Cran-May commited on
Commit
fca5ab3
·
verified ·
1 Parent(s): a474953

Delete checkpoint-960

Browse files
checkpoint-960/README.md DELETED
@@ -1,202 +0,0 @@
1
- ---
2
- base_model: Qwen/Qwen3-32B
3
- library_name: peft
4
- ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
- ### Framework versions
201
-
202
- - PEFT 0.15.2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
checkpoint-960/adapter_config.json DELETED
@@ -1,39 +0,0 @@
1
- {
2
- "alpha_pattern": {},
3
- "auto_mapping": null,
4
- "base_model_name_or_path": "Qwen/Qwen3-32B",
5
- "bias": "none",
6
- "corda_config": null,
7
- "eva_config": null,
8
- "exclude_modules": null,
9
- "fan_in_fan_out": null,
10
- "inference_mode": true,
11
- "init_lora_weights": true,
12
- "layer_replication": null,
13
- "layers_pattern": null,
14
- "layers_to_transform": null,
15
- "loftq_config": {},
16
- "lora_alpha": 64,
17
- "lora_bias": false,
18
- "lora_dropout": 0.05,
19
- "megatron_config": null,
20
- "megatron_core": "megatron.core",
21
- "modules_to_save": null,
22
- "peft_type": "LORA",
23
- "r": 64,
24
- "rank_pattern": {},
25
- "revision": null,
26
- "target_modules": [
27
- "v_proj",
28
- "up_proj",
29
- "down_proj",
30
- "q_proj",
31
- "o_proj",
32
- "k_proj",
33
- "gate_proj"
34
- ],
35
- "task_type": "CAUSAL_LM",
36
- "trainable_token_indices": null,
37
- "use_dora": false,
38
- "use_rslora": false
39
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
checkpoint-960/adapter_model.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:9460f0efd4539e38c63681818e98a4255d314fbceb2e400081a04423514c3d62
3
- size 1073864104
 
 
 
 
checkpoint-960/added_tokens.json DELETED
@@ -1,28 +0,0 @@
1
- {
2
- "</think>": 151668,
3
- "</tool_call>": 151658,
4
- "</tool_response>": 151666,
5
- "<think>": 151667,
6
- "<tool_call>": 151657,
7
- "<tool_response>": 151665,
8
- "<|box_end|>": 151649,
9
- "<|box_start|>": 151648,
10
- "<|endoftext|>": 151643,
11
- "<|file_sep|>": 151664,
12
- "<|fim_middle|>": 151660,
13
- "<|fim_pad|>": 151662,
14
- "<|fim_prefix|>": 151659,
15
- "<|fim_suffix|>": 151661,
16
- "<|im_end|>": 151645,
17
- "<|im_start|>": 151644,
18
- "<|image_pad|>": 151655,
19
- "<|object_ref_end|>": 151647,
20
- "<|object_ref_start|>": 151646,
21
- "<|quad_end|>": 151651,
22
- "<|quad_start|>": 151650,
23
- "<|repo_name|>": 151663,
24
- "<|video_pad|>": 151656,
25
- "<|vision_end|>": 151653,
26
- "<|vision_pad|>": 151654,
27
- "<|vision_start|>": 151652
28
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
checkpoint-960/global_step960/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:0f6d9c16096fa43144e125786b730baf054e87b9395c6d1f21d25860468be119
3
- size 3238110642
 
 
 
 
checkpoint-960/global_step960/mp_rank_00_model_states.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:7821c70b63c04c8d8ba6447af26a2945210118ccd9c5365f7abd93db1a0aa8f8
3
- size 1571050088
 
 
 
 
checkpoint-960/latest DELETED
@@ -1 +0,0 @@
1
- global_step960
 
 
checkpoint-960/merges.txt DELETED
The diff for this file is too large to render. See raw diff
 
checkpoint-960/rng_state.pth DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:8bb2e1ef2828bbbdf00946271b6b8d0350512accff108a48a1290b8634b4b4f6
3
- size 14244
 
 
 
 
checkpoint-960/scheduler.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:cda69dd788d76435f3e4306605736b131c56c426f717a37d46be76e4d9619efe
3
- size 1064
 
