# -*- coding: utf-8 -*- """ Created on Sat May 18 16:15:32 2024 @author: litav """ import numpy as np import tensorflow as tf import random import os import pandas as pd import cv2 import matplotlib.pyplot as plt from sklearn.model_selection import KFold from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, Flatten from tensorflow.keras.optimizers import Adam from tensorflow.keras.models import Sequential from sklearn.metrics import accuracy_score, confusion_matrix, ConfusionMatrixDisplay from tensorflow.keras.layers import Dropout from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint from sklearn.metrics import precision_score, recall_score, f1_score, classification_report # Suppress iCCP warning import warnings warnings.filterwarnings("ignore", category=UserWarning, message=".*iCCP:.*") # Define data paths train_real_folder = 'datasets/training_set/real/' train_fake_folder = 'datasets/training_set/fake/' test_real_folder = 'datasets/test_set/real/' test_fake_folder = 'datasets/test_set/fake/' # Load train image paths and labels train_image_paths = [] train_labels = [] # Load train_real image paths and labels for filename in os.listdir(train_real_folder): image_path = os.path.join(train_real_folder, filename) label = 0 # Real images have label 0 train_image_paths.append(image_path) train_labels.append(label) # Load train_fake image paths and labels for filename in os.listdir(train_fake_folder): image_path = os.path.join(train_fake_folder, filename) label = 1 # Fake images have label 1 train_image_paths.append(image_path) train_labels.append(label) # Load test image paths and labels test_image_paths = [] test_labels = [] # Load test_real image paths and labels for filename in os.listdir(test_real_folder): image_path = os.path.join(test_real_folder, filename) label = 0 # Assuming test real images are all real (label 0) test_image_paths.append(image_path) test_labels.append(label) # Load test_fake image paths and labels for filename in os.listdir(test_fake_folder): image_path = os.path.join(test_fake_folder, filename) label = 1 # Assuming test fake images are all fake (label 1) test_image_paths.append(image_path) test_labels.append(label) # Create DataFrames train_dataset = pd.DataFrame({'image_path': train_image_paths, 'label': train_labels}) test_dataset = pd.DataFrame({'image_path': test_image_paths, 'label': test_labels}) # Function to preprocess images def preprocess_image(image_path): """Loads, resizes, and normalizes an image.""" image = cv2.imread(image_path) resized_image = cv2.resize(image, (128, 128)) # Target size defined here normalized_image = resized_image.astype(np.float32) / 255.0 return normalized_image # Preprocess all images and convert labels to numpy arrays X = np.array([preprocess_image(path) for path in train_image_paths]) Y = np.array(train_labels) # Define discriminator network def build_discriminator(input_shape, dropout_rate=0.5): model = Sequential() model.add(Conv2D(32, (3, 3), activation='relu', input_shape=input_shape)) model.add(MaxPooling2D((2, 2))) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D((2, 2))) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(Flatten()) model.add(Dense(64, activation='relu')) model.add(Dropout(dropout_rate)) # Adding dropout layer model.add(Dense(1, activation='sigmoid')) return model # Function to check if previous weights exist def load_previous_weights(model, fold_number): weights_file = f'model_weights/model_fold_{fold_number}.weights.h5' if os.path.exists(weights_file): model.load_weights(weights_file) print(f"Loaded weights from {weights_file}") else: print("No previous weights found.") # Function to save weights if current accuracy is higher def save_updated_weights(model, fold_number, val_accuracy, best_accuracy): weights_file = f'model_weights/model_fold_{fold_number}.weights.h5' if val_accuracy > best_accuracy: model.save_weights(weights_file) print(f"Saved updated weights to {weights_file} with val_accuracy: {val_accuracy:.4f}") return val_accuracy else: print(f"Did not save weights for fold {fold_number} as val_accuracy {val_accuracy:.4f} is not better than {best_accuracy:.4f}") return best_accuracy # Set parameters for cross-validation kf = KFold(n_splits=4, shuffle=True, random_state=42) batch_size = 32 epochs = 15 # Lists to store accuracy and loss for each fold accuracy_per_fold = [] loss_per_fold = [] # Store the best accuracies for each fold best_accuracies = [0] * kf.get_n_splits() # Perform K-Fold Cross-Validation for fold_number, (train_index, val_index) in enumerate(kf.split(X), 1): X_train, X_val = X[train_index], X[val_index] Y_train, Y_val = Y[train_index], Y[val_index] # Create and compile model input_dim = X_train.shape[1:] # Dimensionality of the input images model = build_discriminator(input_dim) model.compile(loss='binary_crossentropy', optimizer=Adam(0.0002, 0.5), metrics=['accuracy']) # Load previous weights if they exist load_previous_weights(model, fold_number) # Define Early Stopping callback early_stopping = EarlyStopping(monitor='val_accuracy', patience=5, restore_best_weights=True) # Define ModelCheckpoint callback to save the best weights checkpoint = ModelCheckpoint(filepath=f'best_model_weights/model_fold_{fold_number}.best.weights.h5.keras', monitor='val_accuracy', save_best_only=True, mode='max') # Train the model with the callbacks history = model.fit(X_train, Y_train, epochs=epochs, batch_size=batch_size, verbose=2, validation_data=(X_val, Y_val), callbacks=[early_stopping, checkpoint]) # Store the accuracy and loss for this folds average_val_accuracy = np.mean(history.history['val_accuracy']) accuracy_per_fold.append(average_val_accuracy) average_val_loss = np.mean(history.history['val_loss']) loss_per_fold.append(average_val_loss) # Save updated weights if accuracy is high best_accuracies[fold_number - 1] = save_updated_weights(model, fold_number, average_val_accuracy, best_accuracies[fold_number - 1]) # Print fold accuracy print(f'Fold {fold_number} average accuracy: {average_val_accuracy*100:.2f}%') # Print average accuracy across all folds print(f'Average accuracy across all folds: {np.mean(accuracy_per_fold)*100:.2f}%') # Load the model weights of the best model best_model_index = np.argmax(accuracy_per_fold) best_model_path = f'best_model_weights/model_fold_{best_model_index + 1}.best.weights.h5.keras' model.load_weights(best_model_path) # Evaluate the preprocessed test images using the best model test_loss, test_accuracy = model.evaluate(np.array([preprocess_image(path) for path in test_image_paths]), np.array(test_labels)) print(f"\nTest Loss: {test_loss}, Test Accuracy: {test_accuracy}") # Predict labels for the test set using the best model predictions = model.predict(np.array([preprocess_image(path) for path in test_image_paths])) predicted_labels = (predictions > 0.5).astype(int).flatten() # Summarize the classification results true_real_correct = np.sum((np.array(test_labels) == 0) & (predicted_labels == 0)) true_real_incorrect = np.sum((np.array(test_labels) == 0) & (predicted_labels == 1)) true_fake_correct = np.sum((np.array(test_labels) == 1) & (predicted_labels == 1)) true_fake_incorrect = np.sum((np.array(test_labels) == 1) & (predicted_labels == 0)) print("\nClassification Summary:") print(f"Real images correctly classified: {true_real_correct}") print(f"Real images incorrectly classified: {true_real_incorrect}") print(f"Fake images correctly classified: {true_fake_correct}") print(f"Fake images incorrectly classified: {true_fake_incorrect}") # Print detailed classification report print("\nClassification Report:") print(classification_report(test_labels, predicted_labels, target_names=['Real', 'Fake'])) print(model.summary()) # Plot confusion matrix cm = confusion_matrix(test_labels, predicted_labels) disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=['Real', 'Fake']) disp.plot(cmap=plt.cm.Blues) plt.title("Confusion Matrix") plt.show() # Plot training & validation accuracy values plt.figure(figsize=(12, 4)) plt.subplot(1, 2, 1) plt.plot(history.history['accuracy']) plt.plot(history.history['val_accuracy']) plt.title('Model accuracy') plt.ylabel('Accuracy') plt.xlabel('Epoch') plt.legend(['Train', 'Validation'], loc='upper left') plt.xticks(np.arange(0, len(history.history['accuracy']), step=1), np.arange(1, len(history.history['accuracy']) + 1, step=1)) # Plot training & validation loss values plt.subplot(1, 2, 2) plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('Model loss') plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(['Train', 'Validation'], loc='upper left') plt.xticks(np.arange(0, len(history.history['loss']), step=1), np.arange(1, len(history.history['loss']) + 1, step=1)) plt.tight_layout() plt.show() # Plot validation accuracy and loss per fold plt.figure(figsize=(12, 4)) plt.subplot(1, 2, 1) plt.plot(range(1, kf.get_n_splits() + 1), accuracy_per_fold, marker='o') plt.title('Validation Accuracy per Fold') plt.xlabel('Fold') plt.ylabel('Accuracy') plt.subplot(1, 2, 2) plt.plot(range(1, kf.get_n_splits() + 1), loss_per_fold, marker='o') plt.title('Validation Loss per Fold') plt.xlabel('Fold') plt.ylabel('Loss') plt.tight_layout() plt