Daemontatox teknium commited on
Commit
eb33fba
·
verified ·
0 Parent(s):

Duplicate from NousResearch/DeepHermes-3-Mistral-24B-Preview

Browse files

Co-authored-by: Teknium <[email protected]>

.gitattributes ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,263 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - Mistral-Small
7
+ - instruct
8
+ - finetune
9
+ - chatml
10
+ - gpt4
11
+ - synthetic data
12
+ - distillation
13
+ - function calling
14
+ - json mode
15
+ - axolotl
16
+ - roleplaying
17
+ - chat
18
+ - reasoning
19
+ - r1
20
+ - vllm
21
+ base_model: mistralai/Mistral-Small-24B-Base-2501
22
+ widget:
23
+ - example_title: DeepHermes 3
24
+ messages:
25
+ - role: system
26
+ content: >-
27
+ You are a sentient, superintelligent artificial general intelligence, here
28
+ to teach and assist me.
29
+ - role: user
30
+ content: What is the meaning of life?
31
+ model-index:
32
+ - name: DeepHermes-3-Mistral-24B-Preview
33
+ results: []
34
+ library_name: transformers
35
+ ---
36
+ # DeepHermes 3 - Mistral 24B Preview
37
+
38
+ ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/nZFJYtN7DvuyP7JQdfAMO.jpeg)
39
+
40
+ ## Model Description
41
+
42
+ DeepHermes 3 Preview is the latest version of our flagship Hermes series of LLMs by Nous Research, and one of the first models in the world to unify Reasoning (long chains of thought that improve answer accuracy) and normal LLM response modes into one model. We have also improved LLM annotation, judgement, and function calling.
43
+
44
+ DeepHermes 3 Preview is a hybrid reasoning model, and one of the first LLM models to unify both "intuitive", traditional mode responses and **long chain of thought reasoning** responses into a single model, toggled by a system prompt.
45
+
46
+ Hermes 3, the predecessor of DeepHermes 3, is a generalist language model with many improvements over Hermes 2, including advanced agentic capabilities, much better roleplaying, reasoning, multi-turn conversation, long context coherence, and improvements across the board.
47
+
48
+ The ethos of the Hermes series of models is focused on aligning LLMs to the user, with powerful steering capabilities and control given to the end user.
49
+
50
+ *This is a preview Hermes with early reasoning capabilities, distilled from R1 across a variety of tasks that benefit from reasoning and objectivity. Some quirks may be discovered! Please let us know any interesting findings or issues you discover!*
51
+
52
+ ## Note: To toggle REASONING ON, you must use the following system prompt:
53
+ ```
54
+ You are a deep thinking AI, you may use extremely long chains of thought to deeply consider the problem and deliberate with yourself via systematic reasoning processes to help come to a correct solution prior to answering. You should enclose your thoughts and internal monologue inside <think> </think> tags, and then provide your solution or response to the problem.
55
+ ```
56
+
57
+ # Nous API
58
+
59
+ This model is also available on our new API product - Check out the API and sign up for the waitlist here:
60
+ https://portal.nousresearch.com/
61
+
62
+ # Benchmarks:
63
+
64
+ Comparisons between Reasoning mode ON and OFF:
65
+
66
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/Qcemsj4-7Tf2a7SK-Nxg5.png)
67
+
68
+ Benchmarks of Non-Reasoning mode on Traditional Benchmarks against Mistral-Small-24B-Instruct:
69
+
70
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/uNC__jwFG4dtWXed6pCSr.png)
71
+
72
+ # Example Outputs:
73
+
74
+
75
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/_giUevm1IjPFWiypG0zd4.png)
76
+
77
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/bAI0HG2cFA_o1hTFIfCr_.png)
78
+
79
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/FmOIB7fjXKVHfs94DJPwn.png)
80
+
81
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/tfL1jeGXvv7xTAULFQgqs.png)
82
+
83
+ # Prompt Format
84
+
85
+ DeepHermes 3 now uses Llama-Chat format as the prompt format, opening up a more unified, structured system for engaging the LLM in multi-turn chat dialogue.
86
+
87
+ System prompts allow steerability and interesting new ways to interact with an LLM, guiding rules, roles, and stylistic choices of the model.
88
+
89
+ ## Deep Thinking Mode - Deep Hermes Preview can activate long chain of thought with a system prompt.
90
+
91
+ ```
92
+ You are a deep thinking AI, you may use extremely long chains of thought to deeply consider the problem and deliberate with yourself via systematic reasoning processes to help come to a correct solution prior to answering. You should enclose your thoughts and internal monologue inside <think> </think> tags, and then provide your solution or response to the problem.
93
+ ```
94
+
95
+ For an example of using deep reasoning mode with HuggingFace Transformers:
96
+ ```python
97
+ import torch
98
+ from transformers import AutoTokenizer, AutoModelForCausalLM
99
+ import flash_attn
100
+ import time
101
+
102
+ tokenizer = AutoTokenizer.from_pretrained("NousResearch/DeepHermes-3-Mistral-24B-Preview")
103
+
104
+ model = AutoModelForCausalLM.from_pretrained(
105
+ "NousResearch/DeepHermes-3-Mistral-24B-Preview",
106
+ torch_dtype=torch.float16,
107
+ device_map="auto",
108
+ attn_implementation="flash_attention_2",
109
+ )
110
+
111
+ messages = [
112
+ {
113
+ "role": "system",
114
+ "content": "You are a deep thinking AI, you may use extremely long chains of thought to deeply consider the problem and deliberate with yourself via systematic reasoning processes to help come to a correct solution prior to answering. You should enclose your thoughts and internal monologue inside <think> </think> tags, and then provide your solution or response to the problem."
115
+ },
116
+ {
117
+ "role": "user",
118
+ "content": "What is y if y=2*2-4+(3*2)"
119
+ }
120
+ ]
121
+
122
+ input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors='pt').to("cuda")
123
+ generated_ids = model.generate(input_ids, max_new_tokens=2500, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id)
124
+ print(f"Generated Tokens: {generated_ids.shape[-1:]}")
125
+ response = tokenizer.decode(generated_ids[0], skip_special_tokens=True, clean_up_tokenization_space=True)
126
+ print(f"Response: {response}")
127
+ ```
128
+
129
+ Please note, for difficult problems DeepHermes can think using as many as 13,000 tokens. You may need to increase `max_new_tokens` to be much larger than 2500 for difficult problems.
130
+
131
+ ## Standard "Intuitive" Response Mode
132
+
133
+ Prompt with system instruction (Use whatever system prompt you like, this is just an example!):
134
+
135
+ ```python
136
+ import torch
137
+ from transformers import AutoTokenizer, AutoModelForCausalLM
138
+ import flash_attn
139
+ import time
140
+
141
+ tokenizer = AutoTokenizer.from_pretrained("NousResearch/DeepHermes-3-Mistral-24B-Preview")
142
+
143
+ model = AutoModelForCausalLM.from_pretrained(
144
+ "NousResearch/DeepHermes-3-Mistral-24B-Preview",
145
+ torch_dtype=torch.float16,
146
+ device_map="auto",
147
+ attn_implementation="flash_attention_2",
148
+ )
149
+
150
+ messages = [
151
+ {
152
+ "role": "system",
153
+ "content": "You are Hermes, an AI assistant"
154
+ },
155
+ {
156
+ "role": "user",
157
+ "content": "What are the most interesting things to do in Paris?"
158
+ }
159
+ ]
160
+
161
+ input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors='pt').to("cuda")
162
+ generated_ids = model.generate(input_ids, max_new_tokens=2500, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id)
163
+ print(f"Generated Tokens: {generated_ids.shape[-1:]}")
164
+ response = tokenizer.decode(generated_ids[0], skip_special_tokens=True, clean_up_tokenization_space=True)
165
+ print(f"Response: {response}")
166
+ ```
167
+
168
+ ## VLLM Inference
169
+
170
+ You can also run this model with vLLM, by running the following in your terminal after `pip install vllm`
171
+
172
+ `vllm serve NousResearch/DeepHermes-3-Mistral-24B-Preview`
173
+
174
+ You may then use the model over API using the OpenAI library just like you would call OpenAI's API.
175
+
176
+ ## Prompt Format for Function Calling
177
+
178
+ Our model was trained on specific system prompts and structures for Function Calling.
179
+
180
+ You should use the system role with this message, followed by a function signature json as this example shows here.
