Update spaCy pipeline
Browse files- README.md +2 -0
- relationFactory.py +13 -30
- ru_patents_rel-any-py3-none-any.whl +2 -2
README.md
CHANGED
@@ -45,5 +45,7 @@ model-index:
|
|
45 |
| `F1_CONNECTED-WITH` | 13.81 |
|
46 |
| `F1_IN-MANNER-OF` | 11.96 |
|
47 |
| `F1_ATTRIBUTE-FOR` | 17.36 |
|
|
|
|
|
48 |
| `TRANSFORMER_LOSS` | 0.77 |
|
49 |
| `RELATION_EXTRACTOR_LOSS` | 111.45 |
|
|
|
45 |
| `F1_CONNECTED-WITH` | 13.81 |
|
46 |
| `F1_IN-MANNER-OF` | 11.96 |
|
47 |
| `F1_ATTRIBUTE-FOR` | 17.36 |
|
48 |
+
| `F1_MACRO` | 0.00 |
|
49 |
+
| `F1_WEIGHTED` | 0.00 |
|
50 |
| `TRANSFORMER_LOSS` | 0.77 |
|
51 |
| `RELATION_EXTRACTOR_LOSS` | 111.45 |
|
relationFactory.py
CHANGED
@@ -1,34 +1,28 @@
|
|
1 |
-
from itertools import islice
|
2 |
from typing import Tuple, List, Iterable, Optional, Dict, Callable, Any
|
3 |
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import numpy
|
7 |
from spacy.training.example import Example
|
8 |
-
from thinc.api import Model, Optimizer
|
9 |
-
from spacy.tokens.doc import Doc
|
10 |
from spacy.pipeline.trainable_pipe import TrainablePipe
|
11 |
from spacy.vocab import Vocab
|
12 |
from spacy import Language
|
13 |
from thinc.model import set_dropout_rate
|
14 |
from wasabi import Printer
|
15 |
-
|
16 |
-
from typing import List, Tuple, Callable
|
17 |
-
|
18 |
-
import spacy
|
19 |
-
from spacy.tokens import Doc, Span
|
20 |
-
from thinc.types import Floats2d, Ints1d, Ragged, cast
|
21 |
-
from thinc.api import Model, Linear, chain, Logistic
|
22 |
-
|
23 |
-
import json
|
24 |
-
import os
|
25 |
-
import time
|
26 |
-
from pathlib import Path
|
27 |
-
|
28 |
-
from sklearn.metrics import precision_recall_fscore_support, f1_score
|
29 |
import plotly.express as px
|
30 |
import plotly.graph_objects as go
|
31 |
|
|
|
32 |
@spacy.registry.architectures("rel_model.v1")
|
33 |
def create_relation_model(
|
34 |
create_instance_tensor: Model[List[Doc], Floats2d],
|
@@ -270,17 +264,6 @@ class RelationExtractor(TrainablePipe):
|
|
270 |
self.set_annotations(docs, predictions)
|
271 |
return losses
|
272 |
|
273 |
-
def get_focal_loss(self, examples: Iterable[Example], scores, gamma=3.0, alpha=0.25, eps=1e-8) -> Tuple[float, float]:
|
274 |
-
truths = self._examples_to_truth(examples)
|
275 |
-
scores_2 = numpy.clip(scores, eps, 1. - eps)
|
276 |
-
p_t = numpy.clip(scores_2 * truths + (1 - scores_2) * (1 - truths), eps, 1. - eps)
|
277 |
-
|
278 |
-
focal_loss = -(1 - p_t) ** gamma * numpy.log(p_t)
|
279 |
-
loss = numpy.mean(numpy.sum(focal_loss, axis=1))
|
280 |
-
gradient = focal_loss * (1 - 2 * truths)
|
281 |
-
return float(loss), gradient
|
282 |
-
|
283 |
-
|
284 |
def get_loss(self, examples: Iterable[Example], scores) -> Tuple[float, float]:
|
285 |
"""Find the loss and gradient of loss for the batch of documents and
|
286 |
their predicted scores."""
|
|
|
|
|
1 |
from typing import Tuple, List, Iterable, Optional, Dict, Callable, Any
|
2 |
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
import time
|
6 |
+
from itertools import islice
|
7 |
+
from pathlib import Path
|
8 |
+
|
9 |
+
import spacy
|
10 |
+
from spacy.tokens import Doc, Span
|
11 |
+
from thinc.types import Floats2d, Ints1d, Ragged, cast
|
12 |
+
from thinc.api import Model, Linear, chain, Logistic, Optimizer
|
13 |
+
|
14 |
+
from sklearn.metrics import precision_recall_fscore_support, f1_score
|
15 |
import numpy
|
16 |
from spacy.training.example import Example
|
|
|
|
|
17 |
from spacy.pipeline.trainable_pipe import TrainablePipe
|
18 |
from spacy.vocab import Vocab
|
19 |
from spacy import Language
|
20 |
from thinc.model import set_dropout_rate
|
21 |
from wasabi import Printer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
import plotly.express as px
|
23 |
import plotly.graph_objects as go
|
24 |
|
25 |
+
|
26 |
@spacy.registry.architectures("rel_model.v1")
|
27 |
def create_relation_model(
|
28 |
create_instance_tensor: Model[List[Doc], Floats2d],
|
|
|
264 |
self.set_annotations(docs, predictions)
|
265 |
return losses
|
266 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
def get_loss(self, examples: Iterable[Example], scores) -> Tuple[float, float]:
|
268 |
"""Find the loss and gradient of loss for the batch of documents and
|
269 |
their predicted scores."""
|
ru_patents_rel-any-py3-none-any.whl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:123967bb99f193af5288262919e0a68942706cbe9acc5e3a27b22fb6dc6bfa31
|
3 |
+
size 661156390
|