Add paper link
Browse files
README.md
CHANGED
|
@@ -1,107 +1,110 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: llama3.1
|
| 3 |
-
datasets:
|
| 4 |
-
- survivi/Llama-3-SynE-Dataset
|
| 5 |
-
- hfl/stem_zh_instruction
|
| 6 |
-
- llamafactory/alpaca_zh
|
| 7 |
-
- llamafactory/alpaca_gpt4_zh
|
| 8 |
-
- hfl/ruozhiba_gpt4
|
| 9 |
-
- codingsteven/Llama-3-8B-chat
|
| 10 |
-
language:
|
| 11 |
-
- zh
|
| 12 |
-
base_model:
|
| 13 |
-
- meta-llama/Llama-3.1-8B
|
| 14 |
-
model-index:
|
| 15 |
-
- name: Control-LLM-Llama3.1-8B-SynE-Hybrid
|
| 16 |
-
results:
|
| 17 |
-
- task:
|
| 18 |
-
type: pretraining-evaluation
|
| 19 |
-
dataset:
|
| 20 |
-
type: mixed
|
| 21 |
-
name: Pretraining Evaluation Dataset
|
| 22 |
-
metrics:
|
| 23 |
-
- name: exact_match,strict-match (meta_pretrain)
|
| 24 |
-
type: exact_match
|
| 25 |
-
value: 0.4677775980154236
|
| 26 |
-
stderr: 0.0035271375539740195
|
| 27 |
-
verified: false
|
| 28 |
-
- name: exact_match,strict-match (meta_bbh_3shot_cot_pretrain)
|
| 29 |
-
type: exact_match
|
| 30 |
-
value: 0.6516664106896022
|
| 31 |
-
stderr: 0.005904999312183116
|
| 32 |
-
verified: false
|
| 33 |
-
- name: acc,none (meta_mmlu_5shot_pretrain)
|
| 34 |
-
type: accuracy
|
| 35 |
-
value: 0.6574562028201111
|
| 36 |
-
stderr: 0.004004907112115045
|
| 37 |
-
verified: false
|
| 38 |
-
- name: exact_match,strict-match (meta_mmlu_pro_5shot_pretrain)
|
| 39 |
-
type: exact_match
|
| 40 |
-
value: 0.36826795212765956
|
| 41 |
-
stderr: 0.004397416024070344
|
| 42 |
-
verified: false
|
| 43 |
-
- task:
|
| 44 |
-
type: chinese-evaluation
|
| 45 |
-
dataset:
|
| 46 |
-
type: mixed
|
| 47 |
-
name: Chinese Evaluation Dataset
|
| 48 |
-
metrics:
|
| 49 |
-
- name: exact_match,strict-match (zh_pretrain_multishot)
|
| 50 |
-
type: exact_match
|
| 51 |
-
value: 0.4448483910891089
|
| 52 |
-
stderr: 0.004279257037413458
|
| 53 |
-
verified: false
|
| 54 |
-
- name: acc,none (ceval-valid)
|
| 55 |
-
type: accuracy
|
| 56 |
-
value: 0.5891530460624071
|
| 57 |
-
stderr: 0.012995719777231915
|
| 58 |
-
verified: false
|
| 59 |
-
- name: exact_match,strict-match (ceval-valid-pretrain-cot_zh)
|
| 60 |
-
type: exact_match
|
| 61 |
-
value: 0.44650817236255574
|
| 62 |
-
stderr: 0.013132438471522461
|
| 63 |
-
verified: false
|
| 64 |
-
- name: acc,none (cmmlu)
|
| 65 |
-
type: accuracy
|
| 66 |
-
value: 0.578742876877914
|
| 67 |
-
stderr: 0.004459355253649275
|
| 68 |
-
verified: false
|
| 69 |
-
- name: exact_match,strict-match (cmmlu_pretrain_cot_zh)
|
| 70 |
-
type: exact_match
|
| 71 |
-
value: 0.4446554999136591
|
| 72 |
-
stderr: 0.004526020080338497
|
| 73 |
-
verified: false
|
| 74 |
-
---
|
| 75 |
-
# Control-LLM-Llama3.1-8B-SynE-Hybrid
|
| 76 |
-
This is a fine-tuned model of Llama-3.1-8B for muliligual-Chinese tasks on SynE dataset by Control LLM-Hybrid.
