--- library_name: transformers license: apache-2.0 base_model: Dans-DiscountModels/Mistral-Nemo-Base-2407-DanChat tags: - axolotl - generated_from_trainer datasets: - Dans-DiscountModels/pretokenization-test-5 model-index: - name: 12b-mn-dans-personality-engine-v1.3.0-TestArticle-1 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.10.0.dev0` ```yaml base_model: Dans-DiscountModels/Mistral-Nemo-Base-2407-DanChat model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer trust_remote_code: # wandb configuration wandb_project: 12b-mn-dans-personality-engine wandb_watch: wandb_run_id: V1.3.0-1-4 # V{Version}-{Run Number}-{Attempt Number} wandb_log_model: # push checkpoints to hub hub_model_id: Dans-DiscountModels/12b-mn-dans-personality-engine-v1.3.0-TestArticle-1 # how to push checkpoints to hub # https://huggingface.co/docs/transformers/v4.31.0/en/main_classes/trainer#transformers.TrainingArguments.hub_strategy hub_strategy: "every_save" # Whether to use hf `use_auth_token` for loading datasets. Useful for fetching private datasets # Required to be true when used in combination with `push_dataset_to_hub` hf_use_auth_token: true # where to save the finished model to output_dir: ./12b-mn-dans-personality-engine-v1.3.0 # dataset settings (local or huggingface repo) datasets: - path: Dans-DiscountModels/pretokenization-test-5 ds_type: parquet type: plugins: - axolotl.integrations.liger.LigerPlugin - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin liger_rope: true liger_rms_norm: true liger_layer_norm: true liger_glu_activation: true liger_fused_linear_cross_entropy: true cut_cross_entropy: true load_in_8bit: false load_in_4bit: false strict: false adapter: lora_model_dir: dataset_prepared_path: ./12b-mn-dans-personality-engine-data val_set_size: 0.003 sequence_len: 32768 sample_packing: true eval_sample_packing: true pad_to_sequence_len: true gradient_checkpointing: true gradient_accumulation_steps: 2 micro_batch_size: 2 num_epochs: 2 optimizer: ademamix_8bit optim_args: "beta1=0.9,beta2=0.999,beta3=0.999,alpha=5" lr_scheduler: rex learning_rate: 0.00001 cosine_min_lr_ratio: weight_decay: max_grad_norm: 0.001 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false early_stopping_patience: resume_from_checkpoint: auto_resume_from_checkpoints: true local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_ratio: 0.1 evals_per_epoch: 24 eval_table_size: eval_max_new_tokens: saves_per_epoch: 2 save_total_limit: 1 debug: false deepspeed: deepspeed_configs/zero3_bf16.json fsdp: fsdp_config: special_tokens: ```

# 12b-mn-dans-personality-engine-v1.3.0-TestArticle-1 This model is a fine-tuned version of [Dans-DiscountModels/Mistral-Nemo-Base-2407-DanChat](https://huggingface.co/Dans-DiscountModels/Mistral-Nemo-Base-2407-DanChat) on the Dans-DiscountModels/pretokenization-test-5 dataset. It achieves the following results on the evaluation set: - Loss: 1.4392 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Use ademamix_8bit and the args are: beta1=0.9,beta2=0.999,beta3=0.999,alpha=5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 321 - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.8086 | 0.0006 | 1 | 1.7459 | | 1.593 | 0.0417 | 67 | 1.5911 | | 1.5578 | 0.0833 | 134 | 1.5565 | | 1.5782 | 0.1250 | 201 | 1.5436 | | 1.5702 | 0.1666 | 268 | 1.5377 | | 1.5926 | 0.2083 | 335 | 1.5328 | | 1.6364 | 0.2499 | 402 | 1.5291 | | 1.5082 | 0.2916 | 469 | 1.5234 | | 1.6002 | 0.3332 | 536 | 1.5197 | | 1.5252 | 0.3749 | 603 | 1.5162 | | 1.5915 | 0.4165 | 670 | 1.5121 | | 1.5108 | 0.4582 | 737 | 1.5103 | | 1.5663 | 0.4998 | 804 | 1.5063 | | 1.5085 | 0.5415 | 871 | 1.5037 | | 1.4273 | 0.5832 | 938 | 1.5024 | | 1.5528 | 0.6248 | 1005 | 1.4994 | | 1.6072 | 0.6665 | 1072 | 1.4975 | | 1.6074 | 0.7081 | 1139 | 1.4920 | | 1.5495 | 0.7498 | 1206 | 1.4904 | | 1.6117 | 0.7914 | 1273 | 1.4883 | | 1.4621 | 0.8331 | 1340 | 1.4850 | | 1.6381 | 0.8747 | 1407 | 1.4838 | | 1.4221 | 0.9164 | 1474 | 1.4813 | | 1.5812 | 0.9580 | 1541 | 1.4789 | | 1.4581 | 0.9997 | 1608 | 1.4750 | | 1.4608 | 1.0417 | 1675 | 1.4800 | | 1.5261 | 1.0833 | 1742 | 1.4798 | | 1.3856 | 1.1250 | 1809 | 1.4796 | | 1.4469 | 1.1666 | 1876 | 1.4766 | | 1.4783 | 1.2083 | 1943 | 1.4741 | | 1.5025 | 1.2499 | 2010 | 1.4733 | | 1.4531 | 1.2916 | 2077 | 1.4726 | | 1.4719 | 1.3332 | 2144 | 1.4712 | | 1.4123 | 1.3749 | 2211 | 1.4700 | | 1.4653 | 1.4165 | 2278 | 1.4673 | | 1.4571 | 1.4582 | 2345 | 1.4660 | | 1.4261 | 1.4998 | 2412 | 1.4660 | | 1.3212 | 1.5415 | 2479 | 1.4620 | | 1.3828 | 1.5832 | 2546 | 1.4617 | | 1.3617 | 1.6248 | 2613 | 1.4597 | | 1.4364 | 1.6665 | 2680 | 1.4567 | | 1.4686 | 1.7081 | 2747 | 1.4549 | | 1.3317 | 1.7498 | 2814 | 1.4530 | | 1.3749 | 1.7914 | 2881 | 1.4506 | | 1.4116 | 1.8331 | 2948 | 1.4468 | | 1.3988 | 1.8747 | 3015 | 1.4456 | | 1.2534 | 1.9164 | 3082 | 1.4448 | | 1.3564 | 1.9580 | 3149 | 1.4412 | | 1.3668 | 1.9997 | 3216 | 1.4392 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.4.1+cu121 - Datasets 3.5.1 - Tokenizers 0.21.1