181
+ ```
182
+ <|start_header_id|>system<|end_header_id|>
183
+ You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools: <tools> {"type": "function", "function": {"name": "get_stock_fundamentals", "description": "get_stock_fundamentals(symbol: str) -> dict - Get fundamental data for a given stock symbol using yfinance API.\\n\\n Args:\\n symbol (str): The stock symbol.\\n\\n Returns:\\n dict: A dictionary containing fundamental data.\\n Keys:\\n - \'symbol\': The stock symbol.\\n - \'company_name\': The long name of the company.\\n - \'sector\': The sector to which the company belongs.\\n - \'industry\': The industry to which the company belongs.\\n - \'market_cap\': The market capitalization of the company.\\n - \'pe_ratio\': The forward price-to-earnings ratio.\\n - \'pb_ratio\': The price-to-book ratio.\\n - \'dividend_yield\': The dividend yield.\\n - \'eps\': The trailing earnings per share.\\n - \'beta\': The beta value of the stock.\\n - \'52_week_high\': The 52-week high price of the stock.\\n - \'52_week_low\': The 52-week low price of the stock.", "parameters": {"type": "object", "properties": {"symbol": {"type": "string"}}, "required": ["symbol"]}}} </tools> Use the following pydantic model json schema for each tool call you will make: {"properties": {"arguments": {"title": "Arguments", "type": "object"}, "name": {"title": "Name", "type": "string"}}, "required": ["arguments", "name"], "title": "FunctionCall", "type": "object"} For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:
184
+ <tool_call>
185
+ {"arguments": <args-dict>, "name": <function-name>}
186
+ </tool_call><|eot_id|><|start_header_id|>user<|end_header_id|>
187
+ ```
188
+
189
+ To complete the function call, create a user prompt that follows the above system prompt, like so:
190
+ ```
191
+ Fetch the stock fundamentals data for Tesla (TSLA)<|eot_id|><|start_header_id|>assistant<|end_header_id|>
192
+ ```
193
+
194
+ The model will then generate a tool call, which your inference code must parse, and plug into a function (see example inference code here: https://github.com/NousResearch/Hermes-Function-Calling):
195
+ ```
196
+ <tool_call>
197
+ {"arguments": {"symbol": "TSLA"}, "name": "get_stock_fundamentals"}
198
+ </tool_call><|eot_id|><|start_header_id|>tool<|end_header_id|>
199
+ ```
200
+
201
+ Once you parse the tool call, call the api and get the returned values for the call, and pass it back in as a new role, `tool` like so:
202
+ ```
203
+ <tool_response>
204
+ {"name": "get_stock_fundamentals", "content": {'symbol': 'TSLA', 'company_name': 'Tesla, Inc.', 'sector': 'Consumer Cyclical', 'industry': 'Auto Manufacturers', 'market_cap': 611384164352, 'pe_ratio': 49.604652, 'pb_ratio': 9.762013, 'dividend_yield': None, 'eps': 4.3, 'beta': 2.427, '52_week_high': 299.29, '52_week_low': 152.37}}
205
+ </tool_response>
206
+ <|eot_id|><|start_header_id|>assistant<|end_header_id|>
207
+ ```
208
+
209
+ The assistant will then read in that data from the function's response, and generate a natural language response:
210
+ ```
211
+ The stock fundamentals data for Tesla (TSLA) are as follows:
212
+ - **Symbol**: TSLA
213
+ - **Company Name**: Tesla, Inc.
214
+ - **Sector**: Consumer Cyclical
215
+ - **Industry**: Auto Manufacturers
216
+ - **Market Capitalization**: $566,160,130,480
217
+ - **Forward Price-to-Earnings Ratio (PE Ratio)**: 42.73
218
+ - **Price-to-Book Ratio (PB Ratio)**: 9.04
219
+ - **Dividend Yield**: N/A
220
+ - **Trailing Earnings Per Share (EPS)**: $4.3
221
+ - **Beta Value of the Stock**: 2.42
222
+ - **52-Week High Price of the Stock**: $299.29
223
+ - **52-Week Low Price of the Stock**: $152.37
224
+
225
+ This information provides a snapshot of Tesla's financial position and performance based on the fundamental data obtained from the yfinance API. It shows that Tesla has a substantial market capitalization and a relatively high P/E and P/B ratio compared to other stocks in its industry. The company does not pay a dividend at the moment, which is reflected by a 'Dividend Yield' of 'None'. The Beta value indicates that Tesla's stock has a moderate level of volatility relative to the market. The 52-week high and low prices give an idea of the stock's range over the past year. This data can be useful when assessing investment opportunities and making investment decisions.<|eot_id|><|start_header_id|>user<|end_header_id|>
226
+ ```
227
+
228
+
229
+ ## Prompt Format for JSON Mode / Structured Outputs
230
+
231
+ Our model was also trained on a specific system prompt for Structured Outputs, which should respond with **only** a json object response, in a specific json schema.
232
+
233
+ Your schema can be made from a pydantic object using our codebase, with the standalone script `jsonmode.py` available here: https://github.com/NousResearch/Hermes-Function-Calling/tree/main
234
+
235
+ ```
236
+ <|start_header_id|>system<|end_header_id|>
237
+ You are a helpful assistant that answers in JSON. Here's the json schema you must adhere to:\n<schema>\n{schema}\n</schema><|eot_id|>
238
+ ```
239
+
240
+ Given the {schema} that you provide, it should follow the format of that json to create its response, all you have to do is give a typical user prompt, and it will respond in JSON.
241
+
242
+
243
+ ## Inference Code for Function Calling:
244
+
245
+ All code for utilizing, parsing, and building function calling templates is available on our github:
246
+ [https://github.com/NousResearch/Hermes-Function-Calling](https://github.com/NousResearch/Hermes-Function-Calling)
247
+
248
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/oi4CiGh50xmoviUQnh8R3.png)
249
+
250
+
251
+ ## Quantized Versions:
252
+
253
+ GGUF Quants: https://huggingface.co/NousResearch/DeepHermes-3-Mistral-24B-Preview-GGUF
254
+
255
+ # How to cite:
256
+
257
+ ```bibtext
258
+ @misc{
259
+ title={DeepHermes 3 Preview},
260
+ author={Teknium and Roger Jin and Chen Guang and Jai Suphavadeeprasit and Jeffrey Quesnelle},
261
+ year={2025}
262
+ }
263
+ ```
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "NousResearch/Mistral-24B-AlternateTokenizer",
3
+ "architectures": [
4
+ "MistralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 131072,
9
+ "head_dim": 128,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 5120,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 32768,
14
+ "max_position_embeddings": 32768,
15
+ "model_type": "mistral",
16
+ "num_attention_heads": 32,
17
+ "num_hidden_layers": 40,
18
+ "num_key_value_heads": 8,
19
+ "rms_norm_eps": 1e-05,
20
+ "rope_theta": 100000000.0,
21
+ "sliding_window": null,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.46.3",
25
+ "use_cache": false,
26
+ "vocab_size": 131078
27
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "do_sample": true,
5
+ "eos_token_id": 20,
6
+ "transformers_version": "4.46.3"
7
+ }
model-00001-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84aaa19605e5e146d0b66232d708f0ae9eea65665ea7160b8eb0c8889c53de24
3
+ size 4781633176
model-00002-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92f083d0f43db5368d45a2f9deb7b6e5648494781f2b57ff03b90cbb0b4484c8
3
+ size 4781592784
model-00003-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7861d3b52a4735c1e33c5e146baa99ef194910d3b0379f4c6c784a61fde5fee1
3
+ size 4781592800
model-00004-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dbecf08536f6db1812c51ad9d3a75e062a11831ab1429512a4c5ee3312ec0456
3
+ size 4886471600
model-00005-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f67dd33c47eef8d34714eae355ba8e1a15a595d46bbce370843cabcd0efd4ff4
3
+ size 4781592824
model-00006-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:14b47a2b622eeba292593ecca1627f33982c1434b8ddb9b50cf8525c2de0e772
3
+ size 4781592816
model-00007-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d9688b55045b5baba792bf53145894b59924ac1f7017aba14b1c317c0e9893b
3
+ size 4886471600
model-00008-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a8301d0cb32cec243e4fee4842440fe2fb1aa4375f196f6983d29c42c73558a
3
+ size 4781592824
model-00009-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba4be60f8b829c6f811d5a029a77323f3276a0edb6fbb8dc741eabf6b9d6e704
3
+ size 4781592816
