--- library_name: transformers license: apache-2.0 base_model: openai/whisper-large tags: - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer model-index: - name: whisper-swahili-large-v0.1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: sw split: test args: sw metrics: - name: Wer type: wer value: 26.32352799853929 --- # whisper-swahili-large-v0.1 This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4162 - Wer: 26.3235 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 1.1388 | 0.0681 | 250 | 0.6673 | 65.1304 | | 0.4408 | 0.1362 | 500 | 0.5600 | 33.9259 | | 0.3612 | 0.2042 | 750 | 0.4609 | 30.1521 | | 0.3057 | 0.2723 | 1000 | 0.4162 | 26.3235 | ### Framework versions - Transformers 4.52.0.dev0 - Pytorch 2.6.0+cu126 - Datasets 3.5.0 - Tokenizers 0.21.1