---
license: apache-2.0
language:
- zh
- en
metrics:
- bleu
base_model:
- Qwen/Qwen2.5-7B-Instruct
- DeepGlint-AI/mlcd-vit-large-patch14-336
---
[[Paper]](https://arxiv.org/abs/2407.17331) [[GitHub]](https://github.com/deepglint/unicom)
## Embodied Ability Evaluation: Performance in RoboVQA and OpenEQA
| | | MLCD
Embodied-7B | LLaVA
OneVision-7B | GPT-4v | RoboMamba |
:-- | :-- | :-: | :-: | :-: | :-: |
| RoboVQA | BLEU1 | 73.16 | 38.12 | - | 54.9 |
| | BLEU2 | 66.39 | 33.56 | - | 44.2 |
| | BLEU3 | 60.61 | 31.76 | - | 39.5 |
| | BLEU4 | 56.56 | 30.97 | - | 36.3 |
| OpenEQA | Object State Recognition | 71.83 | - | 63.2 | - |
| | Object Recognition | 49.46 | - | 43.4 | - |
| | Functional Reasoning | 54.38 | - | 57.4 | - |
| | Spatial Understanding | 48.64 | - | 33.6 | - |
| | Attribute Recognition | 67.08 | - | 57.2 | - |
| | World Knowledge | 53.87 | - | 50.7 | - |
| | Object Localization | 43.06 | - | 42.0 | - |
## General Ability Evaluation: Comparison with LLaVA OneVision-7B and GPT-4
| Dataset | Split | MLCD
Embodied-7B | LLaVA
OneVision-7B | GPT-4v | GPT-4o |
| :-- | :-: | :-: | :-: | :-: | :-: |
| A12D | test | 79.9 | 81.4 | 78.2 | 94.2 |
| ChartQA | test | 83.0 | 80.0 | 78.5 | 85.7 |
| DocVQA | test | 91.6 | 87.5 | 88.4 | 92.8 |
| InfoVQA | val | 73.9 | 70.7 | - | - |
| InfoVQA | test | 70.0 | 68.8 | - | - |
| MMMU | val | 47.3 | 48.8 | 56.8 | 69.1 |
| MMStar | test | 58.5 | 61.7 | 57.1 | 63.9 |
| OCRBench | - | 749.0 | 697.0 | 656.0 | 805.0 |
| RealWorldQA | test | 68.9 | 66.3 | 61.4 | 58.6 |
| SeedBench | image | 74.9 | 75.4 | 49.9 | 76.2 |
| MMbench | en-dev | 81.1 | 83.2 | 81.3 | 83.4 |
| MMbench | en-test | 80.1 | 80.8 | 75.0 | - |
| MME | test | 578/1603 | 418/1580 | 517/1409 | - |
## Usage
### A. Installation
```bash
git clone https://github.com/deepglint/unicom
cd unicom
# Upgrade pip and install necessary dependencies
pip install --upgrade pip
pip install -e ".[train]"
```
### B. Inference
```bash
git clone https://github.com/deepglint/unicom
cd unicom
pip install --upgrade pip
pip install -e ".[train]"
pip install flash-attn --no-build-isolation
CUDA_VISIBLE_DEVICES=0 python infer.py --model_dir DeepGlint-AI/MLCD-Embodied-7B
# example:
# >> Enter 'exit' to end the conversation, 'reset' to clear the chat history.
# >> Enter image file paths (comma-separated): ./asserts/logo.png
# >> User: What kind of animal is it in this picture?
# >> Assistant: The image features a stylized representation of a cat, characterized by its vibrant and abstract depiction.
# >> User: What color is this cat?
# >> Assistant: The cat in the image is primarily white with blue, orange and pink accents, creating a visually appealing and unique appearance.
# >> User: 请你介绍一下这个图片
# >> Assistant: 这是一幅充满创意的猫头艺术作品。它采用了多色渐变和抽象风格,将猫的头部描绘成一个充满活力和色彩的视觉冲击。猫的眼睛用金色渲染,显得非常有神采,
# 而粉色的鼻子则增添了一丝可爱感。整体设计融合了现代艺术与传统猫头图案,创造出一种既独特又引人入胜的视觉效果。。
```
### C. Evaluation for Embodied Ability
#### Step 1
Download raw data following [OpenEQA](https://github.com/facebookresearch/open-eqa/tree/main/data) and [RoboVQA](https://console.cloud.google.com/storage/browser/gdm-robovqa)(val part)
#### Step 2
Converting raw data into the format required for model evaluation.
```bash
# convert OpenEQA benchmark. Note: replace the paths with your own.
python llava/benchmark/make_openeqa_bmk.py
# convert RoboVQA benchmark. Note: replace the paths with your own.
python llava/benchmark/make_robovqa_bmk.py
```
#### Step 3
Make sure that your top-level directory structure should look like this:
```
|--/path/to/your/benchmarks
| |--OpenEQA
| | |--openeqa_scannet.parquet
| | |--openeqa_hm3d.parquet
| |--RoboVQA
| |--robovqa.parquet
|--/path/to/your/images
|--openeqa_val
| |--scannet-v0
| | |--002-scannet-scene0709_00
| | |--xxx-scannet-scenexxxx_xx
| |--hm3d-v0
| |--000-hm3d-BFRyYbPCCPE
| |--xxx-hm3d-xxxxxxxxxxx
|--robovqa_val
|--robovqa_221911
|--robovqa_xxxxxx
```
#### Step 4
Run script for evaluation
```bash
# Note: replace 'YOUR_API_KEY', 'YOUR_ENDPOINT', 'bmk_root', 'image_folder' with your own.
bash scripts/eval/eval_robo.sh /path/to/your/model
```
### D. Evaluation for General Ability
Install the evaluation tool and execute the evaluation script:
```bash
pip install lmms-eval==0.2.0
PYTHONPATH=./ CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m accelerate.commands.launch \
--main_process_port=12444 \
--num_processes=8 \
-m lmms_eval \
--model llava \
--model_args pretrained=DeepGlint-AI/MLCD-Embodied-7B,conv_template=qwen_1_5 \
--tasks mme \
--batch_size 1 \
--log_samples \
--log_samples_suffix mlcd \
--output_path ./eval_log/
```
We would like to express our gratitude to [Huajie Tan](https://huggingface.co/tanhuajie2001), [Yumeng Wang](https://huggingface.co/devymex), [Yin Xie](https://huggingface.co/Yin-Xie) for his significant contributions to the experimental validation in MLLMs.