model-00010-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2adca4e11429ebcde2d6d0e8be4f048d4a425edab1e4609081afa01c4836d6dd
3
+ size 3900838512
model.safetensors.index.json ADDED
@@ -0,0 +1,370 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 47144929280
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00010-of-00010.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00010.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00010.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00010.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00010.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00010.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00010.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00010.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00010.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00010.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00010.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00010.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00010.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00010.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00010.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00010.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00010.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00010.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00010.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00010.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00003-of-00010.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00003-of-00010.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00003-of-00010.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00003-of-00010.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00003-of-00010.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00003-of-00010.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00003-of-00010.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00003-of-00010.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00003-of-00010.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00004-of-00010.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00004-of-00010.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00003-of-00010.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00003-of-00010.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00003-of-00010.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00003-of-00010.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00003-of-00010.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00003-of-00010.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00004-of-00010.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00004-of-00010.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00004-of-00010.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00004-of-00010.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00004-of-00010.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00004-of-00010.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00004-of-00010.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00004-of-00010.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00004-of-00010.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00004-of-00010.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00004-of-00010.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00004-of-00010.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00004-of-00010.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00004-of-00010.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00004-of-00010.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00004-of-00010.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00004-of-00010.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00004-of-00010.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00004-of-00010.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00004-of-00010.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00004-of-00010.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00004-of-00010.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00004-of-00010.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00004-of-00010.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00004-of-00010.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00004-of-00010.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00004-of-00010.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00004-of-00010.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00004-of-00010.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00004-of-00010.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00004-of-00010.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00004-of-00010.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00005-of-00010.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00005-of-00010.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00005-of-00010.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00005-of-00010.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00005-of-00010.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00004-of-00010.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00004-of-00010.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00004-of-00010.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00004-of-00010.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00005-of-00010.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00005-of-00010.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00005-of-00010.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00005-of-00010.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00005-of-00010.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00005-of-00010.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00005-of-00010.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00005-of-00010.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00005-of-00010.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00005-of-00010.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00005-of-00010.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00005-of-00010.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00005-of-00010.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00005-of-00010.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00005-of-00010.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00005-of-00010.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00005-of-00010.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00005-of-00010.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00005-of-00010.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00005-of-00010.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00005-of-00010.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00005-of-00010.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00005-of-00010.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00005-of-00010.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00005-of-00010.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00005-of-00010.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00005-of-00010.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00010.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00010.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00010.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00010.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00010.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00010.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00010.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00010.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00010.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00006-of-00010.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00006-of-00010.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00005-of-00010.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00006-of-00010.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00006-of-00010.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00005-of-00010.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00005-of-00010.