DHEIVER commited on
Commit
4c879e7
·
1 Parent(s): 42145f3

Upload 6 files

Browse files
Files changed (6) hide show
  1. .gitattributes +0 -1
  2. README.md +95 -0
  3. config.json +54 -0
  4. example.jpg +0 -0
  5. preprocessor_config.json +22 -0
  6. pytorch_model.bin +3 -0
.gitattributes CHANGED
@@ -25,7 +25,6 @@
25
  *.safetensors filter=lfs diff=lfs merge=lfs -text
26
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
  *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
  *.tflite filter=lfs diff=lfs merge=lfs -text
30
  *.tgz filter=lfs diff=lfs merge=lfs -text
31
  *.wasm filter=lfs diff=lfs merge=lfs -text
 
25
  *.safetensors filter=lfs diff=lfs merge=lfs -text
26
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
  *.tar.* filter=lfs diff=lfs merge=lfs -text
 
28
  *.tflite filter=lfs diff=lfs merge=lfs -text
29
  *.tgz filter=lfs diff=lfs merge=lfs -text
30
  *.wasm filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - image-classification
5
+ - vision
6
+ - fundus
7
+ - glaucoma
8
+ - REFUGE
9
+ widget:
10
+ - src: >-
11
+ https://huggingface.co/pamixsun/swinv2_tiny_for_glaucoma_classification/resolve/main/example.jpg
12
+ example_title: fundus image
13
+ ---
14
+ # Model Card for Model ID
15
+
16
+ <!-- Provide a quick summary of what the model is/does. -->
17
+
18
+ This model utilizes a Swin Transformer architecture and has undergone supervised fine-tuning on retinal fundus images from the [REFUGE challenge dataset](https://refuge.grand-challenge.org/).
19
+ It is specialized in automated analysis of retinal fundus photographs for glaucoma detection.
20
+ By extracting hierarchical visual features from input fundus images in a cross-scale manner, the model is able to effectively categorize each image as either glaucoma or non-glaucoma. Extensive experiments demonstrate that this model architecture achieves state-of-the-art performance on the REFUGE benchmark for fundus image-based glaucoma classification.
21
+ To obtain optimal predictions, it is recommended to provide this model with standardized retinal fundus photographs captured using typical fundus imaging protocols.
22
+
23
+ ## Model Details
24
+
25
+ ### Model Description
26
+
27
+ <!-- Provide a longer summary of what this model is. -->
28
+
29
+ - **Developed by:** [Xu Sun](https://pamixsun.github.io)
30
+ - **Shared by:** [Xu Sun](https://pamixsun.github.io)
31
+ - **Model type:** Image classification
32
+ - **License:** Apache-2.0
33
+
34
+ ## Uses
35
+
36
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
37
+
38
+ The pretrained model provides glaucoma classification functionality solely based on analysis of retinal fundus images.
39
+ You may directly utilize the raw model without modification to categorize fundus images as either glaucoma or non-glaucoma.
40
+ This model is specialized in extracting discriminative features from fundus images to identify glaucoma manifestations.
41
+ However, to achieve optimal performance, it is highly recommended to fine-tune the model on a representative fundus image dataset prior to deployment in real-world applications.
42
+
43
+ ## Bias, Risks, and Limitations
44
+
45
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
46
+
47
+ The model is specialized in analyzing retinal fundus images, and is trained exclusively on fundus image datasets to classify images as glaucoma or non-glaucoma.
48
+ Therefore, to obtain accurate predictions, it is crucial to only input fundus images when using this model.
49
+ Feeding other types of images may lead to meaningless results.
50
+ In summary, this model expects fundus images as input for glaucoma classification.
51
+ For the best performance, please adhere strictly to this input specification.
52
+
53
+ ## How to Get Started with the Model
54
+
55
+ Use the code below to get started with the model.
56
+
57
+ ```python
58
+ import cv2
59
+ import torch
60
+
61
+ from transformers import AutoImageProcessor, Swinv2ForImageClassification
62
+
63
+ image = cv2.imread('./example.jpg')
64
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
65
+
66
+ processor = AutoImageProcessor.from_pretrained("pamixsun/swinv2_tiny_for_glaucoma_classification")
67
+ model = Swinv2ForImageClassification.from_pretrained("pamixsun/swinv2_tiny_for_glaucoma_classification")
68
+
69
+ inputs = processor(image, return_tensors="pt")
70
+
71
+ with torch.no_grad():
72
+ logits = model(**inputs).logits
73
+
74
+ # model predicts either glaucoma or non-glaucoma.
75
+ predicted_label = logits.argmax(-1).item()
76
+ print(model.config.id2label[predicted_label])
77
+
78
+ ```
79
+
80
+ ## Citation [optional]
81
+
82
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
83
+
84
+ **BibTeX:**
85
+
86
+ [More Information Needed]
87
+
88
+ **APA:**
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ ## Model Card Contact
94
+
95
config.json ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "pamixsun/swinv2_tiny_for_glaucoma_classification",
3
+ "architectures": [
4
+ "Swinv2ForImageClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "depths": [
8
+ 2,
9
+ 2,
10
+ 6,
11
+ 2
12
+ ],
13
+ "drop_path_rate": 0.1,
14
+ "embed_dim": 96,
15
+ "encoder_stride": 32,
16
+ "hidden_act": "gelu",
17
+ "hidden_dropout_prob": 0.0,
18
+ "hidden_size": 768,
19
+ "id2label": {
20
+ "0": "Non-glaucoma",
21
+ "1": "Glaucoma"
22
+ },
23
+ "image_size": 512,
24
+ "initializer_range": 0.02,
25
+ "label2id": {
26
+ "Glaucoma": "1",
27
+ "Non-glaucoma": "0"
28
+ },
29
+ "layer_norm_eps": 1e-05,
30
+ "mlp_ratio": 4.0,
31
+ "model_type": "swinv2",
32
+ "num_channels": 3,
33
+ "num_heads": [
34
+ 3,
35
+ 6,
36
+ 12,
37
+ 24
38
+ ],
39
+ "num_layers": 4,
40
+ "patch_size": 4,
41
+ "path_norm": true,
42
+ "pretrained_window_sizes": [
43
+ 0,
44
+ 0,
45
+ 0,
46
+ 0
47
+ ],
48
+ "problem_type": "single_label_classification",
49
+ "qkv_bias": true,
50
+ "torch_dtype": "float32",
51
+ "transformers_version": "4.28.0",
52
+ "use_absolute_embeddings": false,
53
+ "window_size": 8
54
+ }
example.jpg ADDED
preprocessor_config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "do_rescale": true,
4
+ "do_resize": true,
5
+ "image_mean": [
6
+ 0.485,
7
+ 0.456,
8
+ 0.406
9
+ ],
10
+ "image_processor_type": "ViTImageProcessor",
11
+ "image_std": [
12
+ 0.229,
13
+ 0.224,
14
+ 0.225
15
+ ],
16
+ "resample": 3,
17
+ "rescale_factor": 0.00392156862745098,
18
+ "size": {
19
+ "height": 512,
20
+ "width": 512
21
+ }
22
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95cfbbc74cee50346361f456d2a43293ac15c91d575e53999ba268659ab271ea
3
+ size 110405153