Delta-Vector commited on
Commit
a810bc8
·
verified ·
1 Parent(s): deebb83

Training in progress, step 420, checkpoint

Browse files
Files changed (37) hide show
  1. checkpoint-420/config.json +35 -0
  2. checkpoint-420/generation_config.json +7 -0
  3. checkpoint-420/global_step420/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  4. checkpoint-420/global_step420/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  5. checkpoint-420/global_step420/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  6. checkpoint-420/global_step420/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  7. checkpoint-420/global_step420/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
  8. checkpoint-420/global_step420/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
  9. checkpoint-420/global_step420/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
  10. checkpoint-420/global_step420/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
  11. checkpoint-420/global_step420/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
  12. checkpoint-420/global_step420/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
  13. checkpoint-420/global_step420/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
  14. checkpoint-420/global_step420/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
  15. checkpoint-420/global_step420/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
  16. checkpoint-420/global_step420/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
  17. checkpoint-420/global_step420/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
  18. checkpoint-420/global_step420/zero_pp_rank_7_mp_rank_00_model_states.pt +3 -0
  19. checkpoint-420/latest +1 -0
  20. checkpoint-420/model-00001-of-00002.safetensors +3 -0
  21. checkpoint-420/model-00002-of-00002.safetensors +3 -0
  22. checkpoint-420/model.safetensors.index.json +298 -0
  23. checkpoint-420/rng_state_0.pth +3 -0
  24. checkpoint-420/rng_state_1.pth +3 -0
  25. checkpoint-420/rng_state_2.pth +3 -0
  26. checkpoint-420/rng_state_3.pth +3 -0
  27. checkpoint-420/rng_state_4.pth +3 -0
  28. checkpoint-420/rng_state_5.pth +3 -0
  29. checkpoint-420/rng_state_6.pth +3 -0
  30. checkpoint-420/rng_state_7.pth +3 -0
  31. checkpoint-420/scheduler.pt +3 -0
  32. checkpoint-420/special_tokens_map.json +23 -0
  33. checkpoint-420/tokenizer.json +3 -0
  34. checkpoint-420/tokenizer_config.json +2064 -0
  35. checkpoint-420/trainer_state.json +3014 -0
  36. checkpoint-420/training_args.bin +3 -0
  37. checkpoint-420/zero_to_fp32.py +760 -0
checkpoint-420/config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LlamaForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 128000,
8
+ "eos_token_id": 128019,
9
+ "head_dim": 128,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 3072,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 9216,
14
+ "max_position_embeddings": 131072,
15
+ "mlp_bias": false,
16
+ "model_type": "llama",
17
+ "num_attention_heads": 32,
18
+ "num_hidden_layers": 32,
19
+ "num_key_value_heads": 8,
20
+ "pretraining_tp": 1,
21
+ "rms_norm_eps": 1e-05,
22
+ "rope_scaling": {
23
+ "factor": 8.0,
24
+ "high_freq_factor": 4.0,
25
+ "low_freq_factor": 1.0,
26
+ "original_max_position_embeddings": 8192,
27
+ "rope_type": "llama3"
28
+ },
29
+ "rope_theta": 500000.0,
30
+ "tie_word_embeddings": false,
31
+ "torch_dtype": "bfloat16",
32
+ "transformers_version": "4.50.0",
33
+ "use_cache": false,
34
+ "vocab_size": 128256
35
+ }
checkpoint-420/generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 128000,
4
+ "do_sample": true,
5
+ "eos_token_id": 128001,
6
+ "transformers_version": "4.50.0"
7
+ }
checkpoint-420/global_step420/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c813ca5704b3a55af21c2461ca46836ec1c7116c106667f29e63a1c0d9734bd8
3
+ size 3402782855
checkpoint-420/global_step420/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e214f5c76d81c63f597899ebdb6976644c2e75b7b412f489abf77a34da75e2f1
3
+ size 3402782855
checkpoint-420/global_step420/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cdbc53dcbe659794e602c4132ec1070afb10ae22f1c67217de68f681dad9033e
3
+ size 3402782855
checkpoint-420/global_step420/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65bdf9d812329d973f47c8ace5d099087eabf549ba32ec82ab385d8d6fa98417
3
+ size 3402782855
checkpoint-420/global_step420/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6996cfd857f6011d6f2fe7784a0b98c2c695bce8d370406996145fa39d8fc01e
3
+ size 3402782855
checkpoint-420/global_step420/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e198ca76899c328a5cf7028893c3418da0bd87d4aa1c2bb3334d5f1e18266cc0
3
+ size 3402782855
checkpoint-420/global_step420/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e489615b9b4d022385c4b19565bb84d3e5135228a5833548e8527316cd79727b
3
+ size 3402782855
checkpoint-420/global_step420/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c654aaa4e131d919ca9017fe76607aa7ba735e08e4491cb315ae1480ed853667
3
+ size 3402782855
checkpoint-420/global_step420/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41fbeadb39e83fd65423591c961a16686fd21c9cd5e2f3f81d939375861eeb22
3
+ size 150245
checkpoint-420/global_step420/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd05af6e45ddba65500463600db0779648befb8f3d3e14b7ef70e38cb3eb08f7