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00005-of-00010.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00005-of-00010.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00006-of-00010.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00006-of-00010.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00006-of-00010.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00006-of-00010.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00006-of-00010.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00006-of-00010.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00006-of-00010.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00006-of-00010.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00006-of-00010.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00006-of-00010.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00006-of-00010.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00006-of-00010.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00006-of-00010.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00006-of-00010.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00006-of-00010.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00006-of-00010.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00006-of-00010.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00006-of-00010.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00006-of-00010.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00006-of-00010.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00006-of-00010.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00006-of-00010.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00006-of-00010.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00006-of-00010.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00006-of-00010.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00006-of-00010.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00006-of-00010.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00007-of-00010.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00007-of-00010.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00006-of-00010.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00006-of-00010.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00006-of-00010.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00006-of-00010.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00006-of-00010.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00006-of-00010.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00007-of-00010.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00007-of-00010.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00007-of-00010.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00007-of-00010.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00007-of-00010.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00007-of-00010.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00007-of-00010.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00007-of-00010.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00007-of-00010.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00007-of-00010.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00007-of-00010.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00007-of-00010.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00007-of-00010.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00007-of-00010.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00007-of-00010.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00007-of-00010.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00007-of-00010.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00007-of-00010.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00007-of-00010.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00007-of-00010.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00007-of-00010.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00007-of-00010.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00007-of-00010.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00007-of-00010.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00007-of-00010.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00007-of-00010.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00007-of-00010.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00007-of-00010.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00007-of-00010.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00007-of-00010.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00007-of-00010.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00007-of-00010.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00008-of-00010.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00008-of-00010.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00008-of-00010.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00008-of-00010.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00007-of-00010.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00007-of-00010.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00007-of-00010.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00007-of-00010.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00002-of-00010.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00002-of-00010.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00002-of-00010.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00002-of-00010.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00002-of-00010.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00010.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00010.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00010.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00010.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00008-of-00010.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00008-of-00010.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00008-of-00010.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00008-of-00010.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00008-of-00010.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00008-of-00010.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00008-of-00010.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00008-of-00010.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00008-of-00010.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00008-of-00010.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00008-of-00010.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00008-of-00010.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00008-of-00010.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00008-of-00010.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00008-of-00010.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00008-of-00010.safetensors",
242
+ "model.layers.32.input_layernorm.weight": "model-00008-of-00010.safetensors",
243
+ "model.layers.32.mlp.down_proj.weight": "model-00008-of-00010.safetensors",
244
+ "model.layers.32.mlp.gate_proj.weight": "model-00008-of-00010.safetensors",
245
+ "model.layers.32.mlp.up_proj.weight": "model-00008-of-00010.safetensors",
246
+ "model.layers.32.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
247
+ "model.layers.32.self_attn.k_proj.weight": "model-00008-of-00010.safetensors",
248
+ "model.layers.32.self_attn.o_proj.weight": "model-00008-of-00010.safetensors",
249
+ "model.layers.32.self_attn.q_proj.weight": "model-00008-of-00010.safetensors",
250
+ "model.layers.32.self_attn.v_proj.weight": "model-00008-of-00010.safetensors",
251
+ "model.layers.33.input_layernorm.weight": "model-00009-of-00010.safetensors",
252
+ "model.layers.33.mlp.down_proj.weight": "model-00009-of-00010.safetensors",
253
+ "model.layers.33.mlp.gate_proj.weight": "model-00008-of-00010.safetensors",
254
+ "model.layers.33.mlp.up_proj.weight": "model-00009-of-00010.safetensors",
255
+ "model.layers.33.post_attention_layernorm.weight": "model-00009-of-00010.safetensors",
256
+ "model.layers.33.self_attn.k_proj.weight": "model-00008-of-00010.safetensors",
257
+ "model.layers.33.self_attn.o_proj.weight": "model-00008-of-00010.safetensors",
