--- license: apache-2.0 language: - zh - en metrics: - bleu base_model: - Qwen/Qwen2.5-7B-Instruct - DeepGlint-AI/mlcd-vit-large-patch14-336 --- [[Paper]](https://arxiv.org/abs/2407.17331) [[GitHub]](https://github.com/deepglint/unicom) ## Embodied Ability Evaluation: Performance in RoboVQA and OpenEQA | | | MLCD
Embodied-7B | LLaVA
OneVision-7B | GPT-4v | RoboMamba | :-- | :-- | :-: | :-: | :-: | :-: | | RoboVQA | BLEU1 | 73.16 | 38.12 | - | 54.9 | | | BLEU2 | 66.39 | 33.56 | - | 44.2 | | | BLEU3 | 60.61 | 31.76 | - | 39.5 | | | BLEU4 | 56.56 | 30.97 | - | 36.3 | | OpenEQA | Object State Recognition | 71.83 | - | 63.2 | - | | | Object Recognition | 49.46 | - | 43.4 | - | | | Functional Reasoning | 54.38 | - | 57.4 | - | | | Spatial Understanding | 48.64 | - | 33.6 | - | | | Attribute Recognition | 67.08 | - | 57.2 | - | | | World Knowledge | 53.87 | - | 50.7 | - | | | Object Localization | 43.06 | - | 42.0 | - | ## General Ability Evaluation: Comparison with LLaVA OneVision-7B and GPT-4 | Dataset | Split | MLCD
Embodied-7B | LLaVA
OneVision-7B | GPT-4v | GPT-4o | | :-- | :-: | :-: | :-: | :-: | :-: | | A12D | test | 79.9 | 81.4 | 78.2 | 94.2 | | ChartQA | test | 83.0 | 80.0 | 78.5 | 85.7 | | DocVQA | test | 91.6 | 87.5 | 88.4 | 92.8 | | InfoVQA | val | 73.9 | 70.7 | - | - | | InfoVQA | test | 70.0 | 68.8 | - | - | | MMMU | val | 47.3 | 48.8 | 56.8 | 69.1 | | MMStar | test | 58.5 | 61.7 | 57.1 | 63.9 | | OCRBench | - | 749.0 | 697.0 | 656.0 | 805.0 | | RealWorldQA | test | 68.9 | 66.3 | 61.4 | 58.6 | | SeedBench | image | 74.9 | 75.4 | 49.9 | 76.2 | | MMbench | en-dev | 81.1 | 83.2 | 81.3 | 83.4 | | MMbench | en-test | 80.1 | 80.8 | 75.0 | - | | MME | test | 578/1603 | 418/1580 | 517/1409 | - | ## Usage ### A. Installation ```bash git clone https://github.com/deepglint/unicom cd unicom # Upgrade pip and install necessary dependencies pip install --upgrade pip pip install -e ".[train]" ``` ### B. Inference ```bash git clone https://github.com/deepglint/unicom cd unicom pip install --upgrade pip pip install -e ".[train]" pip install flash-attn --no-build-isolation CUDA_VISIBLE_DEVICES=0 python infer.py --model_dir DeepGlint-AI/MLCD-Embodied-7B # example: # >> Enter 'exit' to end the conversation, 'reset' to clear the chat history. # >> Enter image file paths (comma-separated): ./asserts/logo.png # >> User: What kind of animal is it in this picture? # >> Assistant: The image features a stylized representation of a cat, characterized by its vibrant and abstract depiction. # >> User: What color is this cat? # >> Assistant: The cat in the image is primarily white with blue, orange and pink accents, creating a visually appealing and unique appearance. # >> User: 请你介绍一下这个图片 # >> Assistant: 这是一幅充满创意的猫头艺术作品。它采用了多色渐变和抽象风格,将猫的头部描绘成一个充满活力和色彩的视觉冲击。猫的眼睛用金色渲染,显得非常有神采, # 而粉色的鼻子则增添了一丝可爱感。整体设计融合了现代艺术与传统猫头图案,创造出一种既独特又引人入胜的视觉效果。。 ``` ### C. Evaluation for Embodied Ability #### Step 1 Download raw data following [OpenEQA](https://github.com/facebookresearch/open-eqa/tree/main/data) and [RoboVQA](https://console.cloud.google.com/storage/browser/gdm-robovqa)(val part) #### Step 2 Converting raw data into the format required for model evaluation. ```bash # convert OpenEQA benchmark. Note: replace the paths with your own. python llava/benchmark/make_openeqa_bmk.py # convert RoboVQA benchmark. Note: replace the paths with your own. python llava/benchmark/make_robovqa_bmk.py ``` #### Step 3 Make sure that your top-level directory structure should look like this: ``` |--/path/to/your/benchmarks | |--OpenEQA | | |--openeqa_scannet.parquet | | |--openeqa_hm3d.parquet | |--RoboVQA | |--robovqa.parquet |--/path/to/your/images |--openeqa_val | |--scannet-v0 | | |--002-scannet-scene0709_00 | | |--xxx-scannet-scenexxxx_xx | |--hm3d-v0 | |--000-hm3d-BFRyYbPCCPE | |--xxx-hm3d-xxxxxxxxxxx |--robovqa_val |--robovqa_221911 |--robovqa_xxxxxx ``` #### Step 4 Run script for evaluation ```bash # Note: replace 'YOUR_API_KEY', 'YOUR_ENDPOINT', 'bmk_root', 'image_folder' with your own. bash scripts/eval/eval_robo.sh /path/to/your/model ``` ### D. Evaluation for General Ability Install the evaluation tool and execute the evaluation script: ```bash pip install lmms-eval==0.2.0 PYTHONPATH=./ CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m accelerate.commands.launch \ --main_process_port=12444 \ --num_processes=8 \ -m lmms_eval \ --model llava \ --model_args pretrained=DeepGlint-AI/MLCD-Embodied-7B,conv_template=qwen_1_5 \ --tasks mme \ --batch_size 1 \ --log_samples \ --log_samples_suffix mlcd \ --output_path ./eval_log/ ``` We would like to express our gratitude to [Huajie Tan](https://huggingface.co/tanhuajie2001), [Yumeng Wang](https://huggingface.co/devymex), [Yin Xie](https://huggingface.co/Yin-Xie) for his significant contributions to the experimental validation in MLLMs.