--- license: apache-2.0 base_model: - mistralai/Devstral-Small-2507 language: - en - fr - de - es - pt - it - ja - ko - ru - zh - ar - fa - id - ms - ne - pl - ro - sr - sv - tr - uk - vi - hi - bn pipeline_tag: text-generation tags: - merge - programming - code generation - code - coding - coder - chat - code - chat - brainstorm - brainstorm20x - mistral library_name: transformers ---

Mistral-Devstral-2507-CODER-Brainstorm20x-34B

This repo contains the full precision source code, in "safe tensors" format to generate GGUFs, GPTQ, EXL2, AWQ, HQQ and other formats. The source code can also be used directly. This model contains Brainstorm 20x, combined with Mistral's 24B Coder (instruct model): https://huggingface.co/mistralai/Devstral-Small-2507 Information on the 24B Mistral model below, followed by Brainstorm 20x adapter (by DavidAU) and then a complete help section for running LLM / AI models. The Brainstorm adapter improves code generation, and unique code solving abilities. This model requires: - Jinja (embedded) or CHATML template - Max context of 128k. Settings used for testing (suggested): - Temp .3 to .7 - Rep pen 1.05 to 1.1 - Topp .8 , minp .05 - Topk 20 - No system prompt. This model will respond well to both detailed instructions and step by step refinement and additions to code. As this is an instruct model, it will also benefit from a detailed system prompt too. For simpler coding problems, lower quants will work well; but for complex/multi-step problem solving suggest Q6 or Q8. --- # Devstral Small 1.1 Devstral is an agentic LLM for software engineering tasks built under a collaboration between [Mistral AI](https://mistral.ai/) and [All Hands AI](https://www.all-hands.dev/) 🙌. Devstral excels at using tools to explore codebases, editing multiple files and power software engineering agents. The model achieves remarkable performance on SWE-bench which positions it as the #1 open source model on this [benchmark](#benchmark-results). It is finetuned from [Mistral-Small-3.1](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Base-2503), therefore it has a long context window of up to 128k tokens. As a coding agent, Devstral is text-only and before fine-tuning from `Mistral-Small-3.1` the vision encoder was removed. For enterprises requiring specialized capabilities (increased context, domain-specific knowledge, etc.), we will release commercial models beyond what Mistral AI contributes to the community. Learn more about Devstral in our [blog post](https://mistral.ai/news/devstral-2507). **Updates compared to [`Devstral Small 1.0`](https://huggingface.co/mistralai/Devstral-Small-2505):** - Improved performance, please refer to the [benchmark results](#benchmark-results). - `Devstral Small 1.1` is still great when paired with OpenHands. This new version also generalizes better to other prompts and coding environments. - Supports [Mistral's function calling format](https://mistralai.github.io/mistral-common/usage/tools/). ## Key Features: - **Agentic coding**: Devstral is designed to excel at agentic coding tasks, making it a great choice for software engineering agents. - **lightweight**: with its compact size of just 24 billion parameters, Devstral is light enough to run on a single RTX 4090 or a Mac with 32GB RAM, making it an appropriate model for local deployment and on-device use. - **Apache 2.0 License**: Open license allowing usage and modification for both commercial and non-commercial purposes. - **Context Window**: A 128k context window. - **Tokenizer**: Utilizes a Tekken tokenizer with a 131k vocabulary size. ## Benchmark Results ### SWE-Bench Devstral Small 1.1 achieves a score of **53.6%** on SWE-Bench Verified, outperforming Devstral Small 1.0 by +6,8% and the second best state of the art model by +11.4%. | Model | Agentic Scaffold | SWE-Bench Verified (%) | |--------------------|--------------------|------------------------| | Devstral Small 1.1 | OpenHands Scaffold | **53.6** | | Devstral Small 1.0 | OpenHands Scaffold | *46.8* | | GPT-4.1-mini | OpenAI Scaffold | 23.6 | | Claude 3.5 Haiku | Anthropic Scaffold | 40.6 | | SWE-smith-LM 32B | SWE-agent Scaffold | 40.2 | | Skywork SWE | OpenHands Scaffold | 38.0 | | DeepSWE | R2E-Gym Scaffold | 42.2 | When evaluated under the same test scaffold (OpenHands, provided by All Hands AI 🙌), Devstral exceeds far larger models such as Deepseek-V3-0324 and Qwen3 232B-A22B. ![SWE Benchmark](assets/swe_benchmark.png) ## Usage We recommend to use Devstral with the [OpenHands](https://github.com/All-Hands-AI/OpenHands/tree/main) scaffold. You can use it either through our API or by running locally. ### API Follow these [instructions](https://docs.mistral.ai/getting-started/quickstart/#account-setup) to create a Mistral account and get an API key. Then run these commands to start the OpenHands docker container. ```bash export MISTRAL_API_KEY= mkdir -p ~/.openhands && echo '{"language":"en","agent":"CodeActAgent","max_iterations":null,"security_analyzer":null,"confirmation_mode":false,"llm_model":"mistral/devstral-small-2507","llm_api_key":"'$MISTRAL_API_KEY'","remote_runtime_resource_factor":null,"github_token":null,"enable_default_condenser":true}' > ~/.openhands-state/settings.json docker pull docker.all-hands.dev/all-hands-ai/runtime:0.48-nikolaik docker run -it --rm --pull=always \ -e SANDBOX_RUNTIME_CONTAINER_IMAGE=docker.all-hands.dev/all-hands-ai/runtime:0.48-nikolaik \ -e LOG_ALL_EVENTS=true \ -v /var/run/docker.sock:/var/run/docker.sock \ -v ~/.openhands:/.openhands \ -p 3000:3000 \ --add-host host.docker.internal:host-gateway \ --name openhands-app \ docker.all-hands.dev/all-hands-ai/openhands:0.48 ``` ### Local inference The model can also be deployed with the following libraries: - [`vllm (recommended)`](https://github.com/vllm-project/vllm): See [here](#vllm-recommended) - [`mistral-inference`](https://github.com/mistralai/mistral-inference): See [here](#mistral-inference) - [`transformers`](https://github.com/huggingface/transformers): See [here](#transformers) - [`LMStudio`](https://lmstudio.ai/): See [here](#lmstudio) - [`llama.cpp`](https://github.com/ggml-org/llama.cpp): See [here](#llama.cpp) - [`ollama`](https://github.com/ollama/ollama): See [here](#ollama) #### vLLM (recommended)
Expand= 0.9.1`](https://github.com/vllm-project/vllm/releases/tag/v0.9.1): ``` pip install vllm --upgrade ``` Also make sure to have installed [`mistral_common >= 1.7.0`](https://github.com/mistralai/mistral-common/releases/tag/v1.7.0). ``` pip install mistral-common --upgrade ``` To check: ``` python -c "import mistral_common; print(mistral_common.__version__)" ``` You can also make use of a ready-to-go [docker image](https://github.com/vllm-project/vllm/blob/main/Dockerfile) or on the [docker hub](https://hub.docker.com/layers/vllm/vllm-openai/latest/images/sha256-de9032a92ffea7b5c007dad80b38fd44aac11eddc31c435f8e52f3b7404bbf39). **_Launch server_** We recommand that you use Devstral in a server/client setting. 1. Spin up a server: ``` vllm serve mistralai/Devstral-Small-2507 --tokenizer_mode mistral --config_format mistral --load_format mistral --tool-call-parser mistral --enable-auto-tool-choice --tensor-parallel-size 2 ``` 2. To ping the client you can use a simple Python snippet. ```py import requests import json from huggingface_hub import hf_hub_download url = "http://:8000/v1/chat/completions" headers = {"Content-Type": "application/json", "Authorization": "Bearer token"} model = "mistralai/Devstral-Small-2507" def load_system_prompt(repo_id: str, filename: str) -> str: file_path = hf_hub_download(repo_id=repo_id, filename=filename) with open(file_path, "r") as file: system_prompt = file.read() return system_prompt SYSTEM_PROMPT = load_system_prompt(model, "SYSTEM_PROMPT.txt") messages = [ {"role": "system", "content": SYSTEM_PROMPT}, { "role": "user", "content": [ { "type": "text", "text": "", }, ], }, ] data = {"model": model, "messages": messages, "temperature": 0.15} # Devstral Small 1.1 supports tool calling. If you want to use tools, follow this: # tools = [ # Define tools for vLLM # { # "type": "function", # "function": { # "name": "git_clone", # "description": "Clone a git repository", # "parameters": { # "type": "object", # "properties": { # "url": { # "type": "string", # "description": "The url of the git repository", # }, # }, # "required": ["url"], # }, # }, # } # ] # data = {"model": model, "messages": messages, "temperature": 0.15, "tools": tools} # Pass tools to payload. response = requests.post(url, headers=headers, data=json.dumps(data)) print(response.json()["choices"][0]["message"]["content"]) ```
#### Mistral-inference
Expand= 1.6.0 installed. ```bash pip install mistral_inference --upgrade ``` **_Download_** ```python from huggingface_hub import snapshot_download from pathlib import Path mistral_models_path = Path.home().joinpath('mistral_models', 'Devstral') mistral_models_path.mkdir(parents=True, exist_ok=True) snapshot_download(repo_id="mistralai/Devstral-Small-2507", allow_patterns=["params.json", "consolidated.safetensors", "tekken.json"], local_dir=mistral_models_path) ``` **_Chat_** You can run the model using the following command: ```bash mistral-chat $HOME/mistral_models/Devstral --instruct --max_tokens 300 ``` You can then prompt it with anything you'd like.