258
+ "model.layers.33.self_attn.q_proj.weight": "model-00008-of-00010.safetensors",
259
+ "model.layers.33.self_attn.v_proj.weight": "model-00008-of-00010.safetensors",
260
+ "model.layers.34.input_layernorm.weight": "model-00009-of-00010.safetensors",
261
+ "model.layers.34.mlp.down_proj.weight": "model-00009-of-00010.safetensors",
262
+ "model.layers.34.mlp.gate_proj.weight": "model-00009-of-00010.safetensors",
263
+ "model.layers.34.mlp.up_proj.weight": "model-00009-of-00010.safetensors",
264
+ "model.layers.34.post_attention_layernorm.weight": "model-00009-of-00010.safetensors",
265
+ "model.layers.34.self_attn.k_proj.weight": "model-00009-of-00010.safetensors",
266
+ "model.layers.34.self_attn.o_proj.weight": "model-00009-of-00010.safetensors",
267
+ "model.layers.34.self_attn.q_proj.weight": "model-00009-of-00010.safetensors",
268
+ "model.layers.34.self_attn.v_proj.weight": "model-00009-of-00010.safetensors",
269
+ "model.layers.35.input_layernorm.weight": "model-00009-of-00010.safetensors",
270
+ "model.layers.35.mlp.down_proj.weight": "model-00009-of-00010.safetensors",
271
+ "model.layers.35.mlp.gate_proj.weight": "model-00009-of-00010.safetensors",
272
+ "model.layers.35.mlp.up_proj.weight": "model-00009-of-00010.safetensors",
273
+ "model.layers.35.post_attention_layernorm.weight": "model-00009-of-00010.safetensors",
274
+ "model.layers.35.self_attn.k_proj.weight": "model-00009-of-00010.safetensors",
275
+ "model.layers.35.self_attn.o_proj.weight": "model-00009-of-00010.safetensors",
276
+ "model.layers.35.self_attn.q_proj.weight": "model-00009-of-00010.safetensors",
277
+ "model.layers.35.self_attn.v_proj.weight": "model-00009-of-00010.safetensors",
278
+ "model.layers.36.input_layernorm.weight": "model-00009-of-00010.safetensors",
279
+ "model.layers.36.mlp.down_proj.weight": "model-00009-of-00010.safetensors",
280
+ "model.layers.36.mlp.gate_proj.weight": "model-00009-of-00010.safetensors",
281
+ "model.layers.36.mlp.up_proj.weight": "model-00009-of-00010.safetensors",
282
+ "model.layers.36.post_attention_layernorm.weight": "model-00009-of-00010.safetensors",
283
+ "model.layers.36.self_attn.k_proj.weight": "model-00009-of-00010.safetensors",
284
+ "model.layers.36.self_attn.o_proj.weight": "model-00009-of-00010.safetensors",
285
+ "model.layers.36.self_attn.q_proj.weight": "model-00009-of-00010.safetensors",
286
+ "model.layers.36.self_attn.v_proj.weight": "model-00009-of-00010.safetensors",
287
+ "model.layers.37.input_layernorm.weight": "model-00010-of-00010.safetensors",
288
+ "model.layers.37.mlp.down_proj.weight": "model-00010-of-00010.safetensors",
289
+ "model.layers.37.mlp.gate_proj.weight": "model-00009-of-00010.safetensors",
290
+ "model.layers.37.mlp.up_proj.weight": "model-00009-of-00010.safetensors",
291
+ "model.layers.37.post_attention_layernorm.weight": "model-00010-of-00010.safetensors",
292
+ "model.layers.37.self_attn.k_proj.weight": "model-00009-of-00010.safetensors",
293
+ "model.layers.37.self_attn.o_proj.weight": "model-00009-of-00010.safetensors",
294
+ "model.layers.37.self_attn.q_proj.weight": "model-00009-of-00010.safetensors",
295
+ "model.layers.37.self_attn.v_proj.weight": "model-00009-of-00010.safetensors",
296
+ "model.layers.38.input_layernorm.weight": "model-00010-of-00010.safetensors",
297
+ "model.layers.38.mlp.down_proj.weight": "model-00010-of-00010.safetensors",
298
+ "model.layers.38.mlp.gate_proj.weight": "model-00010-of-00010.safetensors",
299
+ "model.layers.38.mlp.up_proj.weight": "model-00010-of-00010.safetensors",
300
+ "model.layers.38.post_attention_layernorm.weight": "model-00010-of-00010.safetensors",
301
+ "model.layers.38.self_attn.k_proj.weight": "model-00010-of-00010.safetensors",
302
+ "model.layers.38.self_attn.o_proj.weight": "model-00010-of-00010.safetensors",
303
+ "model.layers.38.self_attn.q_proj.weight": "model-00010-of-00010.safetensors",
304
+ "model.layers.38.self_attn.v_proj.weight": "model-00010-of-00010.safetensors",
305
+ "model.layers.39.input_layernorm.weight": "model-00010-of-00010.safetensors",
306
+ "model.layers.39.mlp.down_proj.weight": "model-00010-of-00010.safetensors",
307
+ "model.layers.39.mlp.gate_proj.weight": "model-00010-of-00010.safetensors",
308
+ "model.layers.39.mlp.up_proj.weight": "model-00010-of-00010.safetensors",
309
+ "model.layers.39.post_attention_layernorm.weight": "model-00010-of-00010.safetensors",
310
+ "model.layers.39.self_attn.k_proj.weight": "model-00010-of-00010.safetensors",
311
+ "model.layers.39.self_attn.o_proj.weight": "model-00010-of-00010.safetensors",
312
+ "model.layers.39.self_attn.q_proj.weight": "model-00010-of-00010.safetensors",
313
+ "model.layers.39.self_attn.v_proj.weight": "model-00010-of-00010.safetensors",
314
+ "model.layers.4.input_layernorm.weight": "model-00002-of-00010.safetensors",
315
+ "model.layers.4.mlp.down_proj.weight": "model-00002-of-00010.safetensors",
316
+ "model.layers.4.mlp.gate_proj.weight": "model-00002-of-00010.safetensors",
317
+ "model.layers.4.mlp.up_proj.weight": "model-00002-of-00010.safetensors",
318
+ "model.layers.4.post_attention_layernorm.weight": "model-00002-of-00010.safetensors",
319
+ "model.layers.4.self_attn.k_proj.weight": "model-00002-of-00010.safetensors",
320
+ "model.layers.4.self_attn.o_proj.weight": "model-00002-of-00010.safetensors",
321
+ "model.layers.4.self_attn.q_proj.weight": "model-00002-of-00010.safetensors",
322
+ "model.layers.4.self_attn.v_proj.weight": "model-00002-of-00010.safetensors",
323
+ "model.layers.5.input_layernorm.weight": "model-00002-of-00010.safetensors",
324
+ "model.layers.5.mlp.down_proj.weight": "model-00002-of-00010.safetensors",
325
+ "model.layers.5.mlp.gate_proj.weight": "model-00002-of-00010.safetensors",
326
+ "model.layers.5.mlp.up_proj.weight": "model-00002-of-00010.safetensors",
327
+ "model.layers.5.post_attention_layernorm.weight": "model-00002-of-00010.safetensors",
328
+ "model.layers.5.self_attn.k_proj.weight": "model-00002-of-00010.safetensors",
329
+ "model.layers.5.self_attn.o_proj.weight": "model-00002-of-00010.safetensors",
330
+ "model.layers.5.self_attn.q_proj.weight": "model-00002-of-00010.safetensors",
331
+ "model.layers.5.self_attn.v_proj.weight": "model-00002-of-00010.safetensors",
332
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00010.safetensors",
333
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00010.safetensors",
334
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00010.safetensors",
335
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00010.safetensors",
336
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00010.safetensors",
337
+ "model.layers.6.self_attn.k_proj.weight": "model-00002-of-00010.safetensors",
338
+ "model.layers.6.self_attn.o_proj.weight": "model-00002-of-00010.safetensors",
339
+ "model.layers.6.self_attn.q_proj.weight": "model-00002-of-00010.safetensors",
340
+ "model.layers.6.self_attn.v_proj.weight": "model-00002-of-00010.safetensors",
341
+ "model.layers.7.input_layernorm.weight": "model-00003-of-00010.safetensors",
342
+ "model.layers.7.mlp.down_proj.weight": "model-00003-of-00010.safetensors",
343
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00010.safetensors",
344
+ "model.layers.7.mlp.up_proj.weight": "model-00003-of-00010.safetensors",
345
+ "model.layers.7.post_attention_layernorm.weight": "model-00003-of-00010.safetensors",
346
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00010.safetensors",
347
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00010.safetensors",
348
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00010.safetensors",
349
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00010.safetensors",
350
+ "model.layers.8.input_layernorm.weight": "model-00003-of-00010.safetensors",
351
+ "model.layers.8.mlp.down_proj.weight": "model-00003-of-00010.safetensors",
352
+ "model.layers.8.mlp.gate_proj.weight": "model-00003-of-00010.safetensors",
353
+ "model.layers.8.mlp.up_proj.weight": "model-00003-of-00010.safetensors",
354
+ "model.layers.8.post_attention_layernorm.weight": "model-00003-of-00010.safetensors",
355
+ "model.layers.8.self_attn.k_proj.weight": "model-00003-of-00010.safetensors",
356
