Hugging Face's logo --- language: am datasets: --- # bert-base-multilingual-cased-finetuned-amharic ## Model description **bert-base-multilingual-cased-finetuned-amharic** is a **Amharic BERT** model obtained by replacing mBERT vocabulary by amharic vocabulary because the language was not supported, and fine-tuning **bert-base-multilingual-cased** model on Amharic language texts. It provides **better performance** than the multilingual Amharic on named entity recognition datasets. Specifically, this model is a *bert-base-multilingual-cased* model that was fine-tuned on Amharic corpus using Amharic vocabulary. ## Intended uses & limitations #### How to use You can use this model with Transformers *pipeline* for masked token prediction. ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='Davlan/bert-base-multilingual-cased-finetuned-amharic') >>> unmasker("የአሜሪካ የአፍሪካ ቀንድ ልዩ መልዕክተኛ ጄፈሪ ፌልትማን በአራት አገራት የሚያደጉትን [MASK] መጀመራቸውን የአሜሪካ የውጪ ጉዳይ ሚንስቴር አስታወቀ።") ``` #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on [Amharic CC-100](http://data.statmt.org/cc-100/) ## Training procedure This model was trained on a single NVIDIA V100 GPU ## Eval results on Test set (F-score, average over 5 runs) Dataset| mBERT F1 | am_bert F1 -|-|- [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) | 0.0 | 60.89 ### BibTeX entry and citation info By David Adelani ``` ```