]
101
+
102
+
103
+ #### Training Hyperparameters
104
+
105
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
106
+
107
+ #### Speeds, Sizes, Times [optional]
108
+
109
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
110
+
111
+ [More Information Needed]
112
+
113
+ ## Evaluation
114
+
115
+ <!-- This section describes the evaluation protocols and provides the results. -->
116
+
117
+ ### Testing Data, Factors & Metrics
118
+
119
+ #### Testing Data
120
+
121
+ <!-- This should link to a Dataset Card if possible. -->
122
+
123
+ [More Information Needed]
124
+
125
+ #### Factors
126
+
127
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
128
+
129
+ [More Information Needed]
130
+
131
+ #### Metrics
132
+
133
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
134
+
135
+ [More Information Needed]
136
+
137
+ ### Results
138
+
139
+ [More Information Needed]
140
+
141
+ #### Summary
142
+
143
+
144
+
145
+ ## Model Examination [optional]
146
+
147
+ <!-- Relevant interpretability work for the model goes here -->
148
+
149
+ [More Information Needed]
150
+
151
+ ## Environmental Impact
152
+
153
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
154
+
155
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
156
+
157
+ - **Hardware Type:** [More Information Needed]
158
+ - **Hours used:** [More Information Needed]
159
+ - **Cloud Provider:** [More Information Needed]
160
+ - **Compute Region:** [More Information Needed]
161
+ - **Carbon Emitted:** [More Information Needed]
162
+
163
+ ## Technical Specifications [optional]
164
+
165
+ ### Model Architecture and Objective
166
+
167
+ [More Information Needed]
168
+
169
+ ### Compute Infrastructure
170
+
171
+ [More Information Needed]
172
+
173
+ #### Hardware
174
+
175
+ [More Information Needed]
176
+
177
+ #### Software
178
+
179
+ [More Information Needed]
180
+
181
+ ## Citation [optional]
182
+
183
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
184
+
185
+ **BibTeX:**
186
+
187
+ [More Information Needed]
188
+
189
+ **APA:**
190
+
191
+ [More Information Needed]
192
+
193
+ ## Glossary [optional]
194
+
195
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
196
+
197
+ [More Information Needed]
198
+
199
+ ## More Information [optional]
200
+
201
+ [More Information Needed]
202
+
203
+ ## Model Card Authors [optional]
204
+
205
+ [More Information Needed]
206
+
207
+ ## Model Card Contact
208
+
209
+ [More Information Needed]