lbourdois commited on
Commit
60e910b
·
verified ·
1 Parent(s): 1c6c165

Improve language tag

Browse files

Hi! As the model is multilingual, this is a PR to add other languages than English to the language tag to improve the referencing. Note that 29 languages are announced in the README, but only 13 are explicitly listed. I was therefore only able to add these 13 languages.

Files changed (1) hide show
  1. README.md +229 -219
README.md CHANGED
@@ -1,219 +1,229 @@
1
- ---
2
- license: apache-2.0
3
- language:
4
- - en
5
- - zh
6
- - de
7
- base_model:
8
- - Qwen/Qwen2.5-14B-Instruct
9
- pipeline_tag: text-generation
10
- library_name: transformers
11
- tags:
12
- - text-generation-inference
13
- - StreamlinedMemory
14
- - code
15
- - Math
16
- model-index:
17
- - name: Sombrero-Opus-14B-Sm5
18
- results:
19
- - task:
20
- type: text-generation
21
- name: Text Generation
22
- dataset:
23
- name: IFEval (0-Shot)
24
- type: wis-k/instruction-following-eval
25
- split: train
26
- args:
27
- num_few_shot: 0
28
- metrics:
29
- - type: inst_level_strict_acc and prompt_level_strict_acc
30
- value: 68.52
31
- name: averaged accuracy
32
- source:
33
- url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FSombrero-Opus-14B-Sm5
34
- name: Open LLM Leaderboard
35
- - task:
36
- type: text-generation
37
- name: Text Generation
38
- dataset:
39
- name: BBH (3-Shot)
40
- type: SaylorTwift/bbh
41
- split: test
42
- args:
43
- num_few_shot: 3
44
- metrics:
45
- - type: acc_norm
46
- value: 50.6
47
- name: normalized accuracy
48
- source:
49
- url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FSombrero-Opus-14B-Sm5
50
- name: Open LLM Leaderboard
51
- - task:
52
- type: text-generation
53
- name: Text Generation
54
- dataset:
55
- name: MATH Lvl 5 (4-Shot)
56
- type: lighteval/MATH-Hard
57
- split: test
58
- args:
59
- num_few_shot: 4
60
- metrics:
61
- - type: exact_match
62
- value: 40.94
63
- name: exact match
64
- source:
65
- url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FSombrero-Opus-14B-Sm5
66
- name: Open LLM Leaderboard
67
- - task:
68
- type: text-generation
69
- name: Text Generation
70
- dataset:
71
- name: GPQA (0-shot)
72
- type: Idavidrein/gpqa
73
- split: train
74
- args:
75
- num_few_shot: 0
76
- metrics:
77
- - type: acc_norm
78
- value: 18.23
79
- name: acc_norm
80
- source:
81
- url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FSombrero-Opus-14B-Sm5
82
- name: Open LLM Leaderboard
83
- - task:
84
- type: text-generation
85
- name: Text Generation
86
- dataset:
87
- name: MuSR (0-shot)
88
- type: TAUR-Lab/MuSR
89
- args:
90
- num_few_shot: 0
91
- metrics:
92
- - type: acc_norm
93
- value: 19.51
94
- name: acc_norm
95
- source:
96
- url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FSombrero-Opus-14B-Sm5
97
- name: Open LLM Leaderboard
98
- - task:
99
- type: text-generation
100
- name: Text Generation
101
- dataset:
102
- name: MMLU-PRO (5-shot)
103
- type: TIGER-Lab/MMLU-Pro
104
- config: main
105
- split: test
106
- args:
107
- num_few_shot: 5
108
- metrics:
109
- - type: acc
110
- value: 48.89
111
- name: accuracy
112
- source:
113
- url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FSombrero-Opus-14B-Sm5
114
- name: Open LLM Leaderboard
115
- ---
116
- ![xfdgdxsdfvsdff.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/hda0J6L5WamRsu0bJEKZz.png)
117
-
118
- # **Sombrero-Opus-14B-Sm5**
119
-
120
- > Sombrero-Opus-14B-Sm5 is based on the Qwen 2.5 14B modality architecture, designed to enhance coding efficiency and computational reasoning. This model is optimized for streamlined memory usage, avoiding unwanted textual token generation, and excelling in coding, explanatory reasoning, mathematical problem-solving, and technical tasks. It has been fine-tuned using specialized datasets to improve code generation, structured programming logic, and problem-solving capabilities.