+ "model.layers.8.self_attn.o_proj.weight": "model-00003-of-00010.safetensors",
357
+ "model.layers.8.self_attn.q_proj.weight": "model-00003-of-00010.safetensors",
358
+ "model.layers.8.self_attn.v_proj.weight": "model-00003-of-00010.safetensors",
359
+ "model.layers.9.input_layernorm.weight": "model-00003-of-00010.safetensors",
360
+ "model.layers.9.mlp.down_proj.weight": "model-00003-of-00010.safetensors",
361
+ "model.layers.9.mlp.gate_proj.weight": "model-00003-of-00010.safetensors",
362
+ "model.layers.9.mlp.up_proj.weight": "model-00003-of-00010.safetensors",
363
+ "model.layers.9.post_attention_layernorm.weight": "model-00003-of-00010.safetensors",
364
+ "model.layers.9.self_attn.k_proj.weight": "model-00003-of-00010.safetensors",
365
+ "model.layers.9.self_attn.o_proj.weight": "model-00003-of-00010.safetensors",
366
+ "model.layers.9.self_attn.q_proj.weight": "model-00003-of-00010.safetensors",
367
+ "model.layers.9.self_attn.v_proj.weight": "model-00003-of-00010.safetensors",
368
+ "model.norm.weight": "model-00010-of-00010.safetensors"
369
+ }
370
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,1028 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<unk>",
4
+ "<s>",
5
+ "</s>",
6
+ "[INST]",
7
+ "[/INST]",
8
+ "[AVAILABLE_TOOLS]",
9
+ "[/AVAILABLE_TOOLS]",
10
+ "[TOOL_RESULTS]",
11
+ "[/TOOL_RESULTS]",
12
+ "[TOOL_CALLS]",
13
+ "[IMG]",
14
+ "<pad>",
15
+ "[IMG_BREAK]",
16
+ "[IMG_END]",
17
+ "[PREFIX]",
18
+ "[MIDDLE]",
19
+ "[SUFFIX]",
20
+ "[SYSTEM_PROMPT]",
21
+ "[/SYSTEM_PROMPT]",
22
+ "[TOOL_CONTENT]",
23
+ "<|eot_id|>",
24
+ "<SPECIAL_25>",
25
+ "<SPECIAL_26>",
26
+ "<SPECIAL_27>",
27
+ "<SPECIAL_28>",
28
+ "<SPECIAL_29>",
29
+ "<SPECIAL_30>",
30
+ "<SPECIAL_31>",
31
+ "<SPECIAL_32>",
32
+ "<SPECIAL_33>",
33
+ "<SPECIAL_34>",
34
+ "<SPECIAL_35>",
35
+ "<SPECIAL_36>",
36
+ "<SPECIAL_37>",
37
+ "<SPECIAL_38>",
38
+ "<SPECIAL_39>",
39
+ "<SPECIAL_40>",
40
+ "<SPECIAL_41>",
41
+ "<SPECIAL_42>",
42
+ "<SPECIAL_43>",
43
+ "<SPECIAL_44>",
44
+ "<SPECIAL_45>",
45
+ "<SPECIAL_46>",
46
+ "<SPECIAL_47>",
47
+ "<SPECIAL_48>",
48
+ "<SPECIAL_49>",
49
+ "<SPECIAL_50>",
50
+ "<SPECIAL_51>",
51
+ "<SPECIAL_52>",
52
+ "<SPECIAL_53>",
53
+ "<SPECIAL_54>",
54
+ "<SPECIAL_55>",
55
+ "<SPECIAL_56>",
56
+ "<SPECIAL_57>",
57
+ "<SPECIAL_58>",
58
+ "<SPECIAL_59>",
59
+ "<SPECIAL_60>",
60
+ "<SPECIAL_61>",
61
+ "<SPECIAL_62>",
62
+ "<SPECIAL_63>",
63
+ "<SPECIAL_64>",
64
+ "<SPECIAL_65>",
65
+ "<SPECIAL_66>",
66
+ "<SPECIAL_67>",
67
+ "<SPECIAL_68>",
68
+ "<SPECIAL_69>",
69
+ "<SPECIAL_70>",
70
+ "<SPECIAL_71>",
71
+ "<SPECIAL_72>",
72
+ "<SPECIAL_73>",
73
+ "<SPECIAL_74>",
74
+ "<SPECIAL_75>",
75
+ "<SPECIAL_76>",
76
+ "<SPECIAL_77>",
77
+ "<SPECIAL_78>",
78
+ "<SPECIAL_79>",
79
+ "<SPECIAL_80>",
80
+ "<SPECIAL_81>",
81
+ "<SPECIAL_82>",
82
+ "<SPECIAL_83>",
83
+ "<SPECIAL_84>",
84
+ "<SPECIAL_85>",
85
+ "<SPECIAL_86>",
86
+ "<SPECIAL_87>",
87
+ "<SPECIAL_88>",
88
+ "<SPECIAL_89>",
89
+ "<SPECIAL_90>",
90
+ "<SPECIAL_91>",
91
+ "<SPECIAL_92>",
92
+ "<SPECIAL_93>",
93
+ "<SPECIAL_94>",
94
+ "<SPECIAL_95>",
95
+ "<SPECIAL_96>",
96
+ "<SPECIAL_97>",
97
+ "<SPECIAL_98>",
98
+ "<SPECIAL_99>",
99
+ "<SPECIAL_100>",
100
+ "<SPECIAL_101>",
101
+ "<SPECIAL_102>",
102
+ "<SPECIAL_103>",
103
+ "<SPECIAL_104>",
104
+ "<SPECIAL_105>",
105
+ "<SPECIAL_106>",
106
+ "<SPECIAL_107>",
107
+ "<SPECIAL_108>",
108
+ "<SPECIAL_109>",
109
+ "<SPECIAL_110>",
110
+ "<SPECIAL_111>",
111
+ "<SPECIAL_112>",
112
+ "<SPECIAL_113>",
113
+ "<SPECIAL_114>",
114
+ "<SPECIAL_115>",
115
+ "<SPECIAL_116>",
116
+ "<SPECIAL_117>",
117
+ "<SPECIAL_118>",
118
+ "<SPECIAL_119>",
119
+ "<SPECIAL_120>",
120
+ "<SPECIAL_121>",
121
+ "<SPECIAL_122>",
122
+ "<SPECIAL_123>",
123
+ "<SPECIAL_124>",
124
+ "<SPECIAL_125>",
125
+ "<SPECIAL_126>",
126
+ "<SPECIAL_127>",
127
+ "<SPECIAL_128>",
128
+ "<SPECIAL_129>",
129
+ "<SPECIAL_130>",
130
+ "<SPECIAL_131>",
131
+ "<SPECIAL_132>",
132
+ "<SPECIAL_133>",
133
+ "<SPECIAL_134>",
134
+ "<SPECIAL_135>",
135
+ "<SPECIAL_136>",
136
+ "<SPECIAL_137>",
137
+ "<SPECIAL_138>",
138
+ "<SPECIAL_139>",
139
+ "<SPECIAL_140>",
140
+ "<SPECIAL_141>",
141
+ "<SPECIAL_142>",
142
+ "<SPECIAL_143>",
143
+ "<SPECIAL_144>",
144
+ "<SPECIAL_145>",
145
+ "<SPECIAL_146>",
146
+ "<SPECIAL_147>",
147
+ "<SPECIAL_148>",
148
+ "<SPECIAL_149>",
149
+ "<SPECIAL_150>",
150
+ "<SPECIAL_151>",
151
+ "<SPECIAL_152>",
152
+ "<SPECIAL_153>",
153
+ "<SPECIAL_154>",
154
+ "<SPECIAL_155>",
155
+ "<SPECIAL_156>",
156
+ "<SPECIAL_157>",
157
+ "<SPECIAL_158>",
158
+ "<SPECIAL_159>",
159
+ "<SPECIAL_160>",
160
+ "<SPECIAL_161>",
161
+ "<SPECIAL_162>",
162
+ "<SPECIAL_163>",
163
+ "<SPECIAL_164>",
164
+ "<SPECIAL_165>",
165
+ "<SPECIAL_166>",
166
+ "<SPECIAL_167>",
167
+ "<SPECIAL_168>",
168
+ "<SPECIAL_169>",
169
+ "<SPECIAL_170>",
170
+ "<SPECIAL_171>",
171
+ "<SPECIAL_172>",
172
+ "<SPECIAL_173>",
173
+ "<SPECIAL_174>",
174
+ "<SPECIAL_175>",
175
+ "<SPECIAL_176>",
176
+ "<SPECIAL_177>",
177
+ "<SPECIAL_178>",
178
+ "<SPECIAL_179>",
179
+ "<SPECIAL_180>",
180
+ "<SPECIAL_181>",
181
+ "<SPECIAL_182>",
182
+ "<SPECIAL_183>",
183
+ "<SPECIAL_184>",
184
+ "<SPECIAL_185>",
185
+ "<SPECIAL_186>",
186
+ "<SPECIAL_187>",
187
+ "<SPECIAL_188>",
188
+ "<SPECIAL_189>",
189
+ "<SPECIAL_190>",
190
+ "<SPECIAL_191>",
191
+ "<SPECIAL_192>",
192
+ "<SPECIAL_193>",
193
+ "<SPECIAL_194>",
194
+ "<SPECIAL_195>",
195
+ "<SPECIAL_196>",
196
+ "<SPECIAL_197>",
197
+ "<SPECIAL_198>",
198
+ "<SPECIAL_199>",
199
+ "<SPECIAL_200>",
200
+ "<SPECIAL_201>",
201
+ "<SPECIAL_202>",
202
+ "<SPECIAL_203>",
203
+ "<SPECIAL_204>",
204
+ "<SPECIAL_205>",
205
+ "<SPECIAL_206>",
206
+ "<SPECIAL_207>",
207
+ "<SPECIAL_208>",
208
+ "<SPECIAL_209>",
209
+ "<SPECIAL_210>",
210
+ "<SPECIAL_211>",
211
+ "<SPECIAL_212>",
212
+ "<SPECIAL_213>",
213
+ "<SPECIAL_214>",
214
+ "<SPECIAL_215>",
215
+ "<SPECIAL_216>",
216
+ "<SPECIAL_217>",
217
+ "<SPECIAL_218>",
218
+ "<SPECIAL_219>",
219
+ "<SPECIAL_220>",
220
+ "<SPECIAL_221>",
221
+ "<SPECIAL_222>",
222
+ "<SPECIAL_223>",
223
+ "<SPECIAL_224>",
224
+ "<SPECIAL_225>",
225
+ "<SPECIAL_226>",
226
+ "<SPECIAL_227>",
227
+ "<SPECIAL_228>",
228
+ "<SPECIAL_229>",
229
+ "<SPECIAL_230>",
230
+ "<SPECIAL_231>",
231
+ "<SPECIAL_232>",
232
+ "<SPECIAL_233>",
233
+ "<SPECIAL_234>",
234
+ "<SPECIAL_235>",
235
+ "<SPECIAL_236>",
236
+ "<SPECIAL_237>",
237
+ "<SPECIAL_238>",
238
+ "<SPECIAL_239>",
239
+ "<SPECIAL_240>",
240
+ "<SPECIAL_241>",
241
+ "<SPECIAL_242>",
242
+ "<SPECIAL_243>",
243
+ "<SPECIAL_244>",
244
+ "<SPECIAL_245>",
245
+ "<SPECIAL_246>",
246
+ "<SPECIAL_247>",
247
+ "<SPECIAL_248>",
248
+ "<SPECIAL_249>",
249
+ "<SPECIAL_250>",
250
+ "<SPECIAL_251>",
251
+ "<SPECIAL_252>",
252
+ "<SPECIAL_253>",
253
+ "<SPECIAL_254>",
254
+ "<SPECIAL_255>",
255
+ "<SPECIAL_256>",
256
+ "<SPECIAL_257>",
257
+ "<SPECIAL_258>",
258
+ "<SPECIAL_259>",
259
+ "<SPECIAL_260>",
260
+ "<SPECIAL_261>",
261
+ "<SPECIAL_262>",
262
+ "<SPECIAL_263>",
263
+ "<SPECIAL_264>",
264
+ "<SPECIAL_265>",
265
+ "<SPECIAL_266>",
266
+ "<SPECIAL_267>",
267
+ "<SPECIAL_268>",
268
+ "<SPECIAL_269>",
269
+ "<SPECIAL_270>",
270
+ "<SPECIAL_271>",
271
+ "<SPECIAL_272>",
272
+ "<SPECIAL_273>",
273
+ "<SPECIAL_274>",
274
+ "<SPECIAL_275>",
275
+ "<SPECIAL_276>",
276
+ "<SPECIAL_277>",
277
+ "<SPECIAL_278>",
278
+ "<SPECIAL_279>",
279
+ "<SPECIAL_280>",
280
+ "<SPECIAL_281>",
281
+ "<SPECIAL_282>",
282
+ "<SPECIAL_283>",
283
+ "<SPECIAL_284>",
284
+ "<SPECIAL_285>",
285
+ "<SPECIAL_286>",
286
+ "<SPECIAL_287>",
287
+ "<SPECIAL_288>",
288
+ "<SPECIAL_289>",
289
+ "<SPECIAL_290>",
290
+ "<SPECIAL_291>",
291
+ "<SPECIAL_292>",
292
+ "<SPECIAL_293>",
293
+ "<SPECIAL_294>",
294
+ "<SPECIAL_295>",
295
+ "<SPECIAL_296>",
296
+ "<SPECIAL_297>",
297
+ "<SPECIAL_298>",
298
+ "<SPECIAL_299>",
299
+ "<SPECIAL_300>",
300
+ "<SPECIAL_301>",
301
+ "<SPECIAL_302>",
302
+ "<SPECIAL_303>",
303
+ "<SPECIAL_304>",
304
+ "<SPECIAL_305>",
305
+ "<SPECIAL_306>",
306
+ "<SPECIAL_307>",
307
+ "<SPECIAL_308>",
308
+ "<SPECIAL_309>",
309
+ "<SPECIAL_310>",
310
+ "<SPECIAL_311>",
311
+ "<SPECIAL_312>",
312
+ "<SPECIAL_313>",
313
+ "<SPECIAL_314>",
314
+ "<SPECIAL_315>",
315
+ "<SPECIAL_316>",
316
+ "<SPECIAL_317>",
317
+ "<SPECIAL_318>",
318
+ "<SPECIAL_319>",
319
+ "<SPECIAL_320>",
320
+ "<SPECIAL_321>",
