File size: 1,397 Bytes
cd03fe9
 
 
 
 
 
 
8c28667
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
---
license: mit
language:
- ko
base_model:
- Darong/BlueT
pipeline_tag: translation
---
# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->
๋…ผ๋ฌธ ๋ฒˆ์—ญ์— ํŠนํ™”๋œ ์˜์–ด->ํ•œ๊ตญ์–ด ๋ฒˆ์—ญ ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค.

### Model Description

<!-- Provide a longer summary of what this model is. -->
Darong/BlueT ๋ชจ๋ธ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋…ผ๋ฌธ์— ๋Œ€ํ•ด ๋ฏธ์„ธ์กฐ์ •ํ•œ ๋ฒˆ์—ญ ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค.
์˜์–ด->ํ•œ๊ตญ์–ด ๋ฒˆ์—ญ์„ ์ง€์›ํ•˜๋ฉฐ, ๋ฒˆ์—ญ ์‹œ ๋†’์ž„๋ง๋„ ์„ค์ •ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.


- **Developed by:** [BlueAI]
- **Model type:** [t5.1.1.base]
- **Language(s) (NLP):** [Korean]
- **License:** [MIT]
- **Finetuned from model [optional]:** [Darong/BlueT]

## Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

## How to Get Started with the Model

Use the code below to get started with the model.

```python
from transformers import pipeline, T5TokenizerFast

tokenizer_name = "paust/pko-t5-base"
tokenizer = T5TokenizerFast.from_pretrained(tokenizer_name)
model_path = 'Darong/BluePaper'
translator = pipeline("translation", model=model_path, tokenizer=tokenizer, max_length=255)
# ์˜์–ด -> ํ•œ๊ตญ์–ด
prefix = "E2K: "
source = "This model is an English-Korean translation model."
target = translator(prefix + source)
print(target[0]['translation_text'])

```