121
-
122
- ## **Key Improvements**
123
- 1. **Optimized for Coding**: The model specializes in generating high-quality, structured code with minimal redundant tokens, ensuring efficient execution.
124
- 2. **Enhanced Memory Utilization**: Implements streamlined memory optimization to reduce computational overhead and improve performance.
125
- 3. **Superior Reasoning Capabilities**: Excels in solving complex mathematical and algorithmic problems with logical and structured explanations.
126
- 4. **Long-Context Support**: Supports up to 128K tokens for input context and can generate up to 8K tokens in a single output, making it ideal for detailed coding responses.
127
- 5. **Reduced Unwanted Textual Tokens**: Ensures a more focused output for coding tasks by minimizing excessive textual responses.
128
-
129
- ## **Quickstart with transformers**
130
-
131
- Here is a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and generate content:
132
-
133
- ```python
134
- from transformers import AutoModelForCausalLM, AutoTokenizer
135
-
136
- model_name = "prithivMLmods/Sombrero-Opus-14B-Sm5"
137
-
138
- model = AutoModelForCausalLM.from_pretrained(
139
- model_name,
140
- torch_dtype="auto",
141
- device_map="auto"
142
- )
143
- tokenizer = AutoTokenizer.from_pretrained(model_name)
144
-
145
- prompt = "Write a Python function to find the Fibonacci sequence."
146
- messages = [
147
- {"role": "system", "content": "You are an advanced coding assistant."},
148
- {"role": "user", "content": prompt}
149
- ]
150
- text = tokenizer.apply_chat_template(
151
- messages,
152
- tokenize=False,
153
- add_generation_prompt=True
154
- )
155
- model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
156
-
157
- generated_ids = model.generate(
158
- **model_inputs,
159
- max_new_tokens=512
160
- )
161
- generated_ids = [
162
- output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
163
- ]
164
-
165
- response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
166
- print(response)
167
- ```
168
-
169
- ## **Intended Use**
170
- 1. **Code Generation & Optimization**:
171
- Designed for developers, assisting in writing, refactoring, and optimizing code across multiple programming languages.
172
-
173
- 2. **Algorithm & Mathematical Problem Solving**:
174
- Provides precise explanations and solutions for computational and mathematical problems.
175
-
176
- 3. **Technical Explanations & Documentation**:
177
- Generates clear and structured explanations for coding concepts, libraries, and APIs.
178
-
179
- 4. **Debugging Assistance**:
180
- Helps analyze code snippets, detect errors, and suggest corrections.
181
-
182
- 5. **Educational Use**:
183
- Assists students and learners by breaking down complex programming topics into easily understandable sections.
184
-
185
- 6. **Structured Data Processing**:
186
- Capable of analyzing and generating structured outputs, such as JSON, XML, and tables, making it ideal for data science applications.
187
-
188
- ## **Limitations**
189
- 1. **Hardware Requirements**:
190
- Requires high-memory GPUs or TPUs due to its large parameter size and long-context support.
191
-
192
- 2. **Potential Bias in Responses**:
193
- While designed to be neutral, outputs may still reflect biases present in training data.
194
-
195
- 3. **Inconsistent Outputs in Creative Tasks**:
196
- May produce variable results in storytelling and non-technical topics.
197
-
198
- 4. **Limited Real-World Awareness**:
199
- Does not have access to real-time events beyond its training cutoff.
200
-
201
- 5. **Error Propagation in Extended Outputs**:
202
- Minor errors in early responses may affect overall coherence in long-form code outputs.
203
-
204
- 6. **Prompt Sensitivity**:
205
- The effectiveness of responses may depend on how well the input prompt is structured.
206
- # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
207
- Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/prithivMLmods__Sombrero-Opus-14B-Sm5-details)!
208
- Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=prithivMLmods%2FSombrero-Opus-14B-Sm5&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!
