File size: 1,403 Bytes
5a849e2
 
 
 
 
 
586137f
fbd5ee8
 
 
 
 
 
 
 
 
 
21d51ce
fbd5ee8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
586137f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
---
license: mit
language:
- ko
base_model:
- Darong/BlueT
pipeline_tag: translation
---
# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->
κ²Œμž„ λ²ˆμ—­μ— νŠΉν™”λœ μ˜μ–΄->ν•œκ΅­μ–΄ λ²ˆμ—­ λͺ¨λΈμž…λ‹ˆλ‹€.

### Model Description

<!-- Provide a longer summary of what this model is. -->
Darong/BlueT λͺ¨λΈμ„ 기반으둜 κ²Œμž„ 뢄야에 λŒ€ν•΄ λ―Έμ„Έμ‘°μ •ν•œ λ²ˆμ—­ λͺ¨λΈμž…λ‹ˆλ‹€.
μ˜μ–΄->ν•œκ΅­μ–΄ λ²ˆμ—­μ„ μ§€μ›ν•˜λ©°, λ²ˆμ—­ μ‹œ λ†’μž„λ§λ„ μ„€μ •ν•  수 μžˆμŠ΅λ‹ˆλ‹€.


- **Developed by:** [BlueAI]
- **Model type:** [t5.1.1.base]
- **Language(s) (NLP):** [Korean]
- **License:** [MIT]
- **Finetuned from model [optional]:** [Darong/BlueT]

## Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

## How to Get Started with the Model

Use the code below to get started with the model.

```python
from transformers import pipeline, T5TokenizerFast

tokenizer_name = "paust/pko-t5-base"
tokenizer = T5TokenizerFast.from_pretrained(tokenizer_name)
model_path = 'Darong/BlueGame'
translator = pipeline("translation", model=model_path, tokenizer=tokenizer, max_length=255)
# μ˜μ–΄ -> ν•œκ΅­μ–΄
prefix = "E2K: "
source = "This model is an English-Korean translation model."
target = translator(prefix + source)
print(target[0]['translation_text'])

```