File size: 21,632 Bytes
b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 beb1bc9 b206640 506fc61 b206640 beb1bc9 b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 506fc61 b206640 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 |
---
license: apache-2.0
base_model:
- mistralai/Devstral-Small-2507
language:
- en
- fr
- de
- es
- pt
- it
- ja
- ko
- ru
- zh
- ar
- fa
- id
- ms
- ne
- pl
- ro
- sr
- sv
- tr
- uk
- vi
- hi
- bn
pipeline_tag: text-generation
tags:
- merge
- programming
- code generation
- code
- coding
- coder
- chat
- code
- chat
- brainstorm
- brainstorm20x
- mistral
library_name: transformers
---
<h2>Mistral-Devstral-2507-CODER-Brainstorm20x-34B</h2>
This repo contains the full precision source code, in "safe tensors" format to generate GGUFs, GPTQ, EXL2, AWQ, HQQ and other formats.
The source code can also be used directly.
This model contains Brainstorm 20x, combined with Mistral's 24B Coder (instruct model):
https://huggingface.co/mistralai/Devstral-Small-2507
Information on the 24B Mistral model below, followed by Brainstorm 20x adapter (by DavidAU) and then a complete help
section for running LLM / AI models.
The Brainstorm adapter improves code generation, and unique code solving abilities.
This model requires:
- Jinja (embedded) or CHATML template
- Max context of 128k.
Settings used for testing (suggested):
- Temp .3 to .7
- Rep pen 1.05 to 1.1
- Topp .8 , minp .05
- Topk 20
- No system prompt.
This model will respond well to both detailed instructions and step by step refinement and additions to code.
As this is an instruct model, it will also benefit from a detailed system prompt too.
For simpler coding problems, lower quants will work well; but for complex/multi-step problem solving suggest Q6 or Q8.
---
# Devstral Small 1.1
Devstral is an agentic LLM for software engineering tasks built under a collaboration between [Mistral AI](https://mistral.ai/) and [All Hands AI](https://www.all-hands.dev/) ๐. Devstral excels at using tools to explore codebases, editing multiple files and power software engineering agents. The model achieves remarkable performance on SWE-bench which positions it as the #1 open source model on this [benchmark](#benchmark-results).
It is finetuned from [Mistral-Small-3.1](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Base-2503), therefore it has a long context window of up to 128k tokens. As a coding agent, Devstral is text-only and before fine-tuning from `Mistral-Small-3.1` the vision encoder was removed.
For enterprises requiring specialized capabilities (increased context, domain-specific knowledge, etc.), we will release commercial models beyond what Mistral AI contributes to the community.
Learn more about Devstral in our [blog post](https://mistral.ai/news/devstral-2507).
**Updates compared to [`Devstral Small 1.0`](https://huggingface.co/mistralai/Devstral-Small-2505):**
- Improved performance, please refer to the [benchmark results](#benchmark-results).
- `Devstral Small 1.1` is still great when paired with OpenHands. This new version also generalizes better to other prompts and coding environments.
- Supports [Mistral's function calling format](https://mistralai.github.io/mistral-common/usage/tools/).
## Key Features:
- **Agentic coding**: Devstral is designed to excel at agentic coding tasks, making it a great choice for software engineering agents.
- **lightweight**: with its compact size of just 24 billion parameters, Devstral is light enough to run on a single RTX 4090 or a Mac with 32GB RAM, making it an appropriate model for local deployment and on-device use.
- **Apache 2.0 License**: Open license allowing usage and modification for both commercial and non-commercial purposes.
- **Context Window**: A 128k context window.
- **Tokenizer**: Utilizes a Tekken tokenizer with a 131k vocabulary size.
## Benchmark Results
### SWE-Bench
Devstral Small 1.1 achieves a score of **53.6%** on SWE-Bench Verified, outperforming Devstral Small 1.0 by +6,8% and the second best state of the art model by +11.4%.
| Model | Agentic Scaffold | SWE-Bench Verified (%) |
|--------------------|--------------------|------------------------|
| Devstral Small 1.1 | OpenHands Scaffold | **53.6** |
| Devstral Small 1.0 | OpenHands Scaffold | *46.8* |
| GPT-4.1-mini | OpenAI Scaffold | 23.6 |
| Claude 3.5 Haiku | Anthropic Scaffold | 40.6 |
| SWE-smith-LM 32B | SWE-agent Scaffold | 40.2 |
| Skywork SWE | OpenHands Scaffold | 38.0 |
| DeepSWE | R2E-Gym Scaffold | 42.2 |
When evaluated under the same test scaffold (OpenHands, provided by All Hands AI ๐), Devstral exceeds far larger models such as Deepseek-V3-0324 and Qwen3 232B-A22B.

