xiangpeng.wxp
commited on
Commit
•
b31a023
1
Parent(s):
1defe03
add demo scripts
Browse files- polylm_cli_demo.py +94 -0
- polylm_web_demo_gradio.py +170 -0
polylm_cli_demo.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import platform
|
4 |
+
import warnings
|
5 |
+
|
6 |
+
import re
|
7 |
+
pattern = re.compile("[\n]+")
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
|
11 |
+
from huggingface_hub import snapshot_download
|
12 |
+
|
13 |
+
from transformers.generation.utils import logger
|
14 |
+
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
|
15 |
+
|
16 |
+
parser = argparse.ArgumentParser()
|
17 |
+
parser.add_argument("--model_name", default="DAMO-NLP-MT/polylm-multialpaca-13b",
|
18 |
+
choices=["DAMO-NLP-MT/polylm-multialpaca-13b"], type=str)
|
19 |
+
parser.add_argument("--multi_round", action="store_true",
|
20 |
+
help="Turn multiple rounds interaction on.")
|
21 |
+
parser.add_argument("--gpu", default="0", type=str)
|
22 |
+
args = parser.parse_args()
|
23 |
+
|
24 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
|
25 |
+
num_gpus = len(args.gpu.split(","))
|
26 |
+
|
27 |
+
if args.model_name in ["DAMO-NLP-MT/polylm-multialpaca-13b-int8", "DAMO-NLP-MT/polylm-multialpaca-13b-int4"] and num_gpus > 1:
|
28 |
+
raise ValueError("Quantized models do not support model parallel. Please run on a single GPU (e.g., --gpu 0).")
|
29 |
+
|
30 |
+
logger.setLevel("ERROR")
|
31 |
+
warnings.filterwarnings("ignore")
|
32 |
+
|
33 |
+
model_path = args.model_name
|
34 |
+
if not os.path.exists(args.model_name):
|
35 |
+
model_path = snapshot_download(args.model_name)
|
36 |
+
|
37 |
+
config = AutoConfig.from_pretrained(model_path)
|
38 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
|
39 |
+
|
40 |
+
if num_gpus > 1:
|
41 |
+
print("Waiting for all devices to be ready, it may take a few minutes...")
|
42 |
+
with init_empty_weights():
|
43 |
+
raw_model = AutoModelForCausalLM.from_config(config)
|
44 |
+
raw_model.tie_weights()
|
45 |
+
model = load_checkpoint_and_dispatch(
|
46 |
+
raw_model, model_path, device_map="auto", no_split_module_classes=["GPT2Block"]
|
47 |
+
)
|
48 |
+
else:
|
49 |
+
print("Loading model files, it may take a few minutes...")
|
50 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto").cuda()
|
51 |
+
|
52 |
+
def clear():
|
53 |
+
os.system('cls' if platform.system() == 'Windows' else 'clear')
|
54 |
+
|
55 |
+
def main():
|
56 |
+
print("欢迎使用 PolyLM 多语言人工智能助手!输入内容即可进行对话。输入 clear 以清空对话历史,输入 stop 以终止对话。")
|
57 |
+
prompt = ""
|
58 |
+
while True:
|
59 |
+
query = input()
|
60 |
+
if query.strip() == "stop":
|
61 |
+
break
|
62 |
+
if query.strip() == "clear":
|
63 |
+
if args.multi_round:
|
64 |
+
prompt = ""
|
65 |
+
clear()
|
66 |
+
continue
|
67 |
+
|
68 |
+
text = query.strip()
|
69 |
+
text = re.sub(pattern, "\n", text)
|
70 |
+
if args.multi_round:
|
71 |
+
prompt += f"{text}\n\n"
|
72 |
+
else:
|
73 |
+
prompt = f"{text}\n\n"
|
74 |
+
|
75 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
76 |
+
with torch.no_grad():
|
77 |
+
outputs = model.generate(
|
78 |
+
inputs.input_ids.cuda(),
|
79 |
+
attention_mask=inputs.attention_mask.cuda(),
|
80 |
+
max_length=1024,
|
81 |
+
do_sample=True,
|
82 |
+
top_p=0.8,
|
83 |
+
temperature=0.7,
|
84 |
+
repetition_penalty=1.02,
|
85 |
+
num_return_sequences=1,
|
86 |
+
eos_token_id=2,
|
87 |
+
early_stopping=True)
|
88 |
+
response = tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
89 |
+