#### Transformers
Expand= 1.7.0` to use our tokenizer. ```bash pip install mistral-common --upgrade ``` Then load our tokenizer along with the model and generate: ```python import torch from mistral_common.protocol.instruct.messages import ( SystemMessage, UserMessage ) from mistral_common.protocol.instruct.request import ChatCompletionRequest from mistral_common.tokens.tokenizers.mistral import MistralTokenizer from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM def load_system_prompt(repo_id: str, filename: str) -> str: file_path = hf_hub_download(repo_id=repo_id, filename=filename) with open(file_path, "r") as file: system_prompt = file.read() return system_prompt model_id = "mistralai/Devstral-Small-2507" SYSTEM_PROMPT = load_system_prompt(model_id, "SYSTEM_PROMPT.txt") tokenizer = MistralTokenizer.from_hf_hub(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) tokenized = tokenizer.encode_chat_completion( ChatCompletionRequest( messages=[ SystemMessage(content=SYSTEM_PROMPT), UserMessage(content=""), ], ) ) output = model.generate( input_ids=torch.tensor([tokenized.tokens]), max_new_tokens=1000, )[0] decoded_output = tokenizer.decode(output[len(tokenized.tokens):]) print(decoded_output) ```
#### LM Studio
Expand #### llama.cpp
Expand ### OpenHands (recommended) #### Launch a server to deploy Devstral Small 1.1 Make sure you launched an OpenAI-compatible server such as vLLM or Ollama as described above. Then, you can use OpenHands to interact with `Devstral Small 1.1`. In the case of the tutorial we spineed up a vLLM server running the command: ```bash vllm serve mistralai/Devstral-Small-2507 --tokenizer_mode mistral --config_format mistral --load_format mistral --tool-call-parser mistral --enable-auto-tool-choice --tensor-parallel-size 2 ``` The server address should be in the following format: `http://:8000/v1` #### Launch OpenHands You can follow installation of OpenHands [here](https://docs.all-hands.dev/modules/usage/installation). The easiest way to launch OpenHands is to use the Docker image: ```bash docker pull docker.all-hands.dev/all-hands-ai/runtime:0.48-nikolaik docker run -it --rm --pull=always \ -e SANDBOX_RUNTIME_CONTAINER_IMAGE=docker.all-hands.dev/all-hands-ai/runtime:0.48-nikolaik \ -e LOG_ALL_EVENTS=true \ -v /var/run/docker.sock:/var/run/docker.sock \ -v ~/.openhands:/.openhands \ -p 3000:3000 \ --add-host host.docker.internal:host-gateway \ --name openhands-app \ docker.all-hands.dev/all-hands-ai/openhands:0.48 ``` Then, you can access the OpenHands UI at `http://localhost:3000`. #### Connect to the server When accessing the OpenHands UI, you will be prompted to connect to a server. You can use the advanced mode to connect to the server you launched earlier. Fill the following fields: - **Custom Model**: `openai/mistralai/Devstral-Small-2507` - **Base URL**: `http://:8000/v1` - **API Key**: `token` (or any other token you used to launch the server if any)
See settings ![OpenHands Settings](assets/open_hands_config.png)
### Cline #### Launch a server to deploy Devstral Small 1.1 Make sure you launched an OpenAI-compatible server such as vLLM or Ollama as described above. Then, you can use OpenHands to interact with `Devstral Small 1.1`. In the case of the tutorial we spineed up a vLLM server running the command: ```bash vllm serve mistralai/Devstral-Small-2507 --tokenizer_mode mistral --config_format mistral --load_format mistral --tool-call-parser mistral --enable-auto-tool-choice --tensor-parallel-size 2 ``` The server address should be in the following format: `http://:8000/v1` #### Launch Cline You can follow installation of Cline [here](https://docs.cline.bot/getting-started/installing-cline). Then you can configure the server address in the settings.
