ControlNet commited on
Commit
91ef1ad
·
verified ·
1 Parent(s): ab5313c

Upload model

Browse files
Files changed (9) hide show
  1. README.md +199 -0
  2. config.json +30 -0
  3. config.py +27 -0
  4. decoder.py +87 -0
  5. encoder.py +78 -0
  6. marlin.py +129 -0
  7. model.safetensors +3 -0
  8. modules.py +234 -0
  9. positional_embedding.py +49 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "MarlinModel"
4
+ ],
5
+ "as_feature_extractor": true,
6
+ "attn_drop_rate": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "config.MarlinConfig",
9
+ "AutoModel": "marlin.MarlinModel"
10
+ },
11
+ "decoder_depth": 4,
12
+ "decoder_embed_dim": 384,
13
+ "decoder_num_heads": 6,
14
+ "drop_rate": 0.0,
15
+ "encoder_depth": 12,
16
+ "encoder_embed_dim": 768,
17
+ "encoder_num_heads": 12,
18
+ "img_size": 224,
19
+ "init_values": 0.0,
20
+ "mlp_ratio": 4.0,
21
+ "model_type": "marlin",
22
+ "n_frames": 16,
23
+ "norm_layer": "LayerNorm",
24
+ "patch_size": 16,
25
+ "qk_scale": null,
26
+ "qkv_bias": true,
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.50.3",
29
+ "tubelet_size": 2
30
+ }
config.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+
3
+
4
+ class MarlinConfig(PretrainedConfig):
5
+ model_type = "marlin"
6
+
7
+ def __init__(self, **kwargs):
8
+ self.img_size = kwargs.pop("img_size", None)
9
+ self.patch_size = kwargs.pop("patch_size", None)
10
+ self.n_frames = kwargs.pop("n_frames", None)
11
+ self.encoder_embed_dim = kwargs.pop("encoder_embed_dim", None)
12
+ self.encoder_depth = kwargs.pop("encoder_depth", None)
13
+ self.encoder_num_heads = kwargs.pop("encoder_num_heads", None)
14
+ self.decoder_embed_dim = kwargs.pop("decoder_embed_dim", None)
15
+ self.decoder_depth = kwargs.pop("decoder_depth", None)
16
+ self.decoder_num_heads = kwargs.pop("decoder_num_heads", None)
17
+ self.mlp_ratio = kwargs.pop("mlp_ratio", None)
18
+ self.qkv_bias = kwargs.pop("qkv_bias", None)
19
+ self.qk_scale = kwargs.pop("qk_scale", None)
20
+ self.drop_rate = kwargs.pop("drop_rate", None)
21
+ self.attn_drop_rate = kwargs.pop("attn_drop_rate", None)
22
+ self.norm_layer = kwargs.pop("norm_layer", None)
23
+ self.init_values = kwargs.pop("init_values", None)
24
+ self.tubelet_size = kwargs.pop("tubelet_size", None)
25
+ self.as_feature_extractor = kwargs.pop("as_feature_extractor", True)
26
+
27
+ super().__init__(**kwargs)
decoder.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from einops import rearrange
3
+ from torch import nn, Tensor
4
+ from torch.nn import LayerNorm, Linear, ModuleList
5
+
6
+ from .modules import Block, no_grad_trunc_normal_
7
+ from .positional_embedding import SinCosPositionalEmbedding
8
+
9
+
10
+ class MarlinDecoder(nn.Module):
11
+
12
+ def __init__(self, img_size=224, patch_size=16, n_frames=16, embed_dim=384, depth=8,
13
+ num_heads=6, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
14
+ norm_layer="LayerNorm", init_values=1., tubelet_size=2
15
+ ):
16
+ super().__init__()
17
+ output_dim = 3 * tubelet_size * patch_size * patch_size
18
+ self.patch_size = patch_size
19
+ self.tubelet_size = tubelet_size
20
+ self.n_patch_h = img_size // patch_size
21
+ self.n_patch_w = img_size // patch_size
22
+ self.embed_dim = embed_dim
23
+ if norm_layer == "LayerNorm":
24
+ self.norm_layer = LayerNorm
25
+ self.norm = self.norm_layer(embed_dim)
26
+ else:
27
+ raise NotImplementedError("Only LayerNorm is supported")
28
+
29
+ # sine-cosine positional embeddings
30
+ self.pos_embedding = SinCosPositionalEmbedding(
31
+ (self.n_patch_h * self.n_patch_w * (n_frames // tubelet_size), embed_dim), dropout_rate=0.)