if args.multi_round:
|
90 |
+
prompt += f"{response}\n"
|
91 |
+
print(f">>> {response}")
|
92 |
+
|
93 |
+
if __name__ == "__main__":
|
94 |
+
main()
|
polylm_web_demo_gradio.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import warnings
|
4 |
+
import mdtex2html
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
import re
|
8 |
+
pattern = re.compile("[\n]+")
|
9 |
+
|
10 |
+
import torch
|
11 |
+
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
|
12 |
+
from huggingface_hub import snapshot_download
|
13 |
+
|
14 |
+
from transformers.generation.utils import logger
|
15 |
+
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
|
16 |
+
|
17 |
+
parser = argparse.ArgumentParser()
|
18 |
+
parser.add_argument("--model_name", default="DAMO-NLP-MT/polylm-multialpaca-13b",
|
19 |
+
choices=["DAMO-NLP-MT/polylm-multialpaca-13b"], type=str)
|
20 |
+
parser.add_argument("--gpu", default="0", type=str)
|
21 |
+
args = parser.parse_args()
|
22 |
+
|
23 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
|
24 |
+
num_gpus = len(args.gpu.split(","))
|
25 |
+
|
26 |
+
if ('int8' in args.model_name or 'int4' in args.model_name) and num_gpus > 1:
|
27 |
+
raise ValueError("Quantized models do not support model parallel. Please run on a single GPU (e.g., --gpu 0).")
|
28 |
+
|
29 |
+
logger.setLevel("ERROR")
|
30 |
+
warnings.filterwarnings("ignore")
|
31 |
+
|
32 |
+
model_path = args.model_name
|
33 |
+
if not os.path.exists(args.model_name):
|
34 |
+
model_path = snapshot_download(args.model_name)
|
35 |
+
|
36 |
+
config = AutoConfig.from_pretrained(model_path)
|
37 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
|
38 |
+
|
39 |
+
if num_gpus > 1:
|
40 |
+
print("Waiting for all devices to be ready, it may take a few minutes...")
|
41 |
+
with init_empty_weights():
|
42 |
+
raw_model = AutoModelForCausalLM.from_config(config)
|
43 |
+
raw_model.tie_weights()
|
44 |
+
model = load_checkpoint_and_dispatch(
|
45 |
+
raw_model, model_path, device_map="auto", no_split_module_classes=["GPT2Block"]
|
46 |
+
)
|
47 |
+
else:
|
48 |
+
print("Loading model files, it may take a few minutes...")
|
49 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True).cuda()
|
50 |
+
|
51 |
+
|
52 |
+
def postprocess(self, y):
|
53 |
+
if y is None:
|
54 |
+
return []
|
55 |
+
for i, (message, response) in enumerate(y):
|
56 |
+
y[i] = (
|
57 |
+
None if message is None else mdtex2html.convert((message)),
|
58 |
+
None if response is None else mdtex2html.convert(response),
|
59 |
+
)
|
60 |
+
return y
|
61 |
+
|
62 |
+
|
63 |
+
gr.Chatbot.postprocess = postprocess
|
64 |
+
|
65 |
+
|
66 |
+
def parse_text(text):
|
67 |
+
"""copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
|
68 |
+
lines = text.split("\n")
|
69 |
+
lines = [line for line in lines if line != ""]
|
70 |
+
count = 0
|
71 |
+
for i, line in enumerate(lines):
|
72 |
+
if "```" in line:
|
73 |
+
count += 1
|
74 |
+
items = line.split('`')
|
75 |
+
if count % 2 == 1:
|
76 |
+
lines[i] = f'<pre><code class="language-{items[-1]}">'
|
77 |
+
else:
|
78 |
+
lines[i] = f'<br></code></pre>'
|
79 |
+
else:
|
80 |
+
if i > 0:
|
81 |
+
if count % 2 == 1:
|
82 |
+
line = line.replace("`", "\`")
|
83 |
+
line = line.replace("<", "<")
|
84 |
+
line = line.replace(">", ">")
|
85 |
+
line = line.replace(" ", " ")
|
86 |
+
line = line.replace("*", "*")
|
87 |
+
line = line.replace("_", "_")
|
88 |
+
line = line.replace("-", "-")
|
89 |
+
line = line.replace(".", ".")