209
-
210
- | Metric |Value (%)|
211
- |-------------------|--------:|
212
- |**Average** | 41.12|
213
- |IFEval (0-Shot) | 68.52|
214
- |BBH (3-Shot) | 50.60|
215
- |MATH Lvl 5 (4-Shot)| 40.94|
216
- |GPQA (0-shot) | 18.23|
217
- |MuSR (0-shot) | 19.51|
218
- |MMLU-PRO (5-shot) | 48.89|
219
-
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - zho
5
+ - eng
6
+ - fra
7
+ - spa
8
+ - por
9
+ - deu
10
+ - ita
11
+ - rus
12
+ - jpn
13
+ - kor
14
+ - vie
15
+ - tha
16
+ - ara
17
+ base_model:
18
+ - Qwen/Qwen2.5-14B-Instruct
19
+ pipeline_tag: text-generation
20
+ library_name: transformers
21
+ tags:
22
+ - text-generation-inference
23
+ - StreamlinedMemory
24
+ - code
25
+ - Math
26
+ model-index:
27
+ - name: Sombrero-Opus-14B-Sm5
28
+ results:
29
+ - task:
30
+ type: text-generation
31
+ name: Text Generation
32
+ dataset:
33
+ name: IFEval (0-Shot)
34
+ type: wis-k/instruction-following-eval
35
+ split: train
36
+ args:
37
+ num_few_shot: 0
38
+ metrics:
39
+ - type: inst_level_strict_acc and prompt_level_strict_acc
40
+ value: 68.52
41
+ name: averaged accuracy
42
+ source:
43
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FSombrero-Opus-14B-Sm5
44
+ name: Open LLM Leaderboard
45
+ - task:
46
+ type: text-generation
47
+ name: Text Generation
48
+ dataset:
49
+ name: BBH (3-Shot)
50
+ type: SaylorTwift/bbh
51
+ split: test
52
+ args:
53
+ num_few_shot: 3
54
+ metrics:
55
+ - type: acc_norm
56
+ value: 50.6
57
+ name: normalized accuracy
58
+ source:
59
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FSombrero-Opus-14B-Sm5
60
+ name: Open LLM Leaderboard
61
+ - task:
62
+ type: text-generation
63
+ name: Text Generation
64
+ dataset:
65
+ name: MATH Lvl 5 (4-Shot)
66
+ type: lighteval/MATH-Hard
67
+ split: test
68
+ args:
69
+ num_few_shot: 4
70
+ metrics:
71
+ - type: exact_match
72
+ value: 40.94
73
+ name: exact match
74
+ source:
75
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FSombrero-Opus-14B-Sm5
76
+ name: Open LLM Leaderboard
77
+ - task:
78
+ type: text-generation
79
+ name: Text Generation
80
+ dataset:
81
+ name: GPQA (0-shot)
82
+ type: Idavidrein/gpqa
83
+ split: train
84
+ args:
85
+ num_few_shot: 0
86
+ metrics:
87
+ - type: acc_norm
88
+ value: 18.23
89
+ name: acc_norm
90
+ source:
91
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FSombrero-Opus-14B-Sm5
92
+ name: Open LLM Leaderboard
93
+ - task:
94
+ type: text-generation
95
+ name: Text Generation
96
+ dataset:
97
+ name: MuSR (0-shot)
98
+ type: TAUR-Lab/MuSR
99
+ args:
100
+ num_few_shot: 0
101
+ metrics:
102
+ - type: acc_norm
103
+ value: 19.51
104
+ name: acc_norm
105
+ source:
106
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FSombrero-Opus-14B-Sm5
107
+ name: Open LLM Leaderboard
108
+ - task:
109
+ type: text-generation
110
+ name: Text Generation
111
+ dataset:
112
+ name: MMLU-PRO (5-shot)
113
+ type: TIGER-Lab/MMLU-Pro
114
+ config: main
115
+ split: test
116
+ args:
117
+ num_few_shot: 5
118
+ metrics:
119
+ - type: acc
120
+ value: 48.89
121
+ name: accuracy
122
+ source:
123
+ url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=prithivMLmods%2FSombrero-Opus-14B-Sm5
124
+ name: Open LLM Leaderboard
125
+ ---
126
+ ![xfdgdxsdfvsdff.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/hda0J6L5WamRsu0bJEKZz.png)
127
+
128
+ # **Sombrero-Opus-14B-Sm5**
129
+
130
+ > Sombrero-Opus-14B-Sm5 is based on the Qwen 2.5 14B modality architecture, designed to enhance coding efficiency and computational reasoning. This model is optimized for streamlined memory usage, avoiding unwanted textual token generation, and excelling in coding, explanatory reasoning, mathematical problem-solving, and technical tasks. It has been fine-tuned using specialized datasets to improve code generation, structured programming logic, and problem-solving capabilities.
