--- library_name: transformers language: - nan license: apache-2.0 base_model: Helsinki-NLP/opus-mt-en-ZH tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_12_0 metrics: - bleu model-index: - name: helsinki_new_ver4 results: [] --- # helsinki_new_ver4 This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ZH](https://huggingface.co/Helsinki-NLP/opus-mt-en-ZH) on the mozilla-foundation/common_voice_12_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.5400 - Bleu: 2.4304 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 23000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-------:|:-----:|:---------------:|:-------:| | 0.7027 | 0.6418 | 1000 | 0.6716 | 2.8141 | | 0.6767 | 1.2837 | 2000 | 0.6546 | 9.1063 | | 0.6526 | 1.9255 | 3000 | 0.6394 | 1.9859 | | 0.643 | 2.5674 | 4000 | 0.6252 | 12.4882 | | 0.6445 | 3.2092 | 5000 | 0.6118 | 8.8121 | | 0.6326 | 3.8511 | 6000 | 0.6010 | 12.7405 | | 0.604 | 4.4929 | 7000 | 0.5926 | 1.4845 | | 0.5877 | 5.1348 | 8000 | 0.5827 | 12.9972 | | 0.5721 | 5.7766 | 9000 | 0.5753 | 1.5982 | | 0.5826 | 6.4185 | 10000 | 0.5672 | 1.6842 | | 0.5622 | 7.0603 | 11000 | 0.5619 | 14.0609 | | 0.5486 | 7.7022 | 12000 | 0.5557 | 14.2992 | | 0.5451 | 8.3440 | 13000 | 0.5507 | 15.4044 | | 0.5571 | 8.9859 | 14000 | 0.5463 | 8.4964 | | 0.5448 | 9.6277 | 15000 | 0.5422 | 8.8203 | | 0.5306 | 10.2696 | 16000 | 0.5400 | 2.4304 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.1 - Tokenizers 0.21.1