 
 
 
checkpoint-960/special_tokens_map.json DELETED
@@ -1,31 +0,0 @@
1
- {
2
- "additional_special_tokens": [
3
- "<|im_start|>",
4
- "<|im_end|>",
5
- "<|object_ref_start|>",
6
- "<|object_ref_end|>",
7
- "<|box_start|>",
8
- "<|box_end|>",
9
- "<|quad_start|>",
10
- "<|quad_end|>",
11
- "<|vision_start|>",
12
- "<|vision_end|>",
13
- "<|vision_pad|>",
14
- "<|image_pad|>",
15
- "<|video_pad|>"
16
- ],
17
- "eos_token": {
18
- "content": "<|im_end|>",
19
- "lstrip": false,
20
- "normalized": false,
21
- "rstrip": false,
22
- "single_word": false
23
- },
24
- "pad_token": {
25
- "content": "<|endoftext|>",
26
- "lstrip": false,
27
- "normalized": false,
28
- "rstrip": false,
29
- "single_word": false
30
- }
31
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
checkpoint-960/tokenizer.json DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
3
- size 11422654
 
 
 
 
checkpoint-960/tokenizer_config.json DELETED
@@ -1,240 +0,0 @@
1
- {
2
- "add_bos_token": false,
3
- "add_prefix_space": false,
4
- "added_tokens_decoder": {
5
- "151643": {
6
- "content": "<|endoftext|>",
7
- "lstrip": false,
8
- "normalized": false,
9
- "rstrip": false,
10
- "single_word": false,
11
- "special": true
12
- },
13
- "151644": {
14
- "content": "<|im_start|>",
15
- "lstrip": false,
16
- "normalized": false,
17
- "rstrip": false,
18
- "single_word": false,
19
- "special": true
20
- },
21
- "151645": {
22
- "content": "<|im_end|>",
23
- "lstrip": false,
24
- "normalized": false,
25
- "rstrip": false,
26
- "single_word": false,
27
- "special": true
28
- },
29
- "151646": {
30
- "content": "<|object_ref_start|>",
31
- "lstrip": false,
32
- "normalized": false,
33
- "rstrip": false,
34
- "single_word": false,
35
- "special": true
36
- },
37
- "151647": {
38
- "content": "<|object_ref_end|>",
39
- "lstrip": false,
40
- "normalized": false,
41
- "rstrip": false,
42
- "single_word": false,
43
- "special": true
44
- },
45
- "151648": {
46
- "content": "<|box_start|>",
47
- "lstrip": false,
48
- "normalized": false,
49
- "rstrip": false,
50
- "single_word": false,
51
- "special": true
52
- },
53
- "151649": {
54
- "content": "<|box_end|>",
55
- "lstrip": false,
56
- "normalized": false,
57
- "rstrip": false,
58
- "single_word": false,
59
- "special": true
60
- },
61
- "151650": {
62
- "content": "<|quad_start|>",
63
- "lstrip": false,
64
- "normalized": false,
65
- "rstrip": false,
66
- "single_word": false,
67
- "special": true
68
- },
69
- "151651": {
70
- "content": "<|quad_end|>",
71
- "lstrip": false,
72
- "normalized": false,
73
- "rstrip": false,
74
- "single_word": false,
75
- "special": true
76
- },
77
- "151652": {
78
- "content": "<|vision_start|>",
79
- "lstrip": false,
80
- "normalized": false,
81
- "rstrip": false,
82
- "single_word": false,
83
- "special": true
84
- },
85
- "151653": {
86
- "content": "<|vision_end|>",
87
- "lstrip": false,
88
- "normalized": false,
89
- "rstrip": false,
90
- "single_word": false,
91
- "special": true
92
- },
93
- "151654": {
94
- "content": "<|vision_pad|>",
95
- "lstrip": false,
96
- "normalized": false,
97
- "rstrip": false,
98
- "single_word": false,
99
- "special": true
100
- },
101
- "151655": {
102
- "content": "<|image_pad|>",
103
- "lstrip": false,
104
- "normalized": false,
105
- "rstrip": false,
106
- "single_word": false,
107
- "special": true
108
- },
109
- "151656": {
110
- "content": "<|video_pad|>",
111
- "lstrip": false,