32
+ self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
33
+
34
+ self.blocks = ModuleList([
35
+ Block(
36
+ dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
37
+ drop=drop_rate, attn_drop=attn_drop_rate, norm_layer=self.norm_layer,
38
+ init_values=init_values
39
+ ) for _ in range(depth)])
40
+
41
+ self.head = Linear(embed_dim, output_dim)
42
+ self.apply(self._init_weights)
43
+ no_grad_trunc_normal_(self.mask_token, mean=0., std=0.02, a=-0.02, b=0.02)
44
+
45
+ @staticmethod
46
+ def _init_weights(m):
47
+ if isinstance(m, nn.Linear):
48
+ nn.init.xavier_uniform_(m.weight)
49
+ if isinstance(m, nn.Linear) and m.bias is not None:
50
+ nn.init.constant_(m.bias, 0)
51
+ elif isinstance(m, nn.LayerNorm):
52
+ nn.init.constant_(m.bias, 0)
53
+ nn.init.constant_(m.weight, 1.0)
54
+
55
+ def unpatch_to_img(self, x: Tensor) -> Tensor:
56
+ # x: (Batch, No. batches, Prod of cube size * C)
57
+ x = rearrange(x, "b n (c p) -> b n p c", c=3)
58
+ # x: (Batch, No. batches, Prod of cube size, C)
59
+ x = rearrange(x, "b (t h w) (p0 p1 p2) c -> b c (t p0) (h p1) (w p2)", p0=self.tubelet_size,
60
+ p1=self.patch_size, p2=self.patch_size, h=self.n_patch_h, w=self.n_patch_w)
61
+ # x: (B, C, T, H, W)
62
+ return x
63
+
64
+ def forward_features(self, x, return_token_num=0):
65
+ for block in self.blocks:
66
+ x = block(x)
67
+
68
+ if return_token_num > 0:
69
+ x = x[:, -return_token_num:]
70
+
71
+ x = self.norm(x)
72
+ x = self.head(x)
73
+ # x: (B, N_mask, C)
74
+ return x
75
+
76
+ def forward(self, x, mask):
77
+ # mask: 0 -> masked, 1 -> visible
78
+ b, n, c = x.shape
79
+ expand_pos_embed = self.pos_embedding.emb.data.expand(b, -1, -1)
80
+ pos_emb_vis = expand_pos_embed[mask].view(b, -1, c)
81
+ pos_emb_mask = expand_pos_embed[~mask].view(b, -1, c)
82
+ x = torch.cat([x + pos_emb_vis, self.mask_token + pos_emb_mask], dim=1)
83
+
84
+ mask_num = pos_emb_mask.shape[1]
85
+
86
+ x = self.forward_features(x, return_token_num=mask_num)
87
+ return x
encoder.py ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch import nn, Tensor
2
+ from torch.nn import ModuleList, LayerNorm
3
+
4
+ from .modules import PatchEmbedding3d, Block
5
+ from .positional_embedding import SinCosPositionalEmbedding
6
+
7
+
8
+ class MarlinEncoder(nn.Module):
9
+
10
+ def __init__(self, img_size=224, patch_size=16, n_frames=16, embed_dim=768, depth=12,
11
+ num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
12
+ norm_layer="LayerNorm", init_values=0., tubelet_size=2
13
+ ):
14
+ super().__init__()
15
+
16
+ self.embed_dim = embed_dim
17
+ self.patch_embedding = PatchEmbedding3d(
18
+ input_size=(3, n_frames, img_size, img_size),
19
+ patch_size=(tubelet_size, patch_size, patch_size),
20
+ embedding=embed_dim
21
+ )
22
+ num_patches = (img_size // patch_size) * (img_size // patch_size) * (n_frames // tubelet_size)
23
+
24
+ # sine-cosine positional embeddings
25
+ self.pos_embedding = SinCosPositionalEmbedding((num_patches, embed_dim), dropout_rate=0.)
