DMind-1 / handler.py
yuzhe's picture
Update handler.py
bc2a0b5 verified
# handler.py
from typing import Dict, Any
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
class EndpointHandler:
def __init__(self, model_dir: str, **kw):
self.tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
# ① 空壳模型
with init_empty_weights():
base = AutoModelForCausalLM.from_pretrained(
model_dir, torch_dtype=torch.float16, trust_remote_code=True
)
# ② 分片加载
self.model = load_checkpoint_and_dispatch(
base, checkpoint=model_dir, device_map="auto", dtype=torch.float16
).eval()
# ③ 锁定“默认 GPU”= 词嵌入所在 GPU
self.embed_device = self.model.get_input_embeddings().weight.device
torch.cuda.set_device(self.embed_device) # ← 关键 1
print(">>> embedding on", self.embed_device)
# 生成参数
self.gen_kwargs = dict(max_new_tokens=512, temperature=0.7, top_p=0.9, do_sample=True)
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
prompt = data["inputs"]
# 把 *所有* 输入张量放到 embed_device
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.embed_device) # ← 关键 2
with torch.inference_mode():
out_ids = self.model.generate(**inputs, **self.gen_kwargs)
return {"generated_text": self.tokenizer.decode(out_ids[0], skip_special_tokens=True)}