131
+
132
+ ## **Key Improvements**
133
+ 1. **Optimized for Coding**: The model specializes in generating high-quality, structured code with minimal redundant tokens, ensuring efficient execution.
134
+ 2. **Enhanced Memory Utilization**: Implements streamlined memory optimization to reduce computational overhead and improve performance.
135
+ 3. **Superior Reasoning Capabilities**: Excels in solving complex mathematical and algorithmic problems with logical and structured explanations.
136
+ 4. **Long-Context Support**: Supports up to 128K tokens for input context and can generate up to 8K tokens in a single output, making it ideal for detailed coding responses.
137
+ 5. **Reduced Unwanted Textual Tokens**: Ensures a more focused output for coding tasks by minimizing excessive textual responses.
138
+
139
+ ## **Quickstart with transformers**
140
+
141
+ Here is a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and generate content:
142
+
143
+ ```python
144
+ from transformers import AutoModelForCausalLM, AutoTokenizer
145
+
146
+ model_name = "prithivMLmods/Sombrero-Opus-14B-Sm5"
147
+
148
+ model = AutoModelForCausalLM.from_pretrained(
149
+ model_name,
150
+ torch_dtype="auto",
151
+ device_map="auto"
152
+ )
153
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
154
+
155
+ prompt = "Write a Python function to find the Fibonacci sequence."
156
+ messages = [
157
+ {"role": "system", "content": "You are an advanced coding assistant."},
158
+ {"role": "user", "content": prompt}
159
+ ]
160
+ text = tokenizer.apply_chat_template(
161
+ messages,
162
+ tokenize=False,
163
+ add_generation_prompt=True
164
+ )
165
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
166
+
167
+ generated_ids = model.generate(
168
+ **model_inputs,
169
+ max_new_tokens=512
170
+ )
171
+ generated_ids = [
172
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
173
+ ]
174
+
175
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
176
+ print(response)
177
+ ```
178
+
179
+ ## **Intended Use**
180
+ 1. **Code Generation & Optimization**:
181
+ Designed for developers, assisting in writing, refactoring, and optimizing code across multiple programming languages.
182
+
183
+ 2. **Algorithm & Mathematical Problem Solving**:
184
+ Provides precise explanations and solutions for computational and mathematical problems.
185
+
186
+ 3. **Technical Explanations & Documentation**:
187
+ Generates clear and structured explanations for coding concepts, libraries, and APIs.
188
+
189
+ 4. **Debugging Assistance**:
190
+ Helps analyze code snippets, detect errors, and suggest corrections.
191
+
192
+ 5. **Educational Use**:
193
+ Assists students and learners by breaking down complex programming topics into easily understandable sections.
194
+
195
+ 6. **Structured Data Processing**:
196
+ Capable of analyzing and generating structured outputs, such as JSON, XML, and tables, making it ideal for data science applications.
197
+
198
+ ## **Limitations**
199
+ 1. **Hardware Requirements**:
200
+ Requires high-memory GPUs or TPUs due to its large parameter size and long-context support.
201
+
202
+ 2. **Potential Bias in Responses**:
203
+ While designed to be neutral, outputs may still reflect biases present in training data.
204
+
205
+ 3. **Inconsistent Outputs in Creative Tasks**:
206
+ May produce variable results in storytelling and non-technical topics.
207
+
208
+ 4. **Limited Real-World Awareness**:
209
+ Does not have access to real-time events beyond its training cutoff.
210
+
211
+ 5. **Error Propagation in Extended Outputs**:
212
+ Minor errors in early responses may affect overall coherence in long-form code outputs.
213
+
214
+ 6. **Prompt Sensitivity**:
215
+ The effectiveness of responses may depend on how well the input prompt is structured.
216
+ # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
217
+ Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/prithivMLmods__Sombrero-Opus-14B-Sm5-details)!
218
+ Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=prithivMLmods%2FSombrero-Opus-14B-Sm5&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!
219
+
220
+ | Metric |Value (%)|
221
+ |-------------------|--------:|
222
+ |**Average** | 41.12|
223
+ |IFEval (0-Shot) | 68.52|
224
+ |BBH (3-Shot) | 50.60|
225
+ |MATH Lvl 5 (4-Shot)| 40.94|
226
+ |GPQA (0-shot) | 18.23|
227
+ |MuSR (0-shot) | 19.51|
228
+ |MMLU-PRO (5-shot) | 48.89|
229
+