ggbetz commited on
Commit
a08f5f9
·
verified ·
1 Parent(s): 21a6823

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +30 -16
README.md CHANGED
@@ -1,17 +1,29 @@
1
  ---
2
  library_name: transformers
3
- model_name: Llama-3.1-Argunaut-1-8B-SPIN-dev4
 
 
 
 
 
 
4
  tags:
 
 
 
 
5
  - generated_from_trainer
6
  - trl
7
  - dpo
8
- licence: license
 
9
  ---
10
 
11
- # Model Card for Llama-3.1-Argunaut-1-8B-SPIN-dev4
12
 
13
- This model is a fine-tuned version of [None](https://huggingface.co/None).
14
- It has been trained using [TRL](https://github.com/huggingface/trl).
 
15
 
16
  ## Quick start
17
 
@@ -19,17 +31,18 @@ It has been trained using [TRL](https://github.com/huggingface/trl).
19
  from transformers import pipeline
20
 
21
  question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
22
- generator = pipeline("text-generation", model="DebateLabKIT/Llama-3.1-Argunaut-1-8B-SPIN-dev4", device="cuda")
23
  output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
24
  print(output["generated_text"])
25
  ```
26
 
27
  ## Training procedure
28
 
29
- [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/ggbetz/argunauts-training/runs/d55470xf)
30
 
 
31
 
32
- This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290).
33
 
34
  ### Framework versions
35
 
@@ -41,16 +54,17 @@ This model was trained with DPO, a method introduced in [Direct Preference Optim
41
 
42
  ## Citations
43
 
44
- Cite DPO as:
45
 
46
  ```bibtex
47
- @inproceedings{rafailov2023direct,
48
- title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}},
49
- author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn},
50
- year = 2023,
51
- booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023},
52
- url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html},
53
- editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine},
 
54
  }
55
  ```
56
 
 
1
  ---
2
  library_name: transformers
3
+ model_name: Llama-3.1-Argunaut-1-8B-SPIN
4
+ pipeline_tag: text-generation
5
+ base_model: DebateLabKIT/Llama-3.1-Argunaut-1-8B-SFT
6
+ datasets:
7
+ - DebateLabKIT/argdown_line-by-line
8
+ - DebateLabKIT/argument_mapping_dpo_pairs
9
+ - allenai/llama-3.1-tulu-3-70b-preference-mixture
10
  tags:
11
+ - logic
12
+ - argumentation
13
+ - critical-thinking
14
+ - argument-mapping
15
  - generated_from_trainer
16
  - trl
17
  - dpo
18
+ - spin
19
+ licence: llama3.1
20
  ---
21
 
22
+ # Model Card for Llama-3.1-Argunaut-1-8B-SPIN
23
 
24
+
25
+ This model is a fine-tuned version of [DebateLabKIT/Llama-3.1-Argunaut-1-8B-SFT](https://huggingface.co/DebateLabKIT/Llama-3.1-Argunaut-1-8B-SFT).
26
+ It has been trained using [TRL](https://github.com/huggingface/trl) and [vLLM](https://docs.vllm.ai/). Checkpoints are tagged.
27
 
28
  ## Quick start
29
 
 
31
  from transformers import pipeline
32
 
33
  question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
34
+ generator = pipeline("text-generation", model="DebateLabKIT/Llama-3.1-Argunaut-1-8B-SPIN", device="cuda")
35
  output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
36
  print(output["generated_text"])
37
  ```
38
 
39
  ## Training procedure
40
 
41
+ <!--[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/ggbetz/argunauts-training/runs/s89n820x)-->
42
 
43
+ This model was trained with Self-Play Fine-Tuning (SPIN), a method introduced in [Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models](https://huggingface.co/papers/2401.01335).
44
 
45
+ More details about the training procedure will be released in a blog post!
46
 
47
  ### Framework versions
48
 
 
54
 
55
  ## Citations
56
 
57
+ Cite SPIN as:
58
 
59
  ```bibtex
60
+ @misc{chen2024selfplayfinetuningconvertsweak,
61
+ title={Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models},
62
+ author={Zixiang Chen and Yihe Deng and Huizhuo Yuan and Kaixuan Ji and Quanquan Gu},
63
+ year={2024},
64
+ eprint={2401.01335},
65
+ archivePrefix={arXiv},
66
+ primaryClass={cs.LG},
67
+ url={https://arxiv.org/abs/2401.01335},
68
  }
69
  ```
70