File size: 3,872 Bytes
0825617
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
base_model:
  - lodestones/Chroma
base_model_relation: quantized
pipeline_tag: text-to-image
tags:
- dfloat11
- df11
- lossless compression
- 70% size, 100% accuracy
---

# DFloat11 Compressed Model: `lodestones/Chroma`

This is a **DFloat11 losslessly compressed** version of the original `lodestones/Chroma` (v39) model. It reduces model size by **32%** compared to the original BFloat16 model, while maintaining **bit-identical outputs** and supporting **efficient GPU inference**.

πŸ”₯πŸ”₯πŸ”₯ Thanks to DFloat11 compression, Chroma can now run smoothly on a single 16GB GPU without any quality loss. πŸ”₯πŸ”₯πŸ”₯

### πŸ“Š Performance Comparison

| Metric                                          | Chroma (BFloat16) | Chroma (DFloat11) |
| ----------------------------------------------- | ------------------- | ------------------- |
| Model Size                                      | 17.80 GB            | 12.16 GB            |
| Peak GPU Memory<br>(1024Γ—1024 image generation) | 18.33 GB            | 13.26 GB            |
| Generation Time<br>(A100 GPU)                   | 56 seconds          | 59 seconds          |

### πŸ”§ How to Use

1. Install or upgrade the DFloat11 pip package *(installs the CUDA kernel automatically; requires a CUDA-compatible GPU and PyTorch installed)*:

    ```bash
    pip install -U dfloat11[cuda12]
    # or if you have CUDA version 11:
    # pip install -U dfloat11[cuda11]
    ```

2. Install or upgrade the diffusers library.

    ```bash
    pip install -U diffusers
    ```

3. To use the DFloat11 model, run the following example code in Python:

    ```python
    import torch
    from diffusers import ChromaTransformer2DModel, ChromaPipeline
    from transformers.modeling_utils import no_init_weights
    from dfloat11 import DFloat11Model

    with no_init_weights():
        transformer = ChromaTransformer2DModel().to(torch.bfloat16)

    DFloat11Model.from_pretrained(
        "DFloat11/Chroma-DF11",
        bfloat16_model=transformer,
        device="cpu",
    )

    pipe = ChromaPipeline.from_pretrained("lodestones/Chroma", transformer=transformer, torch_dtype=torch.bfloat16)
    pipe.enable_model_cpu_offload()

    prompt = [
        "A high-fashion close-up portrait of a blonde woman in clear sunglasses. The image uses a bold teal and red color split for dramatic lighting. The background is a simple teal-green. The photo is sharp and well-composed, and is designed for viewing with anaglyph 3D glasses for optimal effect. It looks professionally done."
    ]
    negative_prompt =  ["low quality, ugly, unfinished, out of focus, deformed, disfigure, blurry, smudged, restricted palette, flat colors"]

    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        generator=torch.Generator("cpu").manual_seed(433),
        num_inference_steps=40,
        guidance_scale=3.0,
    ).images[0]

    image.save("chroma-output.png")
    ```


### πŸ” How It Works

We apply **Huffman coding** to losslessly compress the exponent bits of BFloat16 model weights, which are highly compressible (their 8 bits carry only ~2.6 bits of actual information). To enable fast inference, we implement a highly efficient CUDA kernel that performs on-the-fly weight decompression directly on the GPU.

The result is a model that is **~32% smaller**, delivers **bit-identical outputs**, and achieves performance **comparable to the original** BFloat16 model.

Learn more in our [research paper](https://arxiv.org/abs/2504.11651).

### πŸ“„ Learn More

* **Paper**: [70% Size, 100% Accuracy: Lossless LLM Compression for Efficient GPU Inference via Dynamic-Length Float](https://arxiv.org/abs/2504.11651)
* **GitHub**: [https://github.com/LeanModels/DFloat11](https://github.com/LeanModels/DFloat11)
* **HuggingFace**: [https://huggingface.co/DFloat11](https://huggingface.co/DFloat11)