26
+
27
+ if norm_layer == "LayerNorm":
28
+ self.norm_layer = LayerNorm
29
+ self.norm = self.norm_layer(embed_dim)
30
+ else:
31
+ raise NotImplementedError("Only LayerNorm is supported")
32
+
33
+ self.blocks = ModuleList([
34
+ Block(
35
+ dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
36
+ drop=drop_rate, attn_drop=attn_drop_rate, norm_layer=self.norm_layer,
37
+ init_values=init_values)
38
+ for _ in range(depth)
39
+ ])
40
+
41
+ self.apply(self._init_weights)
42
+
43
+ @staticmethod
44
+ def _init_weights(m):
45
+ if isinstance(m, nn.Linear):
46
+ nn.init.xavier_uniform_(m.weight)
47
+ if isinstance(m, nn.Linear) and m.bias is not None:
48
+ nn.init.constant_(m.bias, 0)
49
+ elif isinstance(m, nn.LayerNorm):
50
+ nn.init.constant_(m.bias, 0)
51
+ nn.init.constant_(m.weight, 1.0)
52
+
53
+ def forward_features(self, x):
54
+ for block in self.blocks:
55
+ x = block(x)
56
+ x = self.norm(x)
57
+ return x
58
+
59
+ def forward(self, x: Tensor, mask: Tensor) -> Tensor:
60
+ # mask: (B, T, N) with boolean values, 0 -> masked, 1 -> visible
61
+ assert len(x.shape) == 5, "x must be 5D"
62
+ emb = self.patch_embedding(x)
63
+ emb = self.pos_embedding(emb)
64
+ b, _, c = emb.shape
65
+ emb = emb[mask].view(b, -1, c) # only visible patches are used
66
+ emb = self.forward_features(emb)
67
+ return emb
68
+
69
+ def extract_features(self, x: Tensor, seq_mean_pool: bool) -> Tensor:
70
+ x = self.patch_embedding(x)
71
+ x = self.pos_embedding(x)
72
+ for block in self.blocks:
73
+ x = block(x)
74
+
75
+ if seq_mean_pool:
76
+ x = x.mean(dim=1)
77
+ x = self.norm(x)
78
+ return x
marlin.py ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional
2
+
3
+ import torch
4
+ from torch import Tensor
5
+ from torch.nn import Linear, Module
6
+ from transformers import PreTrainedModel
7
+
8
+ from .encoder import MarlinEncoder
9
+ from .decoder import MarlinDecoder
10
+
11
+ from .config import MarlinConfig
12
+
13
+
14
+ class Marlin(Module):
15
+ def __init__(
16
+ self,
17
+ img_size: int,
18
+ patch_size: int,
19
+ n_frames: int,
20
+ encoder_embed_dim: int,
21
+ encoder_depth: int,
22
+ encoder_num_heads: int,
23
+ decoder_embed_dim: int,
24
+ decoder_depth: int,
25
+ decoder_num_heads: int,
26
+ mlp_ratio: float,
27
+ qkv_bias: bool,
28
+ qk_scale: Optional[float],
29
+ drop_rate: float,
30
+ attn_drop_rate: float,
31
+ norm_layer: str,
32
+ init_values: float,
33
+ tubelet_size: int,
34
+ as_feature_extractor: bool = True,
35
+ ):
36
+ super().__init__()
37
+ self.encoder = MarlinEncoder(
38
+ img_size=img_size,
39
+ patch_size=patch_size,
40
+ n_frames=n_frames,
41
+ embed_dim=encoder_embed_dim,
42
+ depth=encoder_depth,
43
+ num_heads=encoder_num_heads,
44
+ mlp_ratio=mlp_ratio,
45
+ qkv_bias=qkv_bias,
46
+ qk_scale=qk_scale,
47
+ drop_rate=drop_rate,
48
+ attn_drop_rate=attn_drop_rate,
49
+ norm_layer=norm_layer,
50
+ init_values=init_values,
51
+ tubelet_size=tubelet_size,
52
+ )
53
+ self.as_feature_extractor = as_feature_extractor
54
+ self.clip_frames = n_frames
55
+ if as_feature_extractor:
56
+ self.enc_dec_proj = None
57
+ self.decoder = None
58
+ else:
59
+ self.decoder = MarlinDecoder(
60
+ img_size=img_size,
61
+ patch_size=patch_size,
62
+ embed_dim=decoder_embed_dim,
63
+ depth=decoder_depth,
64
+ num_heads=decoder_num_heads,
65
+ mlp_ratio=mlp_ratio,
66
+ qkv_bias=qkv_bias,
67
+ qk_scale=qk_scale,
68
+ drop_rate=drop_rate,
69
+ attn_drop_rate=attn_drop_rate,
70
+ norm_layer=norm_layer,
71
+ init_values=init_values,
72
+ tubelet_size=tubelet_size,
73
+ )
74
+
75
+ self.enc_dec_proj = Linear(encoder_embed_dim, decoder_embed_dim, bias=False)
76
+
77
+ def forward(self, x: Tensor, mask: Tensor = None) -> Tensor:
78
+ if self.as_feature_extractor:
79
+ raise RuntimeError(
80
+ "For feature extraction, please use `extract_features` or `extract_video`."