3
+ size 150245
checkpoint-420/global_step420/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29ce2cffabee9954a963bcae6ffbb7a19c3c6c54c60547a3269264ccf9a032be
3
+ size 150245
checkpoint-420/global_step420/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6143bf6a894e4f305f0f5a17ea69f2a55dd697db2c58f5eaef5fd981476bdb30
3
+ size 150245
checkpoint-420/global_step420/zero_pp_rank_4_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b84314532016a14d32c0011f4d737bb839b6d30501c49da1eb65db9c9318905
3
+ size 150245
checkpoint-420/global_step420/zero_pp_rank_5_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca9d8b1ed7bd9c8dd6d112c28e94ecc4aa0eb007ac8cc825aca3f6191f839d35
3
+ size 150245
checkpoint-420/global_step420/zero_pp_rank_6_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f0873d4488beb0536ee4ec32b3df8aa91c36c58d61b88bd21c8bbdd036e4060
3
+ size 150245
checkpoint-420/global_step420/zero_pp_rank_7_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e70ce5d6377fcde6d0accda733718ce14c09ad09d5678d26afa280470013ffd7
3
+ size 150245
checkpoint-420/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step420
checkpoint-420/model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ea48ffc540582401d1ec4465410ae43dd0884bc7429ca74bb660f8518ae0dc2
3
+ size 4978354640
checkpoint-420/model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf4307b5a04e38aec5ef0b575f645e8064d538ad4efad47242d5cd8f325691f2
3
+ size 4047172128
checkpoint-420/model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 9025492992
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00002.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00002.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
296
+ "model.norm.weight": "model-00002-of-00002.safetensors"
297
+ }
298
+ }
checkpoint-420/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0628a9017696045a3a29e9eaffc71e9262d855716e773c0c3be760a1fe85bc8
3
+ size 15984
checkpoint-420/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df342004a4d8e3626bf2a9f689fde7c8bfd6d995e14931f5496eda1f456cb6f2
3
+ size 15984
checkpoint-420/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f02096eb4e8850b91490e80e4a042e2e60f71bd2abc6a269d62c271649cb77d2
3
+ size 15984
checkpoint-420/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:326c778d3d0e7e3d5665fa0a9ecd92986609c430da08b41611d6c05dc19815a8
3
+ size 15984
checkpoint-420/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d978dcb0c34e022ee6750e9d86814b8c82e4965d7e07662f35f06eeac12938f3
3
+ size 15984
checkpoint-420/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01e83399aed1d9d173c3e07b2efa8530c956b62b2b68394c2ed0d43bd8bba9d1
3
+ size 15984
checkpoint-420/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:606ab3ca92e3d20c327c69fdcce7f7e39bec2f2c3538b036088b255f917e3ba4
3
+ size 15984
checkpoint-420/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1276a987dd22c9093fec58921ba19f340a28f18bff635cc01324e09a3c37ac3a
3
+ size 15984
checkpoint-420/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:335005782133f2fef2103c44db766999f6f6e1286ba705b565f67132fdf71586
3
+ size 1064
checkpoint-420/special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin_of_text|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|im_end|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|finetune_right_pad_id|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
checkpoint-420/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:907a7b3b13afcc9d481433f17277a6dd7cf852c6185262597f1a849d2ebeaa45
3
+ size 17209884
checkpoint-420/tokenizer_config.json ADDED
@@ -0,0 +1,2064 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "128000": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128001": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128002": {
20
+ "content": "<|reserved_special_token_0|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128003": {
28
+ "content": "<|reserved_special_token_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128004": {
36
+ "content": "<|finetune_right_pad_id|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128005": {
44
+ "content": "<|reserved_special_token_2|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128006": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128007": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128008": {
68
+ "content": "<|eom_id|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128009": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128010": {
84
+ "content": "<|python_tag|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128011": {
92
+ "content": "<|reserved_special_token_3|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128012": {
100
+ "content": "<|reserved_special_token_4|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128013": {
108
+ "content": "<|reserved_special_token_5|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128014": {
116
+ "content": "<|reserved_special_token_6|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128015": {
124
+ "content": "<|reserved_special_token_7|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128016": {
132
+ "content": "<|reserved_special_token_8|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128017": {
140
+ "content": "<|reserved_special_token_9|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128018": {
148
+ "content": "<|im_start|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128019": {
156
+ "content": "<|im_end|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128020": {
164
+ "content": "<|reserved_special_token_12|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128021": {
172
+ "content": "<|reserved_special_token_13|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128022": {
180
+ "content": "<|reserved_special_token_14|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128023": {
188
+ "content": "<|reserved_special_token_15|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128024": {
196
+ "content": "<|reserved_special_token_16|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128025": {
204
+ "content": "<|reserved_special_token_17|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128026": {
212
+ "content": "<|reserved_special_token_18|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128027": {
220
+ "content": "<|reserved_special_token_19|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128028": {
228
+ "content": "<|reserved_special_token_20|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128029": {
236
+ "content": "<|reserved_special_token_21|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128030": {
244
+ "content": "<|reserved_special_token_22|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128031": {
252
+ "content": "<|reserved_special_token_23|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128032": {
260
+ "content": "<|reserved_special_token_24|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128033": {
268
+ "content": "<|reserved_special_token_25|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128034": {
276
+ "content": "<|reserved_special_token_26|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128035": {
284
+ "content": "<|reserved_special_token_27|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128036": {
292
+ "content": "<|reserved_special_token_28|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128037": {
300
+ "content": "<|reserved_special_token_29|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128038": {
308
+ "content": "<|reserved_special_token_30|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128039": {
316
+ "content": "<|reserved_special_token_31|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128040": {
324
+ "content": "<|reserved_special_token_32|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128041": {
332
+ "content": "<|reserved_special_token_33|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128042": {
340
+ "content": "<|reserved_special_token_34|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128043": {
348
+ "content": "<|reserved_special_token_35|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128044": {
356
+ "content": "<|reserved_special_token_36|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128045": {
364
+ "content": "<|reserved_special_token_37|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128046": {
372
+ "content": "<|reserved_special_token_38|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128047": {
380
+ "content": "<|reserved_special_token_39|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128048": {
388
+ "content": "<|reserved_special_token_40|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128049": {
396
+ "content": "<|reserved_special_token_41|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128050": {
404
+ "content": "<|reserved_special_token_42|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128051": {
412
+ "content": "<|reserved_special_token_43|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128052": {
420
+ "content": "<|reserved_special_token_44|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128053": {
428
+ "content": "<|reserved_special_token_45|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128054": {
436
+ "content": "<|reserved_special_token_46|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128055": {
444
+ "content": "<|reserved_special_token_47|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128056": {
452
+ "content": "<|reserved_special_token_48|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128057": {
460
+ "content": "<|reserved_special_token_49|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128058": {
468
+ "content": "<|reserved_special_token_50|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128059": {
476
+ "content": "<|reserved_special_token_51|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128060": {
484
+ "content": "<|reserved_special_token_52|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128061": {
492
+ "content": "<|reserved_special_token_53|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128062": {
500
+ "content": "<|reserved_special_token_54|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128063": {
508
+ "content": "<|reserved_special_token_55|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128064": {
516
+ "content": "<|reserved_special_token_56|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128065": {
524
+ "content": "<|reserved_special_token_57|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128066": {