Daemontatox commited on
Commit
b42066d
·
verified ·
1 Parent(s): 03e4525

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +168 -7
README.md CHANGED
@@ -1,21 +1,182 @@
1
  ---
2
- base_model: unsloth/Qwen3-30B-A3B-Instruct-2507
3
  tags:
4
  - text-generation-inference
5
  - transformers
6
  - unsloth
7
  - qwen3_moe
 
 
8
  license: apache-2.0
9
  language:
10
  - en
 
 
 
11
  ---
12
 
13
- # Uploaded finetuned model
14
 
15
- - **Developed by:** Daemontatox
16
- - **License:** apache-2.0
17
- - **Finetuned from model :** unsloth/Qwen3-30B-A3B-Instruct-2507
18
 
19
- This qwen3_moe model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
20
 
21
- [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ base_model: Qwen/Qwen3-30B-A3B-Instruct-2507
3
  tags:
4
  - text-generation-inference
5
  - transformers
6
  - unsloth
7
  - qwen3_moe
8
+ - cognitive chains
9
+ - cognition
10
  license: apache-2.0
11
  language:
12
  - en
13
+ datasets:
14
+ - Daemontatox/SOCAM
15
+ library_name: transformers
16
  ---
17
 
18
+ ## Daemontatox/SOCAM-V1
19
 
20
+ ### Model Description
 
 
21
 
22
+ SOCAM-V1 (Social Cognitive Agent Model V1) is a fine-tuned large language model built on top of Qwen/Qwen3-30B-A3B-Instruct.
23
 
24
+ The model is trained to function as a Cognitive State Machine, extracting cognitive chains from natural social utterances based on Theory of Mind (ToM) reasoning.
25
+
26
+ Each cognitive chain follows the structure:
27
+
28
+ Situation ⇒ Clue ⇒ Thought ⇒ (Action + Emotion)
29
+
30
+ This provides an interpretable representation of a user’s cognitive state, supporting applications in dialogue systems, emotional support agents, and multi-agent cognitive architectures.
31
+
32
+
33
+ ---
34
+
35
+ ### Training Details
36
+
37
+ Base Model: Qwen/Qwen3-30B-A3B-Instruct
38
+
39
+ Fine-tuning Method: QLoRA with Unsloth + TRL
40
+
41
+ Dataset: Daemontatox/SOCAM
42
+
43
+ Adapted from the COKE dataset (Wu et al., 2024)
44
+
45
+ ~45k structured samples with fields: situation, clue, thought, action, emotion
46
+
47
+ Emotions restricted to: Love, Surprise, Joyful, Sad, Angry, Fearful
48
+
49
+
50
+ ### Training Parameters:
51
+
52
+ Sequence length: 2048
53
+
54
+ LoRA config: r=16, alpha=32, dropout=0.01
55
+
56
+ Optimizer: AdamW (8-bit)
57
+
58
+ Effective batch size: 256 (16 × grad acc 16)
59
+
60
+ Learning rate: 2e-4 (cosine schedule, warmup ratio 0.02)
61
+
62
+ Epochs: 2
63
+
64
+
65
+ Hardware: H100-class GPU (8-bit quantization for feasibility)
66
+
67
+
68
+
69
+ ---
70
+
71
+ ### Model Capabilities
72
+
73
+ Converts free-text utterances into structured cognitive chains.
74
+
75
+ Ensures separation of:
76
+
77
+ Situation (context domain)
78
+
79
+ Clue (triggering factor)
80
+
81
+ Thought (internal cognition)
82
+
83
+ Action (behavioral response)
84
+
85
+ Emotion (affective category)
86
+
87
+
88
+ Outputs deterministic JSON for easy downstream parsing.
89
+
90
+
91
+
92
+ ---
93
+
94
+
95
+ ### Example Usage
96
+ ```python
97
+ from transformers import AutoModelForCausalLM, AutoTokenizer
98
+ import torch
99
+
100
+ model = AutoModelForCausalLM.from_pretrained(
101
+ "Daemontatox/SOCAM-V1",
102
+ device_map="auto",
103
+ torch_dtype=torch.bfloat16
104
+ )
105
+ tokenizer = AutoTokenizer.from_pretrained("Daemontatox/SOCAM-V1")
106
+
107
+ prompt = """Situation: "I have an important exam tomorrow."
108
+ Clue: "I have studied consistently for weeks."
109
+ """
110
+
111
+ inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
112
+ outputs = model.generate(**inputs, max_new_tokens=256)
113
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
114
+
115
+ Expected output:
116
+
117
+ {
118
+ "situation": "I have an important exam tomorrow.",
119
+ "clue": "I have studied consistently for weeks.",
120
+ "thought": "I believe I will perform well and feel confident.",
121
+ "action": "I review lightly and get proper rest.",
122
+ "emotion": "Joyful"
123
+ }
124
+
125
+ ```
126
+
127
+ ---
128
+
129
+ ### Limitations & Risks
130
+
131
+ The model may misclassify ambiguous emotions (e.g., Sad vs Fearful).
132
+
133
+ Outputs depend on the quality of the SOCAM dataset and may reflect dataset biases.
134
+
135
+ Not suitable for clinical or medical use.
136
+
137
+ Always validate JSON outputs before downstream use.
138
+
139
+
140
+
141
+ ---
142
+
143
+ ### Intended Uses
144
+
145
+ Research on machine Theory of Mind (ToM).
146
+
147
+ Multi-agent cognitive architectures (Tracker, Updater, Reviewer, Responder).
148
+
149
+ Dialogue systems requiring interpretable cognitive reasoning.
150
+
151
+
152
+ Not intended for:
153
+
154
+ Clinical diagnostics
155
+
156
+ Sensitive decision-making without human oversight
157
+
158
+
159
+
160
+ ---
161
+
162
+ ### Citation
163
+
164
+ If you use this model, please cite:
165
+
166
+ @misc{socam2025,
167
+ title = {SOCAM-V1: A Cognitive State Machine for Theory of Mind Reasoning},
168
+ author = {Ammar Alnagar},
169
+ year = {2025},
170
+ howpublished = {\url{https://huggingface.co/Daemontatox/SOCAM-V1}}
171
+ }
172
+
173
+
174
+ ---
175
+
176
+ ### Acknowledgments
177
+
178
+ Base model: Qwen/Qwen3-30B-A3B-Instruct
179
+
180
+ Dataset foundation: COKE (Wu et al., 2024)
181
+
182
+ Training libraries: Unsloth, TRL, Hugging Face Transformers