321
+ "<SPECIAL_322>",
322
+ "<SPECIAL_323>",
323
+ "<SPECIAL_324>",
324
+ "<SPECIAL_325>",
325
+ "<SPECIAL_326>",
326
+ "<SPECIAL_327>",
327
+ "<SPECIAL_328>",
328
+ "<SPECIAL_329>",
329
+ "<SPECIAL_330>",
330
+ "<SPECIAL_331>",
331
+ "<SPECIAL_332>",
332
+ "<SPECIAL_333>",
333
+ "<SPECIAL_334>",
334
+ "<SPECIAL_335>",
335
+ "<SPECIAL_336>",
336
+ "<SPECIAL_337>",
337
+ "<SPECIAL_338>",
338
+ "<SPECIAL_339>",
339
+ "<SPECIAL_340>",
340
+ "<SPECIAL_341>",
341
+ "<SPECIAL_342>",
342
+ "<SPECIAL_343>",
343
+ "<SPECIAL_344>",
344
+ "<SPECIAL_345>",
345
+ "<SPECIAL_346>",
346
+ "<SPECIAL_347>",
347
+ "<SPECIAL_348>",
348
+ "<SPECIAL_349>",
349
+ "<SPECIAL_350>",
350
+ "<SPECIAL_351>",
351
+ "<SPECIAL_352>",
352
+ "<SPECIAL_353>",
353
+ "<SPECIAL_354>",
354
+ "<SPECIAL_355>",
355
+ "<SPECIAL_356>",
356
+ "<SPECIAL_357>",
357
+ "<SPECIAL_358>",
358
+ "<SPECIAL_359>",
359
+ "<SPECIAL_360>",
360
+ "<SPECIAL_361>",
361
+ "<SPECIAL_362>",
362
+ "<SPECIAL_363>",
363
+ "<SPECIAL_364>",
364
+ "<SPECIAL_365>",
365
+ "<SPECIAL_366>",
366
+ "<SPECIAL_367>",
367
+ "<SPECIAL_368>",
368
+ "<SPECIAL_369>",
369
+ "<SPECIAL_370>",
370
+ "<SPECIAL_371>",
371
+ "<SPECIAL_372>",
372
+ "<SPECIAL_373>",
373
+ "<SPECIAL_374>",
374
+ "<SPECIAL_375>",
375
+ "<SPECIAL_376>",
376
+ "<SPECIAL_377>",
377
+ "<SPECIAL_378>",
378
+ "<SPECIAL_379>",
379
+ "<SPECIAL_380>",
380
+ "<SPECIAL_381>",
381
+ "<SPECIAL_382>",
382
+ "<SPECIAL_383>",
383
+ "<SPECIAL_384>",
384
+ "<SPECIAL_385>",
385
+ "<SPECIAL_386>",
386
+ "<SPECIAL_387>",
387
+ "<SPECIAL_388>",
388
+ "<SPECIAL_389>",
389
+ "<SPECIAL_390>",
390
+ "<SPECIAL_391>",
391
+ "<SPECIAL_392>",
392
+ "<SPECIAL_393>",
393
+ "<SPECIAL_394>",
394
+ "<SPECIAL_395>",
395
+ "<SPECIAL_396>",
396
+ "<SPECIAL_397>",
397
+ "<SPECIAL_398>",
398
+ "<SPECIAL_399>",
399
+ "<SPECIAL_400>",
400
+ "<SPECIAL_401>",
401
+ "<SPECIAL_402>",
402
+ "<SPECIAL_403>",
403
+ "<SPECIAL_404>",
404
+ "<SPECIAL_405>",
405
+ "<SPECIAL_406>",
406
+ "<SPECIAL_407>",
407
+ "<SPECIAL_408>",
408
+ "<SPECIAL_409>",
409
+ "<SPECIAL_410>",
410
+ "<SPECIAL_411>",
411
+ "<SPECIAL_412>",
412
+ "<SPECIAL_413>",
413
+ "<SPECIAL_414>",
414
+ "<SPECIAL_415>",
415
+ "<SPECIAL_416>",
416
+ "<SPECIAL_417>",
417
+ "<SPECIAL_418>",
418
+ "<SPECIAL_419>",
419
+ "<SPECIAL_420>",
420
+ "<SPECIAL_421>",
421
+ "<SPECIAL_422>",
422
+ "<SPECIAL_423>",
423
+ "<SPECIAL_424>",
424
+ "<SPECIAL_425>",
425
+ "<SPECIAL_426>",
426
+ "<SPECIAL_427>",
427
+ "<SPECIAL_428>",
428
+ "<SPECIAL_429>",
429
+ "<SPECIAL_430>",
430
+ "<SPECIAL_431>",
431
+ "<SPECIAL_432>",
432
+ "<SPECIAL_433>",
433
+ "<SPECIAL_434>",
434
+ "<SPECIAL_435>",
435
+ "<SPECIAL_436>",
436
+ "<SPECIAL_437>",
437
+ "<SPECIAL_438>",
438
+ "<SPECIAL_439>",
439
+ "<SPECIAL_440>",
440
+ "<SPECIAL_441>",
441
+ "<SPECIAL_442>",
442
+ "<SPECIAL_443>",
443
+ "<SPECIAL_444>",
444
+ "<SPECIAL_445>",
445
+ "<SPECIAL_446>",
446
+ "<SPECIAL_447>",
447
+ "<SPECIAL_448>",
448
+ "<SPECIAL_449>",
449
+ "<SPECIAL_450>",
450
+ "<SPECIAL_451>",
451
+ "<SPECIAL_452>",
452
+ "<SPECIAL_453>",
453
+ "<SPECIAL_454>",
454
+ "<SPECIAL_455>",
455
+ "<SPECIAL_456>",
456
+ "<SPECIAL_457>",
457
+ "<SPECIAL_458>",
458
+ "<SPECIAL_459>",
459
+ "<SPECIAL_460>",
460
+ "<SPECIAL_461>",
461
+ "<SPECIAL_462>",
462
+ "<SPECIAL_463>",
463
+ "<SPECIAL_464>",
464
+ "<SPECIAL_465>",
465
+ "<SPECIAL_466>",
466
+ "<SPECIAL_467>",
467
+ "<SPECIAL_468>",
468
+ "<SPECIAL_469>",
469
+ "<SPECIAL_470>",
470
+ "<SPECIAL_471>",
471
+ "<SPECIAL_472>",
472
+ "<SPECIAL_473>",
473
+ "<SPECIAL_474>",
474
+ "<SPECIAL_475>",
475
+ "<SPECIAL_476>",
476
+ "<SPECIAL_477>",
477
+ "<SPECIAL_478>",
478
+ "<SPECIAL_479>",
479
+ "<SPECIAL_480>",
480
+ "<SPECIAL_481>",
481
+ "<SPECIAL_482>",
482
+ "<SPECIAL_483>",
483
+ "<SPECIAL_484>",
484
+ "<SPECIAL_485>",
485
+ "<SPECIAL_486>",
486
+ "<SPECIAL_487>",
487
+ "<SPECIAL_488>",
488
+ "<SPECIAL_489>",
489
+ "<SPECIAL_490>",
490
+ "<SPECIAL_491>",
491
+ "<SPECIAL_492>",
492
+ "<SPECIAL_493>",
493
+ "<SPECIAL_494>",
494
+ "<SPECIAL_495>",
495
+ "<SPECIAL_496>",
496
+ "<SPECIAL_497>",
497
+ "<SPECIAL_498>",
498
+ "<SPECIAL_499>",
499
+ "<SPECIAL_500>",
500
+ "<SPECIAL_501>",
501
+ "<SPECIAL_502>",
502
+ "<SPECIAL_503>",
503
+ "<SPECIAL_504>",
504
+ "<SPECIAL_505>",
505
+ "<SPECIAL_506>",
506
+ "<SPECIAL_507>",
507
+ "<SPECIAL_508>",
508
+ "<SPECIAL_509>",
509
+ "<SPECIAL_510>",
510
+ "<SPECIAL_511>",
511
+ "<SPECIAL_512>",
512
+ "<SPECIAL_513>",
513
+ "<SPECIAL_514>",
514
+ "<SPECIAL_515>",
515
+ "<SPECIAL_516>",
516
+ "<SPECIAL_517>",
517
+ "<SPECIAL_518>",
518
+ "<SPECIAL_519>",
519
+ "<SPECIAL_520>",
520
+ "<SPECIAL_521>",
521
+ "<SPECIAL_522>",
522
+ "<SPECIAL_523>",
523
+ "<SPECIAL_524>",
524
+ "<SPECIAL_525>",
525
+ "<SPECIAL_526>",
526
+ "<SPECIAL_527>",
527
+ "<SPECIAL_528>",
528
+ "<SPECIAL_529>",
529
+ "<SPECIAL_530>",
530
+ "<SPECIAL_531>",
531
+ "<SPECIAL_532>",
532
+ "<SPECIAL_533>",
533
+ "<SPECIAL_534>",
534
+ "<SPECIAL_535>",
535
+ "<SPECIAL_536>",
536
+ "<SPECIAL_537>",
537
+ "<SPECIAL_538>",
538
+ "<SPECIAL_539>",
539
+ "<SPECIAL_540>",
540
+ "<SPECIAL_541>",
541
+ "<SPECIAL_542>",
542
+ "<SPECIAL_543>",
543
+ "<SPECIAL_544>",
544
+ "<SPECIAL_545>",
545
+ "<SPECIAL_546>",
546
+ "<SPECIAL_547>",
547
+ "<SPECIAL_548>",
548
+ "<SPECIAL_549>",
549
+ "<SPECIAL_550>",
550
+ "<SPECIAL_551>",
551
+ "<SPECIAL_552>",
552
+ "<SPECIAL_553>",
553
+ "<SPECIAL_554>",
554
+ "<SPECIAL_555>",
555
+ "<SPECIAL_556>",
556
+ "<SPECIAL_557>",
557
+ "<SPECIAL_558>",
558
+ "<SPECIAL_559>",
559
+ "<SPECIAL_560>",
560
+ "<SPECIAL_561>",
561
+ "<SPECIAL_562>",
562
+ "<SPECIAL_563>",
563
+ "<SPECIAL_564>",
564
+ "<SPECIAL_565>",
565
+ "<SPECIAL_566>",
566
+ "<SPECIAL_567>",
567
+ "<SPECIAL_568>",
568
+ "<SPECIAL_569>",
569
+ "<SPECIAL_570>",
570
+ "<SPECIAL_571>",
571
+ "<SPECIAL_572>",
572
+ "<SPECIAL_573>",
573
+ "<SPECIAL_574>",
574
+ "<SPECIAL_575>",
575
+ "<SPECIAL_576>",
576
+ "<SPECIAL_577>",
577
+ "<SPECIAL_578>",
578
+ "<SPECIAL_579>",
579
+ "<SPECIAL_580>",
580
+ "<SPECIAL_581>",
581
+ "<SPECIAL_582>",
582
+ "<SPECIAL_583>",
583
+ "<SPECIAL_584>",
584
+ "<SPECIAL_585>",
585
+ "<SPECIAL_586>",
586
+ "<SPECIAL_587>",
587
+ "<SPECIAL_588>",
588
+ "<SPECIAL_589>",
589
+ "<SPECIAL_590>",
590
+ "<SPECIAL_591>",
591
+ "<SPECIAL_592>",
592
+ "<SPECIAL_593>",
593
+ "<SPECIAL_594>",
594
+ "<SPECIAL_595>",
595
+ "<SPECIAL_596>",
596
+ "<SPECIAL_597>",
597
+ "<SPECIAL_598>",
598
+ "<SPECIAL_599>",
599
+ "<SPECIAL_600>",
600
+ "<SPECIAL_601>",
601
+ "<SPECIAL_602>",
602
+ "<SPECIAL_603>",
603
+ "<SPECIAL_604>",
604
+ "<SPECIAL_605>",
605
+ "<SPECIAL_606>",
606
+ "<SPECIAL_607>",
607
+ "<SPECIAL_608>",
608
+ "<SPECIAL_609>",
609
+ "<SPECIAL_610>",
610
+ "<SPECIAL_611>",
611
+ "<SPECIAL_612>",
612
+ "<SPECIAL_613>",
613
+ "<SPECIAL_614>",
614
+ "<SPECIAL_615>",
615
+ "<SPECIAL_616>",
616
+ "<SPECIAL_617>",
617
+ "<SPECIAL_618>",
618
+ "<SPECIAL_619>",
619
+ "<SPECIAL_620>",
620
+ "<SPECIAL_621>",
621
+ "<SPECIAL_622>",
622
+ "<SPECIAL_623>",
623
+ "<SPECIAL_624>",
624
+ "<SPECIAL_625>",
625
+ "<SPECIAL_626>",
626
+ "<SPECIAL_627>",
627
+ "<SPECIAL_628>",
628
+ "<SPECIAL_629>",
629
+ "<SPECIAL_630>",
630
+ "<SPECIAL_631>",
631
+ "<SPECIAL_632>",
632
+ "<SPECIAL_633>",
633
+ "<SPECIAL_634>",
634
+ "<SPECIAL_635>",
635
+ "<SPECIAL_636>",
636
+ "<SPECIAL_637>",
637
+ "<SPECIAL_638>",
638
+ "<SPECIAL_639>",
639
+ "<SPECIAL_640>",
640
+ "<SPECIAL_641>",
641
+ "<SPECIAL_642>",
642
+ "<SPECIAL_643>",
643
+ "<SPECIAL_644>",
644
+ "<SPECIAL_645>",
645
+ "<SPECIAL_646>",
646
+ "<SPECIAL_647>",
647
+ "<SPECIAL_648>",
648
+ "<SPECIAL_649>",
649
+ "<SPECIAL_650>",
650
+ "<SPECIAL_651>",
651
+ "<SPECIAL_652>",
652
+ "<SPECIAL_653>",
653
+ "<SPECIAL_654>",
654
+ "<SPECIAL_655>",
655
+ "<SPECIAL_656>",
656
+ "<SPECIAL_657>",
657
+ "<SPECIAL_658>",
658
+ "<SPECIAL_659>",
659
+ "<SPECIAL_660>",
660
+ "<SPECIAL_661>",
661
+ "<SPECIAL_662>",
662
+ "<SPECIAL_663>",
663
+ "<SPECIAL_664>",
664
+ "<SPECIAL_665>",
665
+ "<SPECIAL_666>",
666
+ "<SPECIAL_667>",
667
+ "<SPECIAL_668>",
668
+ "<SPECIAL_669>",
669
+ "<SPECIAL_670>",
670
+ "<SPECIAL_671>",
671
+ "<SPECIAL_672>",
672
+ "<SPECIAL_673>",
673
+ "<SPECIAL_674>",
674
+ "<SPECIAL_675>",
675
+ "<SPECIAL_676>",
676
+ "<SPECIAL_677>",
677
+ "<SPECIAL_678>",
678
+ "<SPECIAL_679>",