## Usage
We recommend to use Devstral with the [OpenHands](https://github.com/All-Hands-AI/OpenHands/tree/main) scaffold.
You can use it either through our API or by running locally.
### API
Follow these [instructions](https://docs.mistral.ai/getting-started/quickstart/#account-setup) to create a Mistral account and get an API key.
Then run these commands to start the OpenHands docker container.
```bash
export MISTRAL_API_KEY=<MY_KEY>
mkdir -p ~/.openhands && echo '{"language":"en","agent":"CodeActAgent","max_iterations":null,"security_analyzer":null,"confirmation_mode":false,"llm_model":"mistral/devstral-small-2507","llm_api_key":"'$MISTRAL_API_KEY'","remote_runtime_resource_factor":null,"github_token":null,"enable_default_condenser":true}' > ~/.openhands-state/settings.json
docker pull docker.all-hands.dev/all-hands-ai/runtime:0.48-nikolaik
docker run -it --rm --pull=always \
-e SANDBOX_RUNTIME_CONTAINER_IMAGE=docker.all-hands.dev/all-hands-ai/runtime:0.48-nikolaik \
-e LOG_ALL_EVENTS=true \
-v /var/run/docker.sock:/var/run/docker.sock \
-v ~/.openhands:/.openhands \
-p 3000:3000 \
--add-host host.docker.internal:host-gateway \
--name openhands-app \
docker.all-hands.dev/all-hands-ai/openhands:0.48
```
### Local inference
The model can also be deployed with the following libraries:
- [`vllm (recommended)`](https://github.com/vllm-project/vllm): See [here](#vllm-recommended)
- [`mistral-inference`](https://github.com/mistralai/mistral-inference): See [here](#mistral-inference)
- [`transformers`](https://github.com/huggingface/transformers): See [here](#transformers)
- [`LMStudio`](https://lmstudio.ai/): See [here](#lmstudio)
- [`llama.cpp`](https://github.com/ggml-org/llama.cpp): See [here](#llama.cpp)
- [`ollama`](https://github.com/ollama/ollama): See [here](#ollama)
#### vLLM (recommended)
<details>
<summary>Expand</summary
We recommend using this model with the [vLLM library](https://github.com/vllm-project/vllm)
to implement production-ready inference pipelines.
**_Installation_**
Make sure you install [`vLLM >= 0.9.1`](https://github.com/vllm-project/vllm/releases/tag/v0.9.1):
```
pip install vllm --upgrade
```
Also make sure to have installed [`mistral_common >= 1.7.0`](https://github.com/mistralai/mistral-common/releases/tag/v1.7.0).
```
pip install mistral-common --upgrade
```
To check:
```
python -c "import mistral_common; print(mistral_common.__version__)"
```
You can also make use of a ready-to-go [docker image](https://github.com/vllm-project/vllm/blob/main/Dockerfile) or on the [docker hub](https://hub.docker.com/layers/vllm/vllm-openai/latest/images/sha256-de9032a92ffea7b5c007dad80b38fd44aac11eddc31c435f8e52f3b7404bbf39).
**_Launch server_**
We recommand that you use Devstral in a server/client setting.
1. Spin up a server:
```
vllm serve mistralai/Devstral-Small-2507 --tokenizer_mode mistral --config_format mistral --load_format mistral --tool-call-parser mistral --enable-auto-tool-choice --tensor-parallel-size 2