112
- "normalized": false,
113
- "rstrip": false,
114
- "single_word": false,
115
- "special": true
116
- },
117
- "151657": {
118
- "content": "<tool_call>",
119
- "lstrip": false,
120
- "normalized": false,
121
- "rstrip": false,
122
- "single_word": false,
123
- "special": false
124
- },
125
- "151658": {
126
- "content": "</tool_call>",
127
- "lstrip": false,
128
- "normalized": false,
129
- "rstrip": false,
130
- "single_word": false,
131
- "special": false
132
- },
133
- "151659": {
134
- "content": "<|fim_prefix|>",
135
- "lstrip": false,
136
- "normalized": false,
137
- "rstrip": false,
138
- "single_word": false,
139
- "special": false
140
- },
141
- "151660": {
142
- "content": "<|fim_middle|>",
143
- "lstrip": false,
144
- "normalized": false,
145
- "rstrip": false,
146
- "single_word": false,
147
- "special": false
148
- },
149
- "151661": {
150
- "content": "<|fim_suffix|>",
151
- "lstrip": false,
152
- "normalized": false,
153
- "rstrip": false,
154
- "single_word": false,
155
- "special": false
156
- },
157
- "151662": {
158
- "content": "<|fim_pad|>",
159
- "lstrip": false,
160
- "normalized": false,
161
- "rstrip": false,
162
- "single_word": false,
163
- "special": false
164
- },
165
- "151663": {
166
- "content": "<|repo_name|>",
167
- "lstrip": false,
168
- "normalized": false,
169
- "rstrip": false,
170
- "single_word": false,
171
- "special": false
172
- },
173
- "151664": {
174
- "content": "<|file_sep|>",
175
- "lstrip": false,
176
- "normalized": false,
177
- "rstrip": false,
178
- "single_word": false,
179
- "special": false
180
- },
181
- "151665": {
182
- "content": "<tool_response>",
183
- "lstrip": false,
184
- "normalized": false,
185
- "rstrip": false,
186
- "single_word": false,
187
- "special": false
188
- },
189
- "151666": {
190
- "content": "</tool_response>",
191
- "lstrip": false,
192
- "normalized": false,
193
- "rstrip": false,
194
- "single_word": false,
195
- "special": false
196
- },
197
- "151667": {
198
- "content": "<think>",
199
- "lstrip": false,
200
- "normalized": false,
201
- "rstrip": false,
202
- "single_word": false,
203
- "special": false
204
- },
205
- "151668": {
206
- "content": "</think>",
207
- "lstrip": false,
208
- "normalized": false,
209
- "rstrip": false,
210
- "single_word": false,
211
- "special": false
212
- }
213
- },
214
- "additional_special_tokens": [
215
- "<|im_start|>",
216
- "<|im_end|>",
217
- "<|object_ref_start|>",
218
- "<|object_ref_end|>",
219
- "<|box_start|>",
220
- "<|box_end|>",
221
- "<|quad_start|>",
222
- "<|quad_end|>",
223
- "<|vision_start|>",
224
- "<|vision_end|>",
225
- "<|vision_pad|>",
226
- "<|image_pad|>",
227
- "<|video_pad|>"
228
- ],
229
- "bos_token": null,
230
- "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
231
- "clean_up_tokenization_spaces": false,
232
- "eos_token": "<|im_end|>",
233
- "errors": "replace",
234
- "extra_special_tokens": {},
235
- "model_max_length": 131072,
236
- "pad_token": "<|endoftext|>",
237
- "split_special_tokens": false,
238
- "tokenizer_class": "Qwen2Tokenizer",
239
- "unk_token": null
240
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
checkpoint-960/trainer_state.json DELETED
The diff for this file is too large to render. See raw diff
 
checkpoint-960/training_args.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:6bd0dbc47a9812516a7dc00a4bccf2e85152bb7b0be6caacda2e7ed6fd24ad7b
3
- size 8824
 