|
| 77 |
-
|
| 78 |
-
##
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
|
| 89 |
-
|
| 90 |
-
|
|
| 91 |
-
|
|
| 92 |
-
|
|
| 93 |
-
|
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
- **
|
| 102 |
-
- **
|
| 103 |
-
- **
|
| 104 |
-
- **
|
| 105 |
-
- **
|
| 106 |
-
- **
|
| 107 |
-
- **
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: llama3.1
|
| 3 |
+
datasets:
|
| 4 |
+
- survivi/Llama-3-SynE-Dataset
|
| 5 |
+
- hfl/stem_zh_instruction
|
| 6 |
+
- llamafactory/alpaca_zh
|
| 7 |
+
- llamafactory/alpaca_gpt4_zh
|
| 8 |
+
- hfl/ruozhiba_gpt4
|
| 9 |
+
- codingsteven/Llama-3-8B-chat
|
| 10 |
+
language:
|
| 11 |
+
- zh
|
| 12 |
+
base_model:
|
| 13 |
+
- meta-llama/Llama-3.1-8B
|
| 14 |
+
model-index:
|
| 15 |
+
- name: Control-LLM-Llama3.1-8B-SynE-Hybrid
|
| 16 |
+
results:
|
| 17 |
+
- task:
|
| 18 |
+
type: pretraining-evaluation
|
| 19 |
+
dataset:
|
| 20 |
+
type: mixed
|
| 21 |
+
name: Pretraining Evaluation Dataset
|
| 22 |
+
metrics:
|
| 23 |
+
- name: exact_match,strict-match (meta_pretrain)
|
| 24 |
+
type: exact_match
|
| 25 |
+
value: 0.4677775980154236
|
| 26 |
+
stderr: 0.0035271375539740195
|
| 27 |
+
verified: false
|
| 28 |
+
- name: exact_match,strict-match (meta_bbh_3shot_cot_pretrain)
|
| 29 |
+
type: exact_match
|
| 30 |
+
value: 0.6516664106896022
|
| 31 |
+
stderr: 0.005904999312183116
|
| 32 |
+
verified: false
|
| 33 |
+
- name: acc,none (meta_mmlu_5shot_pretrain)
|
| 34 |
+
type: accuracy
|
| 35 |
+
value: 0.6574562028201111
|
| 36 |
+
stderr: 0.004004907112115045
|
| 37 |
+
verified: false
|
| 38 |
+
- name: exact_match,strict-match (meta_mmlu_pro_5shot_pretrain)
|
| 39 |
+
type: exact_match
|
| 40 |
+
value: 0.36826795212765956
|
| 41 |
+
stderr: 0.004397416024070344
|
| 42 |
+
verified: false
|
| 43 |
+
- task:
|
| 44 |
+
type: chinese-evaluation
|
| 45 |
+
dataset:
|
| 46 |
+
type: mixed
|
| 47 |
+
name: Chinese Evaluation Dataset
|
| 48 |
+
metrics:
|
| 49 |
+
- name: exact_match,strict-match (zh_pretrain_multishot)
|
| 50 |
+
type: exact_match
|
| 51 |
+
value: 0.4448483910891089
|
| 52 |
+
stderr: 0.004279257037413458
|
| 53 |
+
verified: false
|
| 54 |
+
- name: acc,none (ceval-valid)
|
| 55 |
+
type: accuracy
|
| 56 |
+
value: 0.5891530460624071
|
| 57 |
+
stderr: 0.012995719777231915
|
| 58 |
+
verified: false
|
| 59 |
+
- name: exact_match,strict-match (ceval-valid-pretrain-cot_zh)
|
| 60 |
+
type: exact_match
|
| 61 |
+
value: 0.44650817236255574
|
| 62 |
+
stderr: 0.013132438471522461
|
| 63 |
+
verified: false
|
| 64 |
+
- name: acc,none (cmmlu)
|
| 65 |
+
type: accuracy
|
| 66 |
+
value: 0.578742876877914
|
| 67 |
+
stderr: 0.004459355253649275
|
| 68 |
+
verified: false
|
| 69 |
+
- name: exact_match,strict-match (cmmlu_pretrain_cot_zh)
|
| 70 |
+
type: exact_match
|
| 71 |
+
value: 0.4446554999136591
|
| 72 |
+
stderr: 0.004526020080338497
|
| 73 |
+
verified: false
|
| 74 |
+
---
|
| 75 |
+
# Control-LLM-Llama3.1-8B-SynE-Hybrid
|
| 76 |
+
This is a fine-tuned model of Llama-3.1-8B for muliligual-Chinese tasks on SynE dataset by Control LLM-Hybrid.