```
2. To ping the client you can use a simple Python snippet.
```py
import requests
import json
from huggingface_hub import hf_hub_download
url = "http://<your-server-url>:8000/v1/chat/completions"
headers = {"Content-Type": "application/json", "Authorization": "Bearer token"}
model = "mistralai/Devstral-Small-2507"
def load_system_prompt(repo_id: str, filename: str) -> str:
file_path = hf_hub_download(repo_id=repo_id, filename=filename)
with open(file_path, "r") as file:
system_prompt = file.read()
return system_prompt
SYSTEM_PROMPT = load_system_prompt(model, "SYSTEM_PROMPT.txt")
messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{
"role": "user",
"content": [
{
"type": "text",
"text": "<your-command>",
},
],
},
]
data = {"model": model, "messages": messages, "temperature": 0.15}
# Devstral Small 1.1 supports tool calling. If you want to use tools, follow this:
# tools = [ # Define tools for vLLM
# {
# "type": "function",
# "function": {
# "name": "git_clone",
# "description": "Clone a git repository",
# "parameters": {
# "type": "object",
# "properties": {
# "url": {
# "type": "string",
# "description": "The url of the git repository",
# },
# },
# "required": ["url"],
# },
# },
# }
# ]
# data = {"model": model, "messages": messages, "temperature": 0.15, "tools": tools} # Pass tools to payload.
response = requests.post(url, headers=headers, data=json.dumps(data))
print(response.json()["choices"][0]["message"]["content"])
```
</details>
#### Mistral-inference
<details>
<summary>Expand</summary
We recommend using mistral-inference to quickly try out / "vibe-check" Devstral.
**_Installation_**
Make sure to have mistral_inference >= 1.6.0 installed.
```bash
pip install mistral_inference --upgrade
```
**_Download_**
```python
from huggingface_hub import snapshot_download
from pathlib import Path
mistral_models_path = Path.home().joinpath('mistral_models', 'Devstral')
mistral_models_path.mkdir(parents=True, exist_ok=True)
snapshot_download(repo_id="mistralai/Devstral-Small-2507", allow_patterns=["params.json", "consolidated.safetensors", "tekken.json"], local_dir=mistral_models_path)
```
**_Chat_**
You can run the model using the following command:
```bash
mistral-chat $HOME/mistral_models/Devstral --instruct --max_tokens 300
```
You can then prompt it with anything you'd like.
</details>
#### Transformers
<details>
<summary>Expand</summary
To make the best use of our model with transformers make sure to have [installed](https://github.com/mistralai/mistral-common) `mistral-common >= 1.7.0` to use our tokenizer.
```bash
pip install mistral-common --upgrade
```
Then load our tokenizer along with the model and generate:
```python
import torch
from mistral_common.protocol.instruct.messages import (
SystemMessage, UserMessage
)
from mistral_common.protocol.instruct.request import ChatCompletionRequest
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from huggingface_hub import hf_hub_download
from transformers import AutoModelForCausalLM
def load_system_prompt(repo_id: str, filename: str) -> str:
file_path = hf_hub_download(repo_id=repo_id, filename=filename)
with open(file_path, "r") as file:
system_prompt = file.read()
return system_prompt
model_id = "mistralai/Devstral-Small-2507"
SYSTEM_PROMPT = load_system_prompt(model_id, "SYSTEM_PROMPT.txt")
tokenizer = MistralTokenizer.from_hf_hub(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
tokenized = tokenizer.encode_chat_completion(
ChatCompletionRequest(
messages=[
SystemMessage(content=SYSTEM_PROMPT),
UserMessage(content="<your-command>"),
],
)
)
output = model.generate(
input_ids=torch.tensor([tokenized.tokens]),
max_new_tokens=1000,
)[0]
decoded_output = tokenizer.decode(output[len(tokenized.tokens):])
print(decoded_output)
```
</details>
#### LM Studio
<details>
<summary>Expand</summary
Download the weights from either:
- LM Studio GGUF repository (recommended): https://huggingface.co/lmstudio-community/Devstral-Small-2507-GGUF
- our GGUF repository: https://huggingface.co/mistralai/Devstral-Small-2507_gguf
```
pip install -U "huggingface_hub[cli]"
huggingface-cli download \
"lmstudio-community/Devstral-Small-2507-GGUF" \ # or mistralai/Devstral-Small-2507_gguf
--include "Devstral-Small-2507-Q4_K_M.gguf" \
--local-dir "Devstral-Small-2507_gguf/"
```
You can serve the model locally with [LMStudio](https://lmstudio.ai/).