 
 
 
checkpoint-960/vocab.json DELETED
The diff for this file is too large to render. See raw diff
 
checkpoint-960/zero_to_fp32.py DELETED
@@ -1,674 +0,0 @@
1
- #!/usr/bin/env python
2
-
3
- # Copyright (c) Microsoft Corporation.
4
- # SPDX-License-Identifier: Apache-2.0
5
-
6
- # DeepSpeed Team
7
-
8
- # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
- # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
- # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
- # application.
12
- #
13
- # example:
14
- # python zero_to_fp32.py . output_dir/
15
- # or
16
- # python zero_to_fp32.py . output_dir/ --safe_serialization
17
-
18
- import argparse
19
- import torch
20
- import glob
21
- import math
22
- import os
23
- import re
24
- import json
25
- from tqdm import tqdm
26
- from collections import OrderedDict
27
- from dataclasses import dataclass
28
-
29
- # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
- # DeepSpeed data structures it has to be available in the current python environment.
31
- from deepspeed.utils import logger
32
- from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
- FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
- FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
-
36
-
37
- @dataclass
38
- class zero_model_state:
39
- buffers: dict()
40
- param_shapes: dict()
41
- shared_params: list
42
- ds_version: int
43
- frozen_param_shapes: dict()
44
- frozen_param_fragments: dict()
45
-
46
-
47
- debug = 0
48
-
49
- # load to cpu
50
- device = torch.device('cpu')
51
-
52
-
53
- def atoi(text):
54
- return int(text) if text.isdigit() else text
55
-
56
-
57
- def natural_keys(text):
58
- '''
59
- alist.sort(key=natural_keys) sorts in human order
60
- http://nedbatchelder.com/blog/200712/human_sorting.html
61
- (See Toothy's implementation in the comments)
62
- '''
63
- return [atoi(c) for c in re.split(r'(\d+)', text)]
64
-
65
-
66
- def get_model_state_file(checkpoint_dir, zero_stage):
67
- if not os.path.isdir(checkpoint_dir):
68
- raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
-
70
- # there should be only one file
71
- if zero_stage <= 2:
72
- file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
- elif zero_stage == 3:
74
- file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
-
76
- if not os.path.exists(file):
77
- raise FileNotFoundError(f"can't find model states file at '{file}'")
78
-
79
- return file
80
-
81
-
82
- def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
- # XXX: need to test that this simple glob rule works for multi-node setup too
84
- ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
-
86
- if len(ckpt_files) == 0:
87
- raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
-
89
- return ckpt_files
90
-
91
-
92
- def get_optim_files(checkpoint_dir):
93
- return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
-
95
-
96
- def get_model_state_files(checkpoint_dir):
97
- return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
-
99
-
100
- def parse_model_states(files):
101
- zero_model_states = []
102
- for file in files:
103
- state_dict = torch.load(file, map_location=device)
104
-
105
- if BUFFER_NAMES not in state_dict:
106
- raise ValueError(f"{file} is not a model state checkpoint")
107
- buffer_names = state_dict[BUFFER_NAMES]
108
- if debug:
109
- print("Found buffers:", buffer_names)
110
-
111
- # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
- buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
- param_shapes = state_dict[PARAM_SHAPES]
114
-
115
- # collect parameters that are included in param_shapes
116
- param_names = []
117
- for s in param_shapes:
118
- for name in s.keys():
119
- param_names.append(name)
120
-
121
- # update with frozen parameters
122
- frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
- if frozen_param_shapes is not None:
124
- if debug:
125
- print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
- param_names += list(frozen_param_shapes.keys())
127
-
128
- # handle shared params
129
- shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
-
131
- ds_version = state_dict.get(DS_VERSION, None)
132
-
133
- frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
-
135
- z_model_state = zero_model_state(buffers=buffers,
136
- param_shapes=param_shapes,
137
- shared_params=shared_params,
138
- ds_version=ds_version,
139
- frozen_param_shapes=frozen_param_shapes,
140
- frozen_param_fragments=frozen_param_fragments)
141
- zero_model_states.append(z_model_state)
142
-
143
- return zero_model_states
144
-
145
-
146
- def parse_optim_states(files, ds_checkpoint_dir):
147
- total_files = len(files)
148
- state_dicts = []
149
- for f in files:
150
- state_dict = torch.load(f, map_location=device)
151
- # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
- # and also handle the case where it was already removed by another helper script
153
- state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
- state_dicts.append(state_dict)
155
-
156
- if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
- raise ValueError(f"{files[0]} is not a zero checkpoint")
158
- zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
- world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
-
161
- # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
- # parameters can be different from data parallelism for non-expert parameters. So we can just
163
- # use the max of the partition_count to get the dp world_size.
164
-
165
- if type(world_size) is list:
166
- world_size = max(world_size)
167
-
168
- if world_size != total_files:
169
- raise ValueError(
170
- f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
- "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
- )
173
-
174
- # the groups are named differently in each stage
175
- if zero_stage <= 2:
176
- fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
- elif zero_stage == 3:
178
- fp32_groups_key = FP32_FLAT_GROUPS
179
- else:
180
- raise ValueError(f"unknown zero stage {zero_stage}")
181
-
182
- if zero_stage <= 2:
183
- fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
- elif zero_stage == 3:
185
- # if there is more than one param group, there will be multiple flattened tensors - one
186
- # flattened tensor per group - for simplicity merge them into a single tensor
187
- #
188
- # XXX: could make the script more memory efficient for when there are multiple groups - it
189
- # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
-
191
- fp32_flat_groups = [
192
- torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
- ]
194
-
195
- return zero_stage, world_size, fp32_flat_groups
196
-
197
-
198
- def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
- """
200
- Returns fp32 state_dict reconstructed from ds checkpoint
201
-
202
- Args:
203
- - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
-
205
- """
206
- print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
-
208
- optim_files = get_optim_files(ds_checkpoint_dir)
209
- zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
- print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
-
212
- model_files = get_model_state_files(ds_checkpoint_dir)
213
-
214
- zero_model_states = parse_model_states(model_files)
215
- print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
-
217
- if zero_stage <= 2:
218
- return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
- exclude_frozen_parameters)
220
- elif zero_stage == 3:
221
- return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
- exclude_frozen_parameters)
223
-
224
-
225
- def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
- if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
- return
228
-
229
- frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
- frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
-
232
- if debug:
233
- num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
- print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
-
236
- wanted_params = len(frozen_param_shapes)
237
- wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
- avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
- print(f'Frozen params: Have {avail_numel} numels to process.')
240
- print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
-
242
- total_params = 0
243
- total_numel = 0
244
- for name, shape in frozen_param_shapes.items():
245
- total_params += 1
246
- unpartitioned_numel = shape.numel()
247
- total_numel += unpartitioned_numel
248
-
249
- state_dict[name] = frozen_param_fragments[name]
250
-
251
- if debug:
252
- print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
-
254
- print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
-
256
-
257
- def _has_callable(obj, fn):
258
- attr = getattr(obj, fn, None)
259
- return callable(attr)
260
-
261
-
262
- def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
- param_shapes = zero_model_states[0].param_shapes
264
-
265
- # Reconstruction protocol:
266
- #
267
- # XXX: document this
268
-
269
- if debug:
270
- for i in range(world_size):
271
- for j in range(len(fp32_flat_groups[0])):
272
- print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
-
274
- # XXX: memory usage doubles here (zero2)
275
- num_param_groups = len(fp32_flat_groups[0])
276
- merged_single_partition_of_fp32_groups = []
277
- for i in range(num_param_groups):
278
- merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
- full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
- merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
- avail_numel = sum(
282
- [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
-
284
- if debug:
285
- wanted_params = sum([len(shapes) for shapes in param_shapes])
286
- wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
- # not asserting if there is a mismatch due to possible padding
288
- print(f"Have {avail_numel} numels to process.")
289
- print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
-
291
- # params
292
- # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
- # out-of-core computing solution
294
- total_numel = 0
295
- total_params = 0
296
- for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
- offset = 0
298
- avail_numel = full_single_fp32_vector.numel()
299
- for name, shape in shapes.items():
300
-
301
- unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
- total_numel += unpartitioned_numel
303
- total_params += 1
304
-
305
- if debug:
306
- print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
- state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
- offset += unpartitioned_numel
309
-
310
- # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
- # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
- # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
- # live optimizer object, so we are checking that the numbers are within the right range
314
- align_to = 2 * world_size
315
-
316
- def zero2_align(x):
317
- return align_to * math.ceil(x / align_to)
318
-
319
- if debug:
320
- print(f"original offset={offset}, avail_numel={avail_numel}")
321
-
322
- offset = zero2_align(offset)
323
- avail_numel = zero2_align(avail_numel)
324
-
325
- if debug:
326
- print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
-
328
- # Sanity check
329
- if offset != avail_numel:
330
- raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
-
332
- print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
-
334
-
335
- def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
- exclude_frozen_parameters):
337
- state_dict = OrderedDict()
338
-
339
- # buffers
340
- buffers = zero_model_states[0].buffers
341
- state_dict.update(buffers)
342
- if debug:
343
- print(f"added {len(buffers)} buffers")
344
-
345
- if not exclude_frozen_parameters:
346
- _zero2_merge_frozen_params(state_dict, zero_model_states)
347
-
348
- _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
-
350
- # recover shared parameters
351
- for pair in zero_model_states[0].shared_params:
352
- if pair[1] in state_dict:
353
- state_dict[pair[0]] = state_dict[pair[1]]
354
-
355
- return state_dict
356
-
357
-
358
- def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
- remainder = unpartitioned_numel % world_size
360
- padding_numel = (world_size - remainder) if remainder else 0
361
- partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
- return partitioned_numel, padding_numel
363
-
364
-
365
- def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
- if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
- return
368
-
369
- if debug:
370
- for i in range(world_size):
371
- num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
- print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
-
374
- frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
- wanted_params = len(frozen_param_shapes)
376
- wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
- avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
- print(f'Frozen params: Have {avail_numel} numels to process.')
379
- print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
-
381
- total_params = 0
382
- total_numel = 0
383
- for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
- total_params += 1
385
- unpartitioned_numel = shape.numel()
386
- total_numel += unpartitioned_numel
387
-
388
- param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
- state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
-
391
- partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
-
393
- if debug:
394
- print(
395
- f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
- )
397
-
398
- print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
-
400
-
401
- def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
- param_shapes = zero_model_states[0].param_shapes
403
- avail_numel = fp32_flat_groups[0].numel() * world_size
404
- # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
- # param, re-consolidating each param, while dealing with padding if any
406
-
407
- # merge list of dicts, preserving order
408
- param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
-
410
- if debug:
411
- for i in range(world_size):
412
- print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
-
414
- wanted_params = len(param_shapes)
415
- wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
- # not asserting if there is a mismatch due to possible padding
417
- avail_numel = fp32_flat_groups[0].numel() * world_size
418
- print(f"Trainable params: Have {avail_numel} numels to process.")
419
- print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
-
421
- # params
422
- # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
- # out-of-core computing solution
424
- offset = 0
425
- total_numel = 0
426
- total_params = 0
427
- for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
- unpartitioned_numel = shape.numel()
429
- total_numel += unpartitioned_numel
430
- total_params += 1
431
- partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
-
433
- if debug:
434
- print(
435
- f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
- )
437
-
438
- # XXX: memory usage doubles here
439
- state_dict[name] = torch.cat(
440
- tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
- 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
- offset += partitioned_numel
443
-
444
- offset *= world_size
445
-
446
- # Sanity check
447
- if offset != avail_numel:
448
- raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
-
450
- print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
-
452
-
453
- def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
- exclude_frozen_parameters):
455
- state_dict = OrderedDict()
456
-
457
- # buffers
458
- buffers = zero_model_states[0].buffers
459
- state_dict.update(buffers)
460
- if debug:
461
- print(f"added {len(buffers)} buffers")
462
-
463
- if not exclude_frozen_parameters:
464
- _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
-
466
- _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
-
468
- # recover shared parameters
469
- for pair in zero_model_states[0].shared_params:
470
- if pair[1] in state_dict:
471
- state_dict[pair[0]] = state_dict[pair[1]]
472
-
473
- return state_dict
474
-
475
-
476
- def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
- """
478
- Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
- ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
- via a model hub.
481
-
482
- Args:
483
- - ``checkpoint_dir``: path to the desired checkpoint folder
484
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
- - ``exclude_frozen_parameters``: exclude frozen parameters
486
-
487
- Returns:
488
- - pytorch ``state_dict``
489
-
490
- Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
- you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
- the checkpoint.
493
-
494
- A typical usage might be ::
495
-
496
- from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
- # do the training and checkpoint saving
498
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
- model = model.cpu() # move to cpu
500
- model.load_state_dict(state_dict)
501
- # submit to model hub or save the model to share with others
502
-
503
- In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
- application. i.e. you will need to re-initialize the deepspeed engine, since
505
- ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
-
507
- If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
-
509
- """
510
- if tag is None:
511
- latest_path = os.path.join(checkpoint_dir, 'latest')