679
+ "<SPECIAL_680>",
680
+ "<SPECIAL_681>",
681
+ "<SPECIAL_682>",
682
+ "<SPECIAL_683>",
683
+ "<SPECIAL_684>",
684
+ "<SPECIAL_685>",
685
+ "<SPECIAL_686>",
686
+ "<SPECIAL_687>",
687
+ "<SPECIAL_688>",
688
+ "<SPECIAL_689>",
689
+ "<SPECIAL_690>",
690
+ "<SPECIAL_691>",
691
+ "<SPECIAL_692>",
692
+ "<SPECIAL_693>",
693
+ "<SPECIAL_694>",
694
+ "<SPECIAL_695>",
695
+ "<SPECIAL_696>",
696
+ "<SPECIAL_697>",
697
+ "<SPECIAL_698>",
698
+ "<SPECIAL_699>",
699
+ "<SPECIAL_700>",
700
+ "<SPECIAL_701>",
701
+ "<SPECIAL_702>",
702
+ "<SPECIAL_703>",
703
+ "<SPECIAL_704>",
704
+ "<SPECIAL_705>",
705
+ "<SPECIAL_706>",
706
+ "<SPECIAL_707>",
707
+ "<SPECIAL_708>",
708
+ "<SPECIAL_709>",
709
+ "<SPECIAL_710>",
710
+ "<SPECIAL_711>",
711
+ "<SPECIAL_712>",
712
+ "<SPECIAL_713>",
713
+ "<SPECIAL_714>",
714
+ "<SPECIAL_715>",
715
+ "<SPECIAL_716>",
716
+ "<SPECIAL_717>",
717
+ "<SPECIAL_718>",
718
+ "<SPECIAL_719>",
719
+ "<SPECIAL_720>",
720
+ "<SPECIAL_721>",
721
+ "<SPECIAL_722>",
722
+ "<SPECIAL_723>",
723
+ "<SPECIAL_724>",
724
+ "<SPECIAL_725>",
725
+ "<SPECIAL_726>",
726
+ "<SPECIAL_727>",
727
+ "<SPECIAL_728>",
728
+ "<SPECIAL_729>",
729
+ "<SPECIAL_730>",
730
+ "<SPECIAL_731>",
731
+ "<SPECIAL_732>",
732
+ "<SPECIAL_733>",
733
+ "<SPECIAL_734>",
734
+ "<SPECIAL_735>",
735
+ "<SPECIAL_736>",
736
+ "<SPECIAL_737>",
737
+ "<SPECIAL_738>",
738
+ "<SPECIAL_739>",
739
+ "<SPECIAL_740>",
740
+ "<SPECIAL_741>",
741
+ "<SPECIAL_742>",
742
+ "<SPECIAL_743>",
743
+ "<SPECIAL_744>",
744
+ "<SPECIAL_745>",
745
+ "<SPECIAL_746>",
746
+ "<SPECIAL_747>",
747
+ "<SPECIAL_748>",
748
+ "<SPECIAL_749>",
749
+ "<SPECIAL_750>",
750
+ "<SPECIAL_751>",
751
+ "<SPECIAL_752>",
752
+ "<SPECIAL_753>",
753
+ "<SPECIAL_754>",
754
+ "<SPECIAL_755>",
755
+ "<SPECIAL_756>",
756
+ "<SPECIAL_757>",
757
+ "<SPECIAL_758>",
758
+ "<SPECIAL_759>",
759
+ "<SPECIAL_760>",
760
+ "<SPECIAL_761>",
761
+ "<SPECIAL_762>",
762
+ "<SPECIAL_763>",
763
+ "<SPECIAL_764>",
764
+ "<SPECIAL_765>",
765
+ "<SPECIAL_766>",
766
+ "<SPECIAL_767>",
767
+ "<SPECIAL_768>",
768
+ "<SPECIAL_769>",
769
+ "<SPECIAL_770>",
770
+ "<SPECIAL_771>",
771
+ "<SPECIAL_772>",
772
+ "<SPECIAL_773>",
773
+ "<SPECIAL_774>",
774
+ "<SPECIAL_775>",
775
+ "<SPECIAL_776>",
776
+ "<SPECIAL_777>",
777
+ "<SPECIAL_778>",
778
+ "<SPECIAL_779>",
779
+ "<SPECIAL_780>",
780
+ "<SPECIAL_781>",
781
+ "<SPECIAL_782>",
782
+ "<SPECIAL_783>",
783
+ "<SPECIAL_784>",
784
+ "<SPECIAL_785>",
785
+ "<SPECIAL_786>",
786
+ "<SPECIAL_787>",
787
+ "<SPECIAL_788>",
788
+ "<SPECIAL_789>",
789
+ "<SPECIAL_790>",
790
+ "<SPECIAL_791>",
791
+ "<SPECIAL_792>",
792
+ "<SPECIAL_793>",
793
+ "<SPECIAL_794>",
794
+ "<SPECIAL_795>",
795
+ "<SPECIAL_796>",
796
+ "<SPECIAL_797>",
797
+ "<SPECIAL_798>",
798
+ "<SPECIAL_799>",
799
+ "<SPECIAL_800>",
800
+ "<SPECIAL_801>",
801
+ "<SPECIAL_802>",
802
+ "<SPECIAL_803>",
803
+ "<SPECIAL_804>",
804
+ "<SPECIAL_805>",
805
+ "<SPECIAL_806>",
806
+ "<SPECIAL_807>",
807
+ "<SPECIAL_808>",
808
+ "<SPECIAL_809>",
809
+ "<SPECIAL_810>",
810
+ "<SPECIAL_811>",
811
+ "<SPECIAL_812>",
812
+ "<SPECIAL_813>",
813
+ "<SPECIAL_814>",
814
+ "<SPECIAL_815>",
815
+ "<SPECIAL_816>",
816
+ "<SPECIAL_817>",
817
+ "<SPECIAL_818>",
818
+ "<SPECIAL_819>",
819
+ "<SPECIAL_820>",
820
+ "<SPECIAL_821>",
821
+ "<SPECIAL_822>",
822
+ "<SPECIAL_823>",
823
+ "<SPECIAL_824>",
824
+ "<SPECIAL_825>",
825
+ "<SPECIAL_826>",
826
+ "<SPECIAL_827>",
827
+ "<SPECIAL_828>",
828
+ "<SPECIAL_829>",
829
+ "<SPECIAL_830>",
830
+ "<SPECIAL_831>",
831
+ "<SPECIAL_832>",
832
+ "<SPECIAL_833>",
833
+ "<SPECIAL_834>",
834
+ "<SPECIAL_835>",
835
+ "<SPECIAL_836>",
836
+ "<SPECIAL_837>",
837
+ "<SPECIAL_838>",
838
+ "<SPECIAL_839>",
839
+ "<SPECIAL_840>",
840
+ "<SPECIAL_841>",
841
+ "<SPECIAL_842>",
842
+ "<SPECIAL_843>",
843
+ "<SPECIAL_844>",
844
+ "<SPECIAL_845>",
845
+ "<SPECIAL_846>",
846
+ "<SPECIAL_847>",
847
+ "<SPECIAL_848>",
848
+ "<SPECIAL_849>",
849
+ "<SPECIAL_850>",
850
+ "<SPECIAL_851>",
851
+ "<SPECIAL_852>",
852
+ "<SPECIAL_853>",
853
+ "<SPECIAL_854>",
854
+ "<SPECIAL_855>",
855
+ "<SPECIAL_856>",
856
+ "<SPECIAL_857>",
857
+ "<SPECIAL_858>",
858
+ "<SPECIAL_859>",
859
+ "<SPECIAL_860>",
860
+ "<SPECIAL_861>",
861
+ "<SPECIAL_862>",
862
+ "<SPECIAL_863>",
863
+ "<SPECIAL_864>",
864
+ "<SPECIAL_865>",
865
+ "<SPECIAL_866>",
866
+ "<SPECIAL_867>",
867
+ "<SPECIAL_868>",
868
+ "<SPECIAL_869>",
869
+ "<SPECIAL_870>",
870
+ "<SPECIAL_871>",
871
+ "<SPECIAL_872>",
872
+ "<SPECIAL_873>",
873
+ "<SPECIAL_874>",
874
+ "<SPECIAL_875>",
875
+ "<SPECIAL_876>",
876
+ "<SPECIAL_877>",
877
+ "<SPECIAL_878>",
878
+ "<SPECIAL_879>",
879
+ "<SPECIAL_880>",
880
+ "<SPECIAL_881>",
881
+ "<SPECIAL_882>",
882
+ "<SPECIAL_883>",
883
+ "<SPECIAL_884>",
884
+ "<SPECIAL_885>",
885
+ "<SPECIAL_886>",
886
+ "<SPECIAL_887>",
887
+ "<SPECIAL_888>",
888
+ "<SPECIAL_889>",
889
+ "<SPECIAL_890>",
890
+ "<SPECIAL_891>",
891
+ "<SPECIAL_892>",
892
+ "<SPECIAL_893>",
893
+ "<SPECIAL_894>",
894
+ "<SPECIAL_895>",
895
+ "<SPECIAL_896>",
896
+ "<SPECIAL_897>",
897
+ "<SPECIAL_898>",
898
+ "<SPECIAL_899>",
899
+ "<SPECIAL_900>",
900
+ "<SPECIAL_901>",
901
+ "<SPECIAL_902>",
902
+ "<SPECIAL_903>",
903
+ "<SPECIAL_904>",
904
+ "<SPECIAL_905>",
905
+ "<SPECIAL_906>",
906
+ "<SPECIAL_907>",
907
+ "<SPECIAL_908>",
908
+ "<SPECIAL_909>",
909
+ "<SPECIAL_910>",
910
+ "<SPECIAL_911>",
911
+ "<SPECIAL_912>",
912
+ "<SPECIAL_913>",
913
+ "<SPECIAL_914>",
914
+ "<SPECIAL_915>",
915
+ "<SPECIAL_916>",
916
+ "<SPECIAL_917>",
917
+ "<SPECIAL_918>",
918
+ "<SPECIAL_919>",
919
+ "<SPECIAL_920>",
920
+ "<SPECIAL_921>",
921
+ "<SPECIAL_922>",
922
+ "<SPECIAL_923>",
923
+ "<SPECIAL_924>",
924
+ "<SPECIAL_925>",
925
+ "<SPECIAL_926>",
926
+ "<SPECIAL_927>",
927
+ "<SPECIAL_928>",
928
+ "<SPECIAL_929>",
929
+ "<SPECIAL_930>",
930
+ "<SPECIAL_931>",
931
+ "<SPECIAL_932>",
932
+ "<SPECIAL_933>",
933
+ "<SPECIAL_934>",
934
+ "<SPECIAL_935>",
935
+ "<SPECIAL_936>",
936
+ "<SPECIAL_937>",
937
+ "<SPECIAL_938>",
938
+ "<SPECIAL_939>",
939
+ "<SPECIAL_940>",
940
+ "<SPECIAL_941>",
941
+ "<SPECIAL_942>",
942
+ "<SPECIAL_943>",
943
+ "<SPECIAL_944>",
944
+ "<SPECIAL_945>",
945
+ "<SPECIAL_946>",
946
+ "<SPECIAL_947>",
947
+ "<SPECIAL_948>",
948
+ "<SPECIAL_949>",
949
+ "<SPECIAL_950>",
950
+ "<SPECIAL_951>",
951
+ "<SPECIAL_952>",
952
+ "<SPECIAL_953>",
953
+ "<SPECIAL_954>",
954
+ "<SPECIAL_955>",
955
+ "<SPECIAL_956>",
956
+ "<SPECIAL_957>",
957
+ "<SPECIAL_958>",
958
+ "<SPECIAL_959>",
959
+ "<SPECIAL_960>",
960
+ "<SPECIAL_961>",
961
+ "<SPECIAL_962>",
962
+ "<SPECIAL_963>",
963
+ "<SPECIAL_964>",
964
+ "<SPECIAL_965>",
965
+ "<SPECIAL_966>",
966
+ "<SPECIAL_967>",
967
+ "<SPECIAL_968>",
968
+ "<SPECIAL_969>",
969
+ "<SPECIAL_970>",
970
+ "<SPECIAL_971>",
971
+ "<SPECIAL_972>",
972
+ "<SPECIAL_973>",
973
+ "<SPECIAL_974>",
974
+ "<SPECIAL_975>",
975
+ "<SPECIAL_976>",
976
+ "<SPECIAL_977>",
977
+ "<SPECIAL_978>",
978
+ "<SPECIAL_979>",
979
+ "<SPECIAL_980>",
980
+ "<SPECIAL_981>",
981
+ "<SPECIAL_982>",
982
+ "<SPECIAL_983>",
983
+ "<SPECIAL_984>",
984
+ "<SPECIAL_985>",
985
+ "<SPECIAL_986>",
986
+ "<SPECIAL_987>",
987
+ "<SPECIAL_988>",
988
+ "<SPECIAL_989>",
989
+ "<SPECIAL_990>",
990
+ "<SPECIAL_991>",
991
+ "<SPECIAL_992>",
992
+ "<SPECIAL_993>",
993
+ "<SPECIAL_994>",
994
+ "<SPECIAL_995>",
995
+ "<SPECIAL_996>",
996
+ "<SPECIAL_997>",
997
+ "<SPECIAL_998>",
998
+ "<SPECIAL_999>"
999
+ ],
1000
+ "bos_token": {
1001
+ "content": "<s>",
1002
+ "lstrip": false,
1003
+ "normalized": false,
1004
+ "rstrip": false,
1005
+ "single_word": false
1006
+ },
1007
+ "eos_token": {
1008
+ "content": "<|eot_id|>",
1009
+ "lstrip": false,
1010
+ "normalized": false,
1011
+ "rstrip": false,
1012
+ "single_word": false
1013
+ },
1014
+ "pad_token": {
1015
+ "content": "<|end_of_text|>",
1016
+ "lstrip": false,
1017
+ "normalized": false,
1018
+ "rstrip": false,
1019
+ "single_word": false
1020
+ },
1021
+ "unk_token": {
1022
+ "content": "<unk>",
1023
+ "lstrip": false,
1024
+ "normalized": false,
1025
+ "rstrip": false,
1026
+ "single_word": false
1027
+ }
1028
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34052292bd34d64656292b62b1686f6463443ad3d9bdb6420468d4a6314e73c1
3
+ size 17078241
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff