Upload train.py with huggingface_hub
Browse files
train.py
ADDED
@@ -0,0 +1,450 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ==============================================================================
|
2 |
+
# 1. IMPORTS
|
3 |
+
# ==============================================================================
|
4 |
+
import os
|
5 |
+
import warnings
|
6 |
+
import wandb
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.optim as optim
|
11 |
+
import torch.nn.functional as F
|
12 |
+
from torch.utils.data import DataLoader, Dataset
|
13 |
+
import numpy as np
|
14 |
+
from tqdm import tqdm
|
15 |
+
from rdkit import Chem, RDLogger
|
16 |
+
from datasets import load_dataset, load_from_disk
|
17 |
+
from transformers import AutoTokenizer, BertModel, BertConfig
|
18 |
+
import pandas as pd
|
19 |
+
|
20 |
+
# ==============================================================================
|
21 |
+
# 2. INITIAL SETUP
|
22 |
+
# ==============================================================================
|
23 |
+
# Suppress RDKit console output
|
24 |
+
RDLogger.DisableLog('rdApp.*')
|
25 |
+
# Ignore warnings for cleaner output
|
26 |
+
warnings.filterwarnings("ignore")
|
27 |
+
|
28 |
+
# ==============================================================================
|
29 |
+
# 3. MODEL AND LOSS FUNCTION
|
30 |
+
# ==============================================================================
|
31 |
+
def global_average_pooling(x):
|
32 |
+
"""Global Average Pooling: from [B, max_len, hid_dim] to [B, hid_dim]"""
|
33 |
+
return torch.mean(x, dim=1)
|
34 |
+
|
35 |
+
class SimSonEncoder(nn.Module):
|
36 |
+
"""The main encoder model based on BERT."""
|
37 |
+
def __init__(self, config: BertConfig, max_len: int, dropout: float = 0.1):
|
38 |
+
super(SimSonEncoder, self).__init__()
|
39 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
40 |
+
self.linear = nn.Linear(config.hidden_size, max_len)
|
41 |
+
self.dropout = nn.Dropout(dropout)
|
42 |
+
|
43 |
+
def forward(self, input_ids, attention_mask=None):
|
44 |
+
if attention_mask is None:
|
45 |
+
attention_mask = input_ids.ne(self.bert.config.pad_token_id)
|
46 |
+
|
47 |
+
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
|
48 |
+
hidden_states = self.dropout(outputs.last_hidden_state)
|
49 |
+
pooled_output = global_average_pooling(hidden_states)
|
50 |
+
return self.linear(pooled_output)
|
51 |
+
|
52 |
+
class ContrastiveLoss(nn.Module):
|
53 |
+
"""Calculates the contrastive loss for the SimSon model."""
|
54 |
+
def __init__(self, temperature=0.2):
|
55 |
+
super(ContrastiveLoss, self).__init__()
|
56 |
+
self.temperature = temperature
|
57 |
+
self.similarity_fn = F.cosine_similarity
|
58 |
+
|
59 |
+
def forward(self, proj_1, proj_2):
|
60 |
+
batch_size = proj_1.shape[0]
|
61 |
+
device = proj_1.device
|
62 |
+
|
63 |
+
# Normalize projections
|
64 |
+
z_i = F.normalize(proj_1, p=2, dim=1)
|
65 |
+
z_j = F.normalize(proj_2, p=2, dim=1)
|
66 |
+
|
67 |
+
# Concatenate for similarity matrix calculation
|
68 |
+
representations = torch.cat([z_i, z_j], dim=0)
|
69 |
+
|
70 |
+
# Calculate cosine similarity between all pairs
|
71 |
+
similarity_matrix = self.similarity_fn(representations.unsqueeze(1), representations.unsqueeze(0), dim=2)
|
72 |
+
|
73 |
+
# Identify positive pairs (original and its augmentation)
|
74 |
+
sim_ij = torch.diag(similarity_matrix, batch_size)
|
75 |
+
sim_ji = torch.diag(similarity_matrix, -batch_size)
|
76 |
+
positives = torch.cat([sim_ij, sim_ji], dim=0)
|
77 |
+
|
78 |
+
# Create a mask to exclude self-comparisons
|
79 |
+
nominator = torch.exp(positives / self.temperature)
|
80 |
+
mask = (~torch.eye(batch_size * 2, batch_size * 2, dtype=torch.bool, device=device)).float()
|
81 |
+
denominator = mask * torch.exp(similarity_matrix / self.temperature)
|
82 |
+
|
83 |
+
# Calculate the final loss
|
84 |
+
loss = -torch.log(nominator / torch.sum(denominator, dim=1))
|
85 |
+
return torch.sum(loss) / (2 * batch_size)
|
86 |
+
|
87 |
+
# ==============================================================================
|
88 |
+
# 4. DATA HANDLING
|
89 |
+
# ==============================================================================
|
90 |
+
class SmilesEnumerator:
|
91 |
+
"""Generates randomized SMILES strings for data augmentation."""
|
92 |
+
def randomize_smiles(self, smiles):
|
93 |
+
try:
|
94 |
+
mol = Chem.MolFromSmiles(smiles)
|
95 |
+
return Chem.MolToSmiles(mol, doRandom=True, canonical=False) if mol else smiles
|
96 |
+
except:
|
97 |
+
return smiles
|
98 |
+
|
99 |
+
class ContrastiveSmilesDataset(Dataset):
|
100 |
+
"""Dataset for creating pairs of augmented SMILES for contrastive learning."""
|
101 |
+
def __init__(self, smiles_list, tokenizer, max_length=512):
|
102 |
+
self.smiles_list = smiles_list
|
103 |
+
self.tokenizer = tokenizer
|
104 |
+
self.max_length = max_length
|
105 |
+
self.enumerator = SmilesEnumerator()
|
106 |
+
|
107 |
+
def __len__(self):
|
108 |
+
return len(self.smiles_list)
|
109 |
+
|
110 |
+
def __getitem__(self, idx):
|
111 |
+
original_smiles = self.smiles_list[idx]
|
112 |
+
|
113 |
+
# Create two different augmentations of the same SMILES
|
114 |
+
smiles_1 = self.enumerator.randomize_smiles(original_smiles)
|
115 |
+
smiles_2 = self.enumerator.randomize_smiles(original_smiles)
|
116 |
+
|
117 |
+
# Tokenize and do pad. Padding will be handled by the collate_fn.
|
118 |
+
tokens_1 = self.tokenizer(smiles_1, max_length=self.max_length, truncation=True, padding='max_length')
|
119 |
+
tokens_2 = self.tokenizer(smiles_2, max_length=self.max_length, truncation=True, padding='max_length')
|
120 |
+
|
121 |
+
return {
|
122 |
+
'input_ids_1': torch.tensor(tokens_1['input_ids']),
|
123 |
+
'attention_mask_1': torch.tensor(tokens_1['attention_mask']),
|
124 |
+
'input_ids_2': torch.tensor(tokens_2['input_ids']),
|
125 |
+
'attention_mask_2': torch.tensor(tokens_2['attention_mask']),
|
126 |
+
}
|
127 |
+
|
128 |
+
class PrecomputedContrastiveSmilesDataset(Dataset):
|
129 |
+
"""
|
130 |
+
A Dataset class that reads pre-augmented SMILES pairs from a Parquet file.
|
131 |
+
This is significantly faster as it offloads the expensive SMILES randomization
|
132 |
+
to a one-time preprocessing step.
|
133 |
+
"""
|
134 |
+
def __init__(self, tokenizer, file_path: str, max_length: int = 512):
|
135 |
+
self.tokenizer = tokenizer
|
136 |
+
self.max_length = max_length
|
137 |
+
|
138 |
+
# Load the entire dataset from the Parquet file into memory.
|
139 |
+
# This is fast and efficient for subsequent access.
|
140 |
+
print(f"Loading pre-computed data from {file_path}...")
|
141 |
+
self.data = pd.read_parquet(file_path)
|
142 |
+
print("Data loaded successfully.")
|
143 |
+
|
144 |
+
def __len__(self):
|
145 |
+
"""Returns the total number of pairs in the dataset."""
|
146 |
+
return len(self.data)
|
147 |
+
|
148 |
+
def __getitem__(self, idx):
|
149 |
+
"""
|
150 |
+
Retrieves a pre-augmented pair, tokenizes it, and returns it
|
151 |
+
in the format expected by the DataCollator.
|
152 |
+
"""
|
153 |
+
# Retrieve the pre-augmented pair from the DataFrame
|
154 |
+
row = self.data.iloc[idx]
|
155 |
+
smiles_1 = row['smiles_1']
|
156 |
+
smiles_2 = row['smiles_2']
|
157 |
+
|
158 |
+
# Tokenize the pair. This operation is fast and remains in the data loader.
|
159 |
+
tokens_1 = self.tokenizer(smiles_1, max_length=self.max_length, truncation=True, padding='max_length')
|
160 |
+
tokens_2 = self.tokenizer(smiles_2, max_length=self.max_length, truncation=True, padding='max_length')
|
161 |
+
|
162 |
+
return {
|
163 |
+
'input_ids_1': torch.tensor(tokens_1['input_ids']),
|
164 |
+
'attention_mask_1': torch.tensor(tokens_1['attention_mask']),
|
165 |
+
'input_ids_2': torch.tensor(tokens_2['input_ids']),
|
166 |
+
'attention_mask_2': torch.tensor(tokens_2['attention_mask']),
|
167 |
+
}
|
168 |
+
|
169 |
+
class PreTokenizedSmilesDataset(Dataset):
|
170 |
+
"""
|
171 |
+
A Dataset that loads a pre-tokenized and pre-padded dataset created
|
172 |
+
by the preprocessing script. It uses memory-mapping for instant loads
|
173 |
+
and high efficiency.
|
174 |
+
"""
|
175 |
+
def __init__(self, dataset_path: str):
|
176 |
+
# Load the dataset from disk. This is very fast due to memory-mapping.
|
177 |
+
self.dataset = load_from_disk(dataset_path)
|
178 |
+
# Set the format to PyTorch tensors for direct use in the model
|
179 |
+
self.dataset.set_format(type='torch', columns=[
|
180 |
+
'input_ids_1', 'attention_mask_1', 'input_ids_2', 'attention_mask_2'
|
181 |
+
])
|
182 |
+
print(f"Successfully loaded pre-tokenized dataset from {dataset_path}.")
|
183 |
+
|
184 |
+
def __len__(self):
|
185 |
+
"""Returns the total number of items in the dataset."""
|
186 |
+
return len(self.dataset)
|
187 |
+
|
188 |
+
def __getitem__(self, idx):
|
189 |
+
"""Retrieves a single pre-processed item."""
|
190 |
+
return self.dataset[idx]
|
191 |
+
|
192 |
+
|
193 |
+
class DataCollatorWithPadding:
|
194 |
+
"""
|
195 |
+
A collate function that dynamically pads inputs to the longest sequence
|
196 |
+
across both augmented views in the batch, ensuring consistent tensor shapes.
|
197 |
+
"""
|
198 |
+
def __init__(self, tokenizer):
|
199 |
+
self.tokenizer = tokenizer
|
200 |
+
|
201 |
+
def __call__(self, features):
|
202 |
+
# Create a combined list of features for both views to find the global max length
|
203 |
+
combined_features = []
|
204 |
+
for feature in features:
|
205 |
+
combined_features.append({'input_ids': feature['input_ids_1'], 'attention_mask': feature['attention_mask_1']})
|
206 |
+
combined_features.append({'input_ids': feature['input_ids_2'], 'attention_mask': feature['attention_mask_2']})
|
207 |
+
|
208 |
+
# Pad the combined batch. This ensures all sequences are padded to the same length.
|
209 |
+
padded_combined = self.tokenizer.pad(combined_features, padding='longest', return_tensors='pt')
|
210 |
+
|
211 |
+
# Split the padded tensors back into two views
|
212 |
+
batch_size = len(features)
|
213 |
+
input_ids_1, input_ids_2 = torch.split(padded_combined['input_ids'], batch_size, dim=0)
|
214 |
+
attention_mask_1, attention_mask_2 = torch.split(padded_combined['attention_mask'], batch_size, dim=0)
|
215 |
+
|
216 |
+
return {
|
217 |
+
'input_ids_1': input_ids_1,
|
218 |
+
'attention_mask_1': attention_mask_1,
|
219 |
+
'input_ids_2': input_ids_2,
|
220 |
+
'attention_mask_2': attention_mask_2,
|
221 |
+
}
|
222 |
+
|
223 |
+
# ==============================================================================
|
224 |
+
# 5. TRAINING AND EVALUATION LOOPS
|
225 |
+
# ==============================================================================
|
226 |
+
def evaluation_step(model, batch, criterion, device):
|
227 |
+
"""Performs a single evaluation step on a batch of data."""
|
228 |
+
input_ids_1 = batch['input_ids_1'].to(device)
|
229 |
+
attention_mask_1 = batch['attention_mask_1'].to(device)
|
230 |
+
input_ids_2 = batch['input_ids_2'].to(device)
|
231 |
+
attention_mask_2 = batch['attention_mask_2'].to(device)
|
232 |
+
|
233 |
+
combined_input_ids = torch.cat([input_ids_1, input_ids_2], dim=0)
|
234 |
+
combined_attention_mask = torch.cat([attention_mask_1, attention_mask_2], dim=0)
|
235 |
+
|
236 |
+
with torch.no_grad():
|
237 |
+
combined_proj = model(combined_input_ids, combined_attention_mask)
|
238 |
+
|
239 |
+
batch_size = input_ids_1.size(0)
|
240 |
+
proj_1, proj_2 = torch.split(combined_proj, batch_size, dim=0)
|
241 |
+
|
242 |
+
loss = criterion(proj_1, proj_2)
|
243 |
+
return proj_1, proj_2, loss
|
244 |
+
|
245 |
+
def train_epoch(model, train_loader, optimizer, criterion, device, scheduler, save_path, save_steps):
|
246 |
+
model.train()
|
247 |
+
total_loss = 0
|
248 |
+
progress_bar = tqdm(train_loader, desc="Training Batch", leave=False)
|
249 |
+
|
250 |
+
for step, batch in enumerate(progress_bar, 1):
|
251 |
+
input_ids_1 = batch['input_ids_1'].to(device)
|
252 |
+
attention_mask_1 = batch['attention_mask_1'].to(device)
|
253 |
+
input_ids_2 = batch['input_ids_2'].to(device)
|
254 |
+
attention_mask_2 = batch['attention_mask_2'].to(device)
|
255 |
+
|
256 |
+
optimizer.zero_grad()
|
257 |
+
with torch.autocast(dtype=torch.float16, device_type="cuda"):
|
258 |
+
combined_input_ids = torch.cat([input_ids_1, input_ids_2], dim=0)
|
259 |
+
combined_attention_mask = torch.cat([attention_mask_1, attention_mask_2], dim=0)
|
260 |
+
|
261 |
+
combined_proj = model(combined_input_ids, combined_attention_mask)
|
262 |
+
|
263 |
+
batch_size = input_ids_1.size(0)
|
264 |
+
proj_1, proj_2 = torch.split(combined_proj, batch_size, dim=0)
|
265 |
+
|
266 |
+
loss = criterion(proj_1, proj_2)
|
267 |
+
|
268 |
+
loss.backward()
|
269 |
+
|
270 |
+
optimizer.step()
|
271 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
|
272 |
+
scheduler.step()
|
273 |
+
|
274 |
+
total_loss += loss.item()
|
275 |
+
|
276 |
+
progress_bar.set_postfix(loss=f"{loss.item():.4f}")
|
277 |
+
wandb.log({
|
278 |
+
"train_batch_loss": loss.item(),
|
279 |
+
"learning_rate": scheduler.get_last_lr()[0]
|
280 |
+
})
|
281 |
+
if save_path and step % save_steps == 0:
|
282 |
+
torch.save(model.state_dict(), save_path)
|
283 |
+
progress_bar.write(f"Checkpoint saved at step {step}")
|
284 |
+
|
285 |
+
return total_loss / len(train_loader)
|
286 |
+
|
287 |
+
def validate_epoch(model, val_loader, criterion, device):
|
288 |
+
model.eval()
|
289 |
+
total_loss = 0
|
290 |
+
progress_bar = tqdm(val_loader, desc="Validating", leave=False)
|
291 |
+
|
292 |
+
for batch in progress_bar:
|
293 |
+
_, _, loss = evaluation_step(model, batch, criterion, device)
|
294 |
+
total_loss += loss.item()
|
295 |
+
print(f'Validation loss: {total_loss / len(val_loader)}')
|
296 |
+
return total_loss / len(val_loader)
|
297 |
+
|
298 |
+
def test_model(model, test_loader, criterion, device):
|
299 |
+
model.eval()
|
300 |
+
total_loss = 0
|
301 |
+
all_similarities = []
|
302 |
+
progress_bar = tqdm(test_loader, desc="Testing", leave=False)
|
303 |
+
|
304 |
+
for batch in progress_bar:
|
305 |
+
proj_1, proj_2, loss = evaluation_step(model, batch, criterion, device)
|
306 |
+
total_loss += loss.item()
|
307 |
+
|
308 |
+
proj_1_norm = F.normalize(proj_1, p=2, dim=1)
|
309 |
+
proj_2_norm = F.normalize(proj_2, p=2, dim=1)
|
310 |
+
batch_similarities = F.cosine_similarity(proj_1_norm, proj_2_norm, dim=1)
|
311 |
+
all_similarities.extend(batch_similarities.cpu().numpy())
|
312 |
+
|
313 |
+
avg_loss = total_loss / len(test_loader)
|
314 |
+
avg_sim = np.mean(all_similarities)
|
315 |
+
std_sim = np.std(all_similarities)
|
316 |
+
|
317 |
+
return avg_loss, avg_sim, std_sim
|
318 |
+
|
319 |
+
# ==============================================================================
|
320 |
+
# 6. SINGLE-GPU TRAINING
|
321 |
+
# ==============================================================================
|
322 |
+
def run_training(model_config, hparams, data_splits):
|
323 |
+
"""The main function to run the training and evaluation process."""
|
324 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
325 |
+
print(f"Using device: {device}")
|
326 |
+
|
327 |
+
wandb_key = os.getenv("WANDB_API_KEY")
|
328 |
+
if wandb_key:
|
329 |
+
wandb.login(key=wandb_key)
|
330 |
+
wandb.init(
|
331 |
+
project="simson-contrastive-learning-single-gpu",
|
332 |
+
name=f"run-{wandb.util.generate_id()}",
|
333 |
+
config=hparams
|
334 |
+
)
|
335 |
+
train_smiles, val_smiles, test_smiles = data_splits
|
336 |
+
|
337 |
+
|
338 |
+
tokenizer = AutoTokenizer.from_pretrained('DeepChem/ChemBERTa-77M-MTR')
|
339 |
+
|
340 |
+
precomputed_train_path = 'data/splits/train.parquet'
|
341 |
+
precomputed_test_path = 'data/splits/test.parquet'
|
342 |
+
precomputed_val_path = 'data/splits/validation.parquet'
|
343 |
+
|
344 |
+
train_dataset = PrecomputedContrastiveSmilesDataset(tokenizer, file_path=precomputed_train_path, max_length=hparams['max_length'])
|
345 |
+
test_dataset = PrecomputedContrastiveSmilesDataset(tokenizer, file_path=precomputed_test_path, max_length=hparams['max_length'])
|
346 |
+
val_dataset = PrecomputedContrastiveSmilesDataset(tokenizer, file_path=precomputed_val_path, max_length=hparams['max_length'])
|
347 |
+
|
348 |
+
train_loader = DataLoader(train_dataset, batch_size=hparams['batch_size'], shuffle=True, num_workers=16, prefetch_factor=128, pin_memory=True)
|
349 |
+
val_loader = DataLoader(val_dataset, batch_size=hparams['batch_size'], shuffle=False, num_workers=2, pin_memory=True)
|
350 |
+
test_loader = DataLoader(test_dataset, batch_size=hparams['batch_size'], shuffle=False, num_workers=2, pin_memory=True)
|
351 |
+
print('Initialized all data. Compiling the model...')
|
352 |
+
model = SimSonEncoder(config=model_config, max_len=hparams['max_embeddings']).to(device)
|
353 |
+
model = torch.compile(model)
|
354 |
+
print(model)
|
355 |
+
total_params = sum(p.numel() for p in model.parameters())
|
356 |
+
|
357 |
+
print(f"Total number of parameters: {total_params // 1_000_000} M")
|
358 |
+
wandb.config.update({"total_params_M": total_params // 1_000_000})
|
359 |
+
|
360 |
+
criterion = ContrastiveLoss(temperature=hparams['temperature']).to(device)
|
361 |
+
optimizer = optim.AdamW(model.parameters(), lr=hparams['lr'], weight_decay=1e-5, fused=True)
|
362 |
+
print(f"Len of dataloader is {len(train_loader)}, with bs: {len(train_loader) // hparams['batch_size']}")
|
363 |
+
scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_mult=1, T_0=int(hparams['epochs'] * len(train_loader)))
|
364 |
+
print("Starting training...")
|
365 |
+
wandb.watch(model, log='all', log_freq=5000)
|
366 |
+
|
367 |
+
best_val_loss = float('inf')
|
368 |
+
epoch_iterator = tqdm(range(hparams['epochs']), desc="Epochs")
|
369 |
+
model.load_state_dict(torch.load(hparams['save_path']))
|
370 |
+
val_loss = validate_epoch(model, val_loader, criterion, device)
|
371 |
+
|
372 |
+
for epoch in epoch_iterator:
|
373 |
+
train_loss = train_epoch(model, train_loader, optimizer, criterion, device, scheduler, hparams['save_path'], hparams['save_steps'])
|
374 |
+
val_loss = validate_epoch(model, val_loader, criterion, device)
|
375 |
+
epoch_iterator.set_postfix(train_loss=f"{train_loss:.4f}", val_loss=f"{val_loss:.4f}")
|
376 |
+
wandb.log({
|
377 |
+
"epoch": epoch + 1,
|
378 |
+
"train_epoch_loss": train_loss,
|
379 |
+
"val_epoch_loss": val_loss,
|
380 |
+
})
|
381 |
+
|
382 |
+
if val_loss < best_val_loss:
|
383 |
+
best_val_loss = val_loss
|
384 |
+
torch.save(model.state_dict(), hparams['save_path'])
|
385 |
+
epoch_iterator.write(f"Epoch {epoch + 1}: New best model saved with val loss {val_loss:.4f}")
|
386 |
+
|
387 |
+
epoch_iterator.write("Training complete. Starting final testing...")
|
388 |
+
# Load the best model for testing
|
389 |
+
model.load_state_dict(torch.load(hparams['save_path']))
|
390 |
+
|
391 |
+
test_loss, avg_sim, std_sim = test_model(model, test_loader, criterion, device)
|
392 |
+
|
393 |
+
print("\n--- Test Results ---")
|
394 |
+
print(f"Test Loss: {test_loss:.4f}")
|
395 |
+
print(f"Average Cosine Similarity: {avg_sim:.4f} \u00B1 {std_sim:.4f}")
|
396 |
+
print("--------------------")
|
397 |
+
|
398 |
+
wandb.log({
|
399 |
+
"test_loss": test_loss,
|
400 |
+
"avg_cosine_similarity": avg_sim,
|
401 |
+
"std_cosine_similarity": std_sim
|
402 |
+
})
|
403 |
+
|
404 |
+
wandb.finish()
|
405 |
+
|
406 |
+
# ==============================================================================
|
407 |
+
# 7. MAIN EXECUTION
|
408 |
+
# ==============================================================================
|
409 |
+
def main():
|
410 |
+
"""Main function to configure and run the training process."""
|
411 |
+
hparams = {
|
412 |
+
'epochs': 1,
|
413 |
+
'lr': 1e-5,
|
414 |
+
'temperature': 0.05,
|
415 |
+
'batch_size': 64,
|
416 |
+
'max_length': 128,
|
417 |
+
'save_path': "simson_checkpoints/simson_model_single_gpu.bin",
|
418 |
+
'save_steps': 100_000,
|
419 |
+
'max_embeddings': 512,
|
420 |
+
}
|
421 |
+
|
422 |
+
dataset = load_dataset('HoangHa/SMILES-250M')['train']
|
423 |
+
smiles_column_name = 'SMILES'
|
424 |
+
|
425 |
+
total_size = len(dataset)
|
426 |
+
test_size = int(0.1 * total_size)
|
427 |
+
val_size = int(0.1 * (total_size - test_size))
|
428 |
+
|
429 |
+
test_smiles = dataset.select(range(test_size))[smiles_column_name]
|
430 |
+
val_smiles = dataset.select(range(test_size, test_size + val_size))[smiles_column_name]
|
431 |
+
train_smiles = dataset.select(range(test_size + val_size, total_size))[smiles_column_name]
|
432 |
+
data_splits = (train_smiles, val_smiles, test_smiles)
|
433 |
+
tokenizer = AutoTokenizer.from_pretrained('DeepChem/ChemBERTa-77M-MTR')
|
434 |
+
model_config = BertConfig(
|
435 |
+
vocab_size=tokenizer.vocab_size, # Keep your optimal SMILES vocabulary
|
436 |
+
hidden_size=768, # 2x increase (768 → 1536)
|
437 |
+
num_hidden_layers=12, # ~1.67x increase (12 → 20)
|
438 |
+
num_attention_heads=12, # 2x increase (12 → 24)
|
439 |
+
intermediate_size=2048, # Traditional size (2048 → 4096)
|
440 |
+
max_position_embeddings=512
|
441 |
+
)
|
442 |
+
save_dir = os.path.dirname(hparams['save_path'])
|
443 |
+
if not os.path.exists(save_dir):
|
444 |
+
os.makedirs(save_dir)
|
445 |
+
|
446 |
+
# Directly call the training function for a single-GPU run
|
447 |
+
run_training(model_config, hparams, data_splits)
|
448 |
+
|
449 |
+
if __name__ == '__main__':
|
450 |
+
main()
|