* Download [LM Studio](https://lmstudio.ai/) and install it
* Install `lms cli ~/.lmstudio/bin/lms bootstrap`
* In a bash terminal, run `lms import Devstral-Small-2507-Q4_K_M.gguf` in the directory where you've downloaded the model checkpoint (e.g. `Devstral-Small-2507_gguf`)
* Open the LM Studio application, click the terminal icon to get into the developer tab. Click select a model to load and select `Devstral Small 2507`. Toggle the status button to start the model, in setting toggle Serve on Local Network to be on.
* On the right tab, you will see an API identifier which should be `devstral-small-2507` and an api address under API Usage. Keep note of this address, this is used for OpenHands or Cline.
</details>
#### llama.cpp
<details>
<summary>Expand</summary
Download the weights from huggingface:
```
pip install -U "huggingface_hub[cli]"
huggingface-cli download \
"mistralai/Devstral-Small-2507_gguf" \
--include "Devstral-Small-2507-Q4_K_M.gguf" \
--local-dir "mistralai/Devstral-Small-2507_gguf/"
```
Then run Devstral using the llama.cpp server.
```bash
./llama-server -m mistralai/Devstral-Small-2507_gguf/Devstral-Small-2507-Q4_K_M.gguf -c 0 # -c configure the context size, 0 means model's default, here 128k.
```
</details>
### OpenHands (recommended)
#### Launch a server to deploy Devstral Small 1.1
Make sure you launched an OpenAI-compatible server such as vLLM or Ollama as described above. Then, you can use OpenHands to interact with `Devstral Small 1.1`.
In the case of the tutorial we spineed up a vLLM server running the command:
```bash
vllm serve mistralai/Devstral-Small-2507 --tokenizer_mode mistral --config_format mistral --load_format mistral --tool-call-parser mistral --enable-auto-tool-choice --tensor-parallel-size 2
```
The server address should be in the following format: `http://<your-server-url>:8000/v1`
#### Launch OpenHands
You can follow installation of OpenHands [here](https://docs.all-hands.dev/modules/usage/installation).
The easiest way to launch OpenHands is to use the Docker image:
```bash
docker pull docker.all-hands.dev/all-hands-ai/runtime:0.48-nikolaik
docker run -it --rm --pull=always \
-e SANDBOX_RUNTIME_CONTAINER_IMAGE=docker.all-hands.dev/all-hands-ai/runtime:0.48-nikolaik \
-e LOG_ALL_EVENTS=true \
-v /var/run/docker.sock:/var/run/docker.sock \
-v ~/.openhands:/.openhands \
-p 3000:3000 \
--add-host host.docker.internal:host-gateway \
--name openhands-app \
docker.all-hands.dev/all-hands-ai/openhands:0.48
```
Then, you can access the OpenHands UI at `http://localhost:3000`.
#### Connect to the server
When accessing the OpenHands UI, you will be prompted to connect to a server. You can use the advanced mode to connect to the server you launched earlier.
Fill the following fields:
- **Custom Model**: `openai/mistralai/Devstral-Small-2507`
- **Base URL**: `http://<your-server-url>:8000/v1`
- **API Key**: `token` (or any other token you used to launch the server if any)
<details>
<summary>See settings</summary>

</details>
### Cline
#### Launch a server to deploy Devstral Small 1.1
Make sure you launched an OpenAI-compatible server such as vLLM or Ollama as described above. Then, you can use OpenHands to interact with `Devstral Small 1.1`.
In the case of the tutorial we spineed up a vLLM server running the command:
```bash
vllm serve mistralai/Devstral-Small-2507 --tokenizer_mode mistral --config_format mistral --load_format mistral --tool-call-parser mistral --enable-auto-tool-choice --tensor-parallel-size 2
```
The server address should be in the following format: `http://<your-server-url>:8000/v1`
#### Launch Cline
You can follow installation of Cline [here](https://docs.cline.bot/getting-started/installing-cline). Then you can configure the server address in the settings.
<details>
<summary>See settings</summary>

</details>
See more here:
https://huggingface.co/mistralai/Devstral-Small-2507
---
<H2>What is Brainstorm?</H2>
---
<B>Brainstorm 20x</B>
The BRAINSTORM process was developed by David_AU.
Some of the core principals behind this process are discussed in this <a href="https://arxiv.org/pdf/2401.02415">
scientific paper : Progressive LLaMA with Block Expansion </a>.
However I went in a completely different direction from what was outlined in this paper.
What is "Brainstorm" ?
