-
DamarJati/GreenLabel-Waste-Types
Image Classification โข Updated โข 43 -
DamarJati/plastic-recycling-codes
Image Classification โข Updated โข 45 โข 2 -
DamarJati/NSFW-Filterization-DecentScan
Image Classification โข Updated โข 39 โข 8 -
DamarJati/Face-Mask-Detection
Image Classification โข Updated โข 96 โข 3
Damar Jati ๐ซ
DamarJati
AI & ML interests
Indonesian - Multimodal, Compvis, NLP |
Discord: @damarjati_
Recent Activity
reacted
to
MoritzLaurer's
post
with โค๏ธ
15 days ago
FACTS is a great paper from @GoogleDeepMind on measuring the factuality of LLM outputs. You can now download their prompt templates from @huggingface to improve LLM-based fact-checking yourself!
๐ The paper introduces the FACTS Grounding benchmark for evaluating the factuality of LLM outputs.
๐ค Fact-checking is automated by an ensemble of LLM judges that verify if a response is fully grounded in a factual reference document.
๐งช The authors tested different prompt templates on held-out data to ensure their generalization.
๐ It's highly educational to read these templates to learn how frontier labs design prompts and understand their limitations.
๐พ You can now download and reuse these prompt templates via the prompt-templates library!
๐ The library simplifies sharing prompt templates on the HF hub or locally via standardized YAML files. Letโs make LLM work more transparent and reproducible by sharing more templates like this!
Links ๐
- prompt-templates docs: https://moritzlaurer.github.io/prompt_templates/
- all templates on the HF Hub: https://huggingface.co/datasets/MoritzLaurer/facts-grounding-prompts
- FACTS paper: https://storage.googleapis.com/deepmind-media/FACTS/FACTS_grounding_paper.pdf
liked
a Space
26 days ago
prithivMLmods/Multimodal-OCR
liked
a Space
about 1 month ago
yoyolicoris/diffvox