|
90 |
+
line = line.replace("!", "!")
|
91 |
+
line = line.replace("(", "(")
|
92 |
+
line = line.replace(")", ")")
|
93 |
+
line = line.replace("$", "$")
|
94 |
+
lines[i] = "<br>"+line
|
95 |
+
text = "".join(lines)
|
96 |
+
return text
|
97 |
+
|
98 |
+
|
99 |
+
def predict(input, chatbot, max_length, top_p, temperature, history):
|
100 |
+
query = input
|
101 |
+
query = query.strip()
|
102 |
+
query = re.sub(pattern, "\n", query)
|
103 |
+
|
104 |
+
chatbot.append((query, ""))
|
105 |
+
prompt = ""
|
106 |
+
for i, (old_query, response) in enumerate(history):
|
107 |
+
prompt += f"{old_query}\n\n" + f"{response}\n"
|
108 |
+
prompt += f"{query}\n\n"
|
109 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
110 |
+
with torch.no_grad():
|
111 |
+
outputs = model.generate(
|
112 |
+
inputs.input_ids.cuda(),
|
113 |
+
attention_mask=inputs.attention_mask.cuda(),
|
114 |
+
max_length=max_length,
|
115 |
+
do_sample=True,
|
116 |
+
top_p=top_p,
|
117 |
+
temperature=temperature,
|
118 |
+
repetition_penalty=1.02,
|
119 |
+
num_return_sequences=1,
|
120 |
+
eos_token_id=2,
|
121 |
+
early_stopping=True)
|
122 |
+
response = tokenizer.decode(
|
123 |
+
outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
124 |
+
|
125 |
+
chatbot[-1] = (query, parse_text(response))
|
126 |
+
history = history + [(query, response)]
|
127 |
+
print("==========================================================================")
|
128 |
+
print(f"chatbot is {chatbot}")
|
129 |
+
print(f"history is {history}")
|
130 |
+
print("==========================================================================")
|
131 |
+
return chatbot, history
|
132 |
+
|
133 |
+
|
134 |
+
def reset_user_input():
|
135 |
+
return gr.update(value='')
|
136 |
+
|
137 |
+
|
138 |
+
def reset_state():
|
139 |
+
return [], []
|
140 |
+
|
141 |
+
|
142 |
+
with gr.Blocks() as demo:
|
143 |
+
gr.HTML("""<h1 align="center">欢迎使用 PolyLM 多语言人工智能助手!</h1>""")
|
144 |
+
|
145 |
+
chatbot = gr.Chatbot()
|
146 |
+
with gr.Row():
|
147 |
+
with gr.Column(scale=4):
|
148 |
+
with gr.Column(scale=12):
|
149 |
+
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style(
|
150 |
+
container=False)
|
151 |
+
with gr.Column(min_width=32, scale=1):
|
152 |
+
submitBtn = gr.Button("Submit", variant="primary")
|
153 |
+
with gr.Column(scale=1):
|
154 |
+
emptyBtn = gr.Button("Clear History")
|
155 |
+
max_length = gr.Slider(
|
156 |
+
0, 4096, value=2048, step=1.0, label="Maximum length", interactive=True)
|
157 |
+
top_p = gr.Slider(0, 1, value=0.8, step=0.01,
|
158 |
+
label="Top P", interactive=True)
|
159 |
+
temperature = gr.Slider(
|
160 |
+
0, 1, value=0.7, step=0.01, label="Temperature", interactive=True)
|
161 |
+
|
162 |
+
history = gr.State([]) # (message, bot_message)
|
163 |
+
|
164 |
+
submitBtn.click(predict, [user_input, chatbot, max_length, top_p, temperature, history], [chatbot, history],
|
165 |
+
show_progress=True)
|
166 |
+
submitBtn.click(reset_user_input, [], [user_input])
|
167 |
+
|
168 |
+
emptyBtn.click(reset_state, outputs=[chatbot, history], show_progress=True)
|
169 |
+
|
170 |
+
demo.queue().launch(share=False, inbrowser=True)
|