See settings ![Cline Settings](assets/cline_config.png)
See more here: https://huggingface.co/mistralai/Devstral-Small-2507 ---

What is Brainstorm?

--- Brainstorm 20x The BRAINSTORM process was developed by David_AU. Some of the core principals behind this process are discussed in this scientific paper : Progressive LLaMA with Block Expansion . However I went in a completely different direction from what was outlined in this paper. What is "Brainstorm" ? The reasoning center of an LLM is taken apart, reassembled, and expanded. In this case for this model: 20 times Then these centers are individually calibrated. These "centers" also interact with each other. This introduces subtle changes into the reasoning process. The calibrations further adjust - dial up or down - these "changes" further. The number of centers (5x,10x etc) allow more "tuning points" to further customize how the model reasons so to speak. The core aim of this process is to increase the model's detail, concept and connection to the "world", general concept connections, prose quality and prose length without affecting instruction following. This will also enhance any creative use case(s) of any kind, including "brainstorming", creative art form(s) and like case uses. Here are some of the enhancements this process brings to the model's performance: - Prose generation seems more focused on the moment to moment. - Sometimes there will be "preamble" and/or foreshadowing present. - Fewer or no "cliches" - Better overall prose and/or more complex / nuanced prose. - A greater sense of nuance on all levels. - Coherence is stronger. - Description is more detailed, and connected closer to the content. - Simile and Metaphors are stronger and better connected to the prose, story, and character. - Sense of "there" / in the moment is enhanced. - Details are more vivid, and there are more of them. - Prose generation length can be long to extreme. - Emotional engagement is stronger. - The model will take FEWER liberties vs a normal model: It will follow directives more closely but will "guess" less. - The MORE instructions and/or details you provide the more strongly the model will respond. - Depending on the model "voice" may be more "human" vs original model's "voice". Other "lab" observations: - This process does not, in my opinion, make the model 5x or 10x "smarter" - if only that was true! - However, a change in "IQ" was not an issue / a priority, and was not tested or calibrated for so to speak. - From lab testing it seems to ponder, and consider more carefully roughly speaking. - You could say this process sharpens the model's focus on it's task(s) at a deeper level. The process to modify the model occurs at the root level - source files level. The model can quanted as a GGUF, EXL2, AWQ etc etc. --- For more information / other Qwen/Mistral Coders / additional settings see: [ https://huggingface.co/DavidAU/Qwen2.5-MOE-2x-4x-6x-8x__7B__Power-CODER__19B-30B-42B-53B-gguf ] ---

Help, Adjustments, Samplers, Parameters and More

--- CHANGE THE NUMBER OF ACTIVE EXPERTS: See this document: https://huggingface.co/DavidAU/How-To-Set-and-Manage-MOE-Mix-of-Experts-Model-Activation-of-Experts Settings: CHAT / ROLEPLAY and/or SMOOTHER operation of this model: In "KoboldCpp" or "oobabooga/text-generation-webui" or "Silly Tavern" ; Set the "Smoothing_factor" to 1.5 : in KoboldCpp -> Settings->Samplers->Advanced-> "Smooth_F" : in text-generation-webui -> parameters -> lower right. : In Silly Tavern this is called: "Smoothing" NOTE: For "text-generation-webui" -> if using GGUFs you need to use "llama_HF" (which involves downloading some config files from the SOURCE version of this model) Source versions (and config files) of my models are here: https://huggingface.co/collections/DavidAU/d-au-source-files-for-gguf-exl2-awq-gptq-hqq-etc-etc-66b55cb8ba25f914cbf210be OTHER OPTIONS: - Increase rep pen to 1.1 to 1.15 (you don't need to do this if you use "smoothing_factor") - If the interface/program you are using to run AI MODELS supports "Quadratic Sampling" ("smoothing") just make the adjustment as noted. Highest Quality Settings / Optimal Operation Guide / Parameters and Samplers This a "Class 1" model: For all settings used for this model (including specifics for its "class"), including example generation(s) and for advanced settings guide (which many times addresses any model issue(s)), including methods to improve model performance for all use case(s) as well as chat, roleplay and other use case(s) please see: [ https://huggingface.co/DavidAU/Maximizing-Model-Performance-All-Quants-Types-And-Full-Precision-by-Samplers_Parameters ] You can see all parameters used for generation, in addition to advanced parameters and samplers to get the most out of this model here: [ https://huggingface.co/DavidAU/Maximizing-Model-Performance-All-Quants-Types-And-Full-Precision-by-Samplers_Parameters ]