81
+ )
82
+ else:
83
+ assert mask is not None
84
+ x = self.encoder(x, mask)
85
+ x = self.enc_dec_proj(x)
86
+ x = self.decoder(x, mask)
87
+ return x
88
+
89
+ @property
90
+ def device(self):
91
+ return self.encoder.norm.weight.device
92
+
93
+ def extract_features(self, x: Tensor, keep_seq: bool = True):
94
+ """Extract features for one video clip (v)"""
95
+ if self.training:
96
+ return self.encoder.extract_features(x, seq_mean_pool=not keep_seq)
97
+ else:
98
+ with torch.no_grad():
99
+ return self.encoder.extract_features(x, seq_mean_pool=not keep_seq)
100
+
101
+
102
+ class MarlinModel(PreTrainedModel):
103
+ config_class = MarlinConfig
104
+
105
+ def __init__(self, config: MarlinConfig):
106
+ super().__init__(config)
107
+ self.config = config
108
+ self.marlin = Marlin(
109
+ img_size=config.img_size,
110
+ patch_size=config.patch_size,
111
+ n_frames=config.n_frames,
112
+ encoder_embed_dim=config.encoder_embed_dim,
113
+ encoder_depth=config.encoder_depth,
114
+ encoder_num_heads=config.encoder_num_heads,
115
+ decoder_embed_dim=config.decoder_embed_dim,
116
+ decoder_depth=config.decoder_depth,
117
+ decoder_num_heads=config.decoder_num_heads,
118
+ mlp_ratio=config.mlp_ratio,
119
+ qkv_bias=config.qkv_bias,
120
+ qk_scale=config.qk_scale,
121
+ drop_rate=config.drop_rate,
122
+ attn_drop_rate=config.attn_drop_rate,
123
+ norm_layer=config.norm_layer,
124
+ init_values=config.init_values,
125
+ tubelet_size=config.tubelet_size,
126
+ )
127
+
128
+ def forward(self, x: Tensor, keep_seq: bool = True):
129
+ return self.marlin.extract_features(x, keep_seq=keep_seq)
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0bf06598cd8df475456224a33f7f051a167aa8bf8730b975ded930da556b6e9
3
+ size 349743632
modules.py ADDED
@@ -0,0 +1,234 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import warnings
3
+ from typing import Union, Optional, Callable, Tuple, List, Sequence
4
+
5
+ import torch
6
+ from einops.layers.torch import Rearrange
7
+ from torch import Tensor, nn, Size
8
+ from torch.nn import Conv3d, ModuleList
9
+ from torch.nn import functional as F
10
+
11
+ Shape = Union[Size, List[int], Tuple[int, ...]]
12
+ ModuleFactory = Union[Callable[[], nn.Module], Callable[[int], nn.Module]]
13
+
14
+
15
+ class PatchEmbedding3d(nn.Module):
16
+
17
+ def __init__(self, input_size: Shape, patch_size: Union[int, Shape], embedding: int,
18
+ strides: Optional[Union[int, Shape]] = None,
19
+ build_normalization: Optional[ModuleFactory] = None
20
+ ):
21
+ super().__init__()
22
+ # channel, time, height, width
23
+ c, t, h, w = input_size
24
+ # patch_time, patch_height, patch_width
25
+ pt, ph, pw = (patch_size, patch_size, patch_size) if type(patch_size) is int else patch_size
26
+
27
+ # configure the strides for conv3d
28
+ if strides is None:
29
+ # no specified means no overlap and gap between patches
30
+ strides = (pt, ph, pw)
31
+ elif type(strides) is int:
32
+ # transform the side length of strides to 3D
33
+ strides = (strides, strides, strides)
34
+
35
+ self.projection = Conv3d(c, embedding, kernel_size=(pt, ph, pw), stride=strides)
36
+ self.has_norm = build_normalization is not None
37
+ if self.has_norm:
38
+ self.normalization = build_normalization()
39
+ self.rearrange = Rearrange("b d nt nh nw -> b (nt nh nw) d")
40
+
41
+ def forward(self, x: Tensor) -> Tensor:
42
+ x = self.projection(x)
43
+ x = self.rearrange(x)
44
+ if self.has_norm:
45
+ x = self.normalization(x)
46
+ return x
47
+
48
+
49
+ class Linear(nn.Module):
50
+
51
+ def __init__(self, in_features: int, out_features: int, bias: bool = True,
52
+ build_activation: Optional[ModuleFactory] = None,
53
+ build_normalization: Optional[ModuleFactory] = None,
54
+ normalization_after_activation: bool = False,
55
+ dropout_rate: float = 0.