512
- if os.path.isfile(latest_path):
513
- with open(latest_path, 'r') as fd:
514
- tag = fd.read().strip()
515
- else:
516
- raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
-
518
- ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
-
520
- if not os.path.isdir(ds_checkpoint_dir):
521
- raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
-
523
- return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
-
525
-
526
- def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
- output_dir,
528
- max_shard_size="5GB",
529
- safe_serialization=False,
530
- tag=None,
531
- exclude_frozen_parameters=False):
532
- """
533
- Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
- loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
-
536
- Args:
537
- - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
- - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
- - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
- - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
- - ``exclude_frozen_parameters``: exclude frozen parameters
543
- """
544
- # Dependency pre-check
545
- if safe_serialization:
546
- try:
547
- from safetensors.torch import save_file
548
- except ImportError:
549
- print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
- raise
551
- if max_shard_size is not None:
552
- try:
553
- from huggingface_hub import split_torch_state_dict_into_shards
554
- except ImportError:
555
- print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
- raise
557
-
558
- # Convert zero checkpoint to state_dict
559
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
-
561
- # Shard the model if it is too big.
562
- weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
- if max_shard_size is not None:
564
- filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
- state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
- filename_pattern=filename_pattern,
567
- max_shard_size=max_shard_size)
568
- else:
569
- from collections import namedtuple
570
- StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
- state_dict_split = StateDictSplit(is_sharded=False,
572
- filename_to_tensors={weights_name: list(state_dict.keys())})
573
-
574
- # Save the model
575
- filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
- for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
- shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
- output_path = os.path.join(output_dir, shard_file)
579
- if safe_serialization:
580
- save_file(shard, output_path, metadata={"format": "pt"})
581
- else:
582
- torch.save(shard, output_path)
583
-
584
- # Save index if sharded
585
- if state_dict_split.is_sharded:
586
- index = {
587
- "metadata": state_dict_split.metadata,
588
- "weight_map": state_dict_split.tensor_to_filename,
589
- }
590
- save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
- save_index_file = os.path.join(output_dir, save_index_file)
592
- with open(save_index_file, "w", encoding="utf-8") as f:
593
- content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
- f.write(content)
595
-
596
-
597
- def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
- """
599
- 1. Put the provided model to cpu
600
- 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
- 3. Load it into the provided model
602
-
603
- Args:
604
- - ``model``: the model object to update
605
- - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
-
608
- Returns:
609
- - ``model`: modified model
610
-
611
- Make sure you have plenty of CPU memory available before you call this function. If you don't
612
- have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
- conveniently placed for you in the checkpoint folder.
614
-
615
- A typical usage might be ::
616
-
617
- from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
- model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
- # submit to model hub or save the model to share with others
620
-
621
- Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
- of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
- ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
-
625
- """
626
- logger.info(f"Extracting fp32 weights")
627
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
-
629
- logger.info(f"Overwriting model with fp32 weights")
630
- model = model.cpu()
631
- model.load_state_dict(state_dict, strict=False)
632
-
633
- return model
634
-
635
-
636
- if __name__ == "__main__":
637
- parser = argparse.ArgumentParser()
638
- parser.add_argument("checkpoint_dir",
639
- type=str,
640
- help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
- parser.add_argument("output_dir",
642
- type=str,
643
- help="directory to the pytorch fp32 state_dict output files"
644
- "(e.g. path/checkpoint-12-output/)")
645
- parser.add_argument(
646
- "--max_shard_size",
647
- type=str,
648
- default="5GB",
649
- help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
- "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
- "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
- "without CPU OOM issues.")
653
- parser.add_argument(
654
- "--safe_serialization",
655
- default=False,
656
- action='store_true',
657
- help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
- parser.add_argument("-t",
659
- "--tag",
660
- type=str,
661
- default=None,
662
- help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
- parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
- parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
- args = parser.parse_args()
666
-
667
- debug = args.debug
668
-
669
- convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
- args.output_dir,
671
- max_shard_size=args.max_shard_size,
672
- safe_serialization=args.safe_serialization,
673
- tag=args.tag,
674
- exclude_frozen_parameters=args.exclude_frozen_parameters)