|
| 77 |
+
|
| 78 |
+
## Linked Paper
|
| 79 |
+
This model is associated with the paper: [Control-LLM](https://arxiv.org/abs/2501.10979).
|
| 80 |
+
|
| 81 |
+
## Evaluation Results
|
| 82 |
+
Here is an overview of the evaluation results and findings:
|
| 83 |
+
|
| 84 |
+
### Benchmark Results Table
|
| 85 |
+
|
| 86 |
+
The table below summarizes evaluation results across Chinese tasks and original capabilities.
|
| 87 |
+
|
| 88 |
+
| **Model** | **CEval** | **CEvalC** | **CMMLU** | **CMMLUC** | **C-Avg** | **BBH** | **MLU** | **MLUP** | **O-Avg** | **Overall** |
|
| 89 |
+
|--------------------|-----------|------------|-----------|------------|-----------|---------|---------|----------|-----------|-------------|
|
| 90 |
+
| Llama3.1-8B | 48.3 | 12.8 | 51.1 | 14.1 | 13.9 | 65.2 | 65.4 | 35.5 | 45.9 | 29.9 |
|
| 91 |
+
| Llama-3-SynE | 57.7 | 22.3 | 57.1 | 22.8 | 22.8 | 61.9 | 64.0 | 32.6 | 42.9 | 32.9 |
|
| 92 |
+
| Full Param Tune | 59.0 | 40.2 | **60.2** | 44.3 | 43.8 | 64.8 | 64.9 | 35.0 | 45.4 | 44.6 |
|
| 93 |
+
| Stack Expansion | 56.0 | 32.7 | 55.2 | 33.4 | 33.3 | 62.3 | 65.6 | 35.3 | 44.8 | 39.1 |
|
| 94 |
+
| Concat-Lerp* | 57.1 | 34.8 | 57.0 | 37.4 | 37.1 | 64.4 | 64.6 | 35.8 | 45.9 | 41.5 |
|
| 95 |
+
| **Hybrid Expansion**| **58.9** | 44.7 | 57.9 | 44.3 | 44.4 | 65.1 | **65.7**| 36.9 | 46.8 | 45.6 |
|
| 96 |
+
| **Control LLM*** | 57.0 | **44.7** | 56.0 | **44.9** | **44.8** | **68.2**| 65.6 | **37.9** | **48.5** | **46.7** |
|
| 97 |
+
|
| 98 |
+
---
|
| 99 |
+
|
| 100 |
+
### Explanation:
|
| 101 |
+
- **CEval**: Chinese Evaluation
|
| 102 |
+
- **CEvalC**: Chinese Evaluation (CoT - Chain of Thought)
|
| 103 |
+
- **CMMLU**: Chinese MMLU
|
| 104 |
+
- **CMMLUC**: Chinese MMLU (CoT)
|
| 105 |
+
- **C-Avg**: Chinese - Size Weighted Average across CEval, CEvalC, CMMLU, and CMMLUC
|
| 106 |
+
- **BBH**: BigBench Hard
|
| 107 |
+
- **MLU**: MMLU (Massive Multitask Language Understanding)
|
| 108 |
+
- **MLUP**: MMLU Pro
|
| 109 |
+
- **O-Avg**: Original Capability - Size Weighted Average across BBH, MLU, and MLUP
|
| 110 |
+
- **Overall**: Combined average across all tasks
|