56
+ ):
57
+ super().__init__()
58
+ self.linear = nn.Linear(in_features, out_features, bias)
59
+
60
+ self.has_act = build_activation is not None
61
+ if self.has_act:
62
+ self.activation = build_activation()
63
+ else:
64
+ self.activation = None
65
+
66
+ self.has_norm = build_normalization is not None
67
+ if self.has_norm:
68
+ self.normalization = build_normalization()
69
+ self.norm_after_act = normalization_after_activation
70
+ else:
71
+ self.normalization = None
72
+
73
+ self.has_dropout = dropout_rate > 0
74
+ if self.has_dropout:
75
+ self.dropout = nn.Dropout(dropout_rate)
76
+
77
+ def forward(self, x: Tensor) -> Tensor:
78
+ x = self.linear(x)
79
+ if self.has_act and self.has_norm:
80
+ if self.norm_after_act:
81
+ x = self.activation(x)
82
+ x = self.normalization(x)
83
+ else:
84
+ x = self.normalization(x)
85
+ x = self.activation(x)
86
+ elif self.has_act and not self.has_norm:
87
+ x = self.activation(x)
88
+ elif not self.has_act and self.has_norm:
89
+ x = self.normalization(x)
90
+
91
+ if self.has_dropout:
92
+ x = self.dropout(x)
93
+ return x
94
+
95
+
96
+ class MLP(nn.Module):
97
+
98
+ def __init__(self, neurons: Sequence[int],
99
+ build_activation: Optional[ModuleFactory] = None, dropout_rate: float = 0.
100
+ ):
101
+ super().__init__()
102
+ n_features = neurons[1:]
103
+ self.layers: ModuleList[Linear] = ModuleList(
104
+ [Linear(neurons[i], neurons[i + 1], True, build_activation, None,
105
+ False, dropout_rate
106
+ ) for i in range(len(n_features) - 1)
107
+ ] + [
108
+ Linear(neurons[-2], neurons[-1], True)
109
+ ]
110
+ )
111
+
112
+ def forward(self, x: Tensor) -> Tensor:
113
+ for layer in self.layers:
114
+ x = layer(x)
115
+ return x
116
+
117
+
118
+ class Attention(nn.Module):
119
+
120
+ def __init__(
121
+ self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
122
+ proj_drop=0., attn_head_dim=None
123
+ ):
124
+ super().__init__()
125
+ self.num_heads = num_heads
126
+ head_dim = dim // num_heads
127
+ if attn_head_dim is not None:
128
+ head_dim = attn_head_dim
129
+ all_head_dim = head_dim * self.num_heads
130
+ self.scale = qk_scale or head_dim ** -0.5
131
+
132
+ self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
133
+ if qkv_bias:
134
+ self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
135
+ self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
136
+ else:
137
+ self.q_bias = None
138
+ self.v_bias = None
139
+
140
+ self.attn_drop = nn.Dropout(attn_drop)
141
+ self.proj = nn.Linear(all_head_dim, dim)
142
+ self.proj_drop = nn.Dropout(proj_drop)
143
+
144
+ def forward(self, x):
145
+ B, N, C = x.shape
146
+ qkv_bias = None
147
+ if self.q_bias is not None:
148
+ qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
149
+ # qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
150
+ qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
151
+ qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
152
+ q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
153
+
154
+ q = q * self.scale
155
+ attn = (q @ k.transpose(-2, -1))
156
+
157
+ attn = attn.softmax(dim=-1)
158
+ attn = self.attn_drop(attn)
159
+
160
+ x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
161
+ x = self.proj(x)
162
+ x = self.proj_drop(x)
163
+ return x
164
+
165
+
166
+ class Block(nn.Module):
167
+
168
+ def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
169
+ init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm,
170
+ attn_head_dim=None
171
+ ):
172
+ super().__init__()
173
+ self.norm1 = norm_layer(dim)
174
+ self.attn = Attention(
175
+ dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
176
+ attn_drop=attn_drop, proj_drop=drop, attn_head_dim=attn_head_dim)
177
+ self.norm2 = norm_layer(dim)
178
+ mlp_hidden_dim = int(dim * mlp_ratio)
179
+ self.mlp = MLP(
180
+ neurons=[dim, mlp_hidden_dim, dim],
181
+ build_activation=act_layer,
182
+ dropout_rate=drop
183
+ )
184
+
185
+ if init_values > 0:
186
+ self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
187
+ self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
188
+ else:
189
+ self.gamma_1, self.gamma_2 = None, None
190
+
191
+ def forward(self, x):
192
+ if self.gamma_1 is None:
193
+ x = x + self.attn(self.norm1(x))
194
+ x = x + self.mlp(self.norm2(x))
195
+ else:
196
+ x = x + (self.gamma_1 * self.attn(self.norm1(x)))
197
+ x = x + (self.gamma_2 * self.mlp(self.norm2(x)))
198
+ return x
199
+
200
+
201
+ def no_grad_trunc_normal_(tensor, mean, std, a, b):
202
+ # Cut & paste from PyTorch official master until it's in a few official releases - RW
203
+ # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
204
+ def norm_cdf(x):
205
+ # Computes standard normal cumulative distribution function
206
+ return (1. + math.erf(x / math.sqrt(2.))) / 2.
207
+
208
+ if (mean < a - 2 * std) or (mean > b + 2 * std):
209
+ warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
210
+ "The distribution of values may be incorrect.",
211
+ stacklevel=2)
212
+
213
+ with torch.no_grad():
214
+ # Values are generated by using a truncated uniform distribution and
215
+ # then using the inverse CDF for the normal distribution.
216
+ # Get upper and lower cdf values
217
+ l = norm_cdf((a - mean) / std)
218
+ u = norm_cdf((b - mean) / std)
219
+
220
+ # Uniformly fill tensor with values from [l, u], then translate to
221
+ # [2l-1, 2u-1].
222
+ tensor.uniform_(2 * l - 1, 2 * u - 1)
223
+
224
+ # Use inverse cdf transform for normal distribution to get truncated
225
+ # standard normal
226
+ tensor.erfinv_()
227
+
228
+ # Transform to proper mean, std
229
+ tensor.mul_(std * math.sqrt(2.))
230
+ tensor.add_(mean)
231
+
232
+ # Clamp to ensure it's in the proper range
233
+ tensor.clamp_(min=a, max=b)
234
+ return tensor
positional_embedding.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import Tensor, nn
3
+
4
+ from .modules import Shape
5
+
6
+
7
+ class PositionalEmbedding(nn.Module):
8
+
9
+ def __init__(self, input_shape: Shape, dropout_rate: float = 0.5, trainable: bool = True):
10
+ super().__init__()
11
+ self.input_shape = input_shape
12
+ self.emb = nn.Parameter(torch.zeros(1, *input_shape), requires_grad=trainable)
13
+ self.use_dropout = dropout_rate is not None and dropout_rate != 0.
14
+ if self.use_dropout:
15
+ self.dropout = nn.Dropout(dropout_rate)
16
+
17
+ def forward(self, x: Tensor) -> Tensor:
18
+ x = x + self.emb
19
+ if self.use_dropout:
20
+ x = self.dropout(x)
21
+ return x
22
+
23
+ @property
24
+ def trainable(self):
25
+ return self.emb.requires_grad
26
+
27
+ @trainable.setter
28
+ def trainable(self, value: bool):
29
+ self.emb.requires_grad = value
30
+
31
+
32
+ class SinCosPositionalEmbedding(PositionalEmbedding):
33
+
34
+ def __init__(self, input_shape: Shape, dropout_rate: float = 0.5):
35
+ super().__init__(input_shape, dropout_rate, trainable=False)
36
+ self.emb.data = self.make_embedding().unsqueeze(0)
37
+
38
+ def make_embedding(self) -> Tensor:
39
+ n_position, d_hid = self.input_shape
40
+
41
+ def get_position_angle_vec(position):
42
+ return position / torch.tensor(10000).pow(
43
+ 2 * torch.div(torch.arange(d_hid), 2, rounding_mode='trunc') / d_hid)
44
+
45
+ sinusoid_table = torch.stack([get_position_angle_vec(pos_i) for pos_i in range(n_position)], 0)
46
+ sinusoid_table[:, 0::2] = torch.sin(sinusoid_table[:, 0::2]) # dim 2i
47
+ sinusoid_table[:, 1::2] = torch.cos(sinusoid_table[:, 1::2]) # dim 2i+1
48
+
49
+ return sinusoid_table.float()