--- language: - en base_model: - CrabInHoney/urlbert-tiny-base-v4 pipeline_tag: text-classification tags: - url - cybersecurity - urls - links - classification - phishing-detection - tiny - phishing - malware - defacement - transformers - urlbert - bert - malicious license: apache-2.0 --- # URLBERT-Tiny-v4 Malicious URL Classifier This is a lightweight version of BERT, specifically fine-tuned for classifying URLs into four categories: benign, phishing, malware, and defacement. ## Model Details - **Model size**: 3.69M parameters - **Tensor type**: F32 - **Model weight size**: 14.8 MB - **Base model**: [CrabInHoney/urlbert-tiny-base-v4](https://huggingface.co/CrabInHoney/urlbert-tiny-base-v4) - **Dataset**: [Malicious URLs Dataset](https://www.kaggle.com/datasets/sid321axn/malicious-urls-dataset) ## Model Evaluation Results The model was evaluated on a test set with the following classification metrics: | Metric | Model V3 | Model V4 (this model) | |--------|----------|----------| | **Overall Accuracy** | 0.9837 | **0.9922** | | **F1-score (Benign)** | 0.9907 | **0.9955** | | **F1-score (Defacement)** | 0.9937 | **0.9984** | | **F1-score (Malware)** | 0.9741 | **0.9845** | | **F1-score (Phishing)** | 0.9444 | **0.9734** | | **Weighted Average F1-score** | 0.9836 | **0.9922** | ## Usage Example Below is an example of how to use the model for URL classification using the Hugging Face `transformers` library: ```python from transformers import BertTokenizerFast, BertForSequenceClassification, pipeline import torch # Определение устройства (GPU или CPU) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print(f"Используемое устройство: {device}") # Загрузка модели и токенизатора model_name = "CrabInHoney/urlbert-tiny-v4-malicious-url-classifier" tokenizer = BertTokenizerFast.from_pretrained(model_name) model = BertForSequenceClassification.from_pretrained(model_name) model.to(device) # Создание pipeline для классификации classifier = pipeline( "text-classification", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1, return_all_scores=True ) # Примеры URL для тестирования test_urls = [ "wikiobits.com/Obits/TonyProudfoot", "http://www.824555.com/app/member/SportOption.php?uid=guest&langx=gb", ] # Маппинг меток на понятные названия классов label_mapping = { "LABEL_0": "benign", "LABEL_1": "defacement", "LABEL_2": "malware", "LABEL_3": "phishing" } # Классификация URL for url in test_urls: results = classifier(url) print(f"\nURL: {url}") for result in results[0]: label = result['label'] score = result['score'] friendly_label = label_mapping.get(label, label) print(f"{friendly_label}, %: {score:.4f}") ``` ### Example Output: ``` URL: wikiobits.com/Obits/TonyProudfoot benign, %: 0.9996 defacement, %: 0.0000 malware, %: 0.0000 phishing, %: 0.0003 URL: http://www.824555.com/app/member/SportOption.php?uid=guest&langx=gb benign, %: 0.0000 defacement, %: 0.0001 malware, %: 0.9998 phishing, %: 0.0001 ```