The reasoning center of an LLM is taken apart, reassembled, and expanded.
In this case for this model: 20 times
Then these centers are individually calibrated. These "centers" also interact with each other.
This introduces subtle changes into the reasoning process.
The calibrations further adjust - dial up or down - these "changes" further.
The number of centers (5x,10x etc) allow more "tuning points" to further customize how the model reasons so to speak.
The core aim of this process is to increase the model's detail, concept and connection to the "world",
general concept connections, prose quality and prose length without affecting instruction following.
This will also enhance any creative use case(s) of any kind, including "brainstorming", creative art form(s) and like case uses.
Here are some of the enhancements this process brings to the model's performance:
- Prose generation seems more focused on the moment to moment.
- Sometimes there will be "preamble" and/or foreshadowing present.
- Fewer or no "cliches"
- Better overall prose and/or more complex / nuanced prose.
- A greater sense of nuance on all levels.
- Coherence is stronger.
- Description is more detailed, and connected closer to the content.
- Simile and Metaphors are stronger and better connected to the prose, story, and character.
- Sense of "there" / in the moment is enhanced.
- Details are more vivid, and there are more of them.
- Prose generation length can be long to extreme.
- Emotional engagement is stronger.
- The model will take FEWER liberties vs a normal model: It will follow directives more closely but will "guess" less.
- The MORE instructions and/or details you provide the more strongly the model will respond.
- Depending on the model "voice" may be more "human" vs original model's "voice".
Other "lab" observations:
- This process does not, in my opinion, make the model 5x or 10x "smarter" - if only that was true!
- However, a change in "IQ" was not an issue / a priority, and was not tested or calibrated for so to speak.
- From lab testing it seems to ponder, and consider more carefully roughly speaking.
- You could say this process sharpens the model's focus on it's task(s) at a deeper level.
The process to modify the model occurs at the root level - source files level. The model can quanted as a GGUF, EXL2, AWQ etc etc.
---
For more information / other Qwen/Mistral Coders / additional settings see:
[ https://huggingface.co/DavidAU/Qwen2.5-MOE-2x-4x-6x-8x__7B__Power-CODER__19B-30B-42B-53B-gguf ]
---
<H2>Help, Adjustments, Samplers, Parameters and More</H2>
---
<B>CHANGE THE NUMBER OF ACTIVE EXPERTS:</B>
See this document:
https://huggingface.co/DavidAU/How-To-Set-and-Manage-MOE-Mix-of-Experts-Model-Activation-of-Experts
<B>Settings: CHAT / ROLEPLAY and/or SMOOTHER operation of this model:</B>
In "KoboldCpp" or "oobabooga/text-generation-webui" or "Silly Tavern" ;
Set the "Smoothing_factor" to 1.5
: in KoboldCpp -> Settings->Samplers->Advanced-> "Smooth_F"
: in text-generation-webui -> parameters -> lower right.
: In Silly Tavern this is called: "Smoothing"
NOTE: For "text-generation-webui"
-> if using GGUFs you need to use "llama_HF" (which involves downloading some config files from the SOURCE version of this model)
Source versions (and config files) of my models are here:
https://huggingface.co/collections/DavidAU/d-au-source-files-for-gguf-exl2-awq-gptq-hqq-etc-etc-66b55cb8ba25f914cbf210be
OTHER OPTIONS:
- Increase rep pen to 1.1 to 1.15 (you don't need to do this if you use "smoothing_factor")
- If the interface/program you are using to run AI MODELS supports "Quadratic Sampling" ("smoothing") just make the adjustment as noted.
<B>Highest Quality Settings / Optimal Operation Guide / Parameters and Samplers</B>
This a "Class 1" model:
For all settings used for this model (including specifics for its "class"), including example generation(s) and for advanced settings guide (which many times addresses any model issue(s)), including methods to improve model performance for all use case(s) as well as chat, roleplay and other use case(s) please see:
[ https://huggingface.co/DavidAU/Maximizing-Model-Performance-All-Quants-Types-And-Full-Precision-by-Samplers_Parameters ]
You can see all parameters used for generation, in addition to advanced parameters and samplers to get the most out of this model here:
[ https://huggingface.co/DavidAU/Maximizing-Model-Performance-All-Quants-Types-And-Full-Precision-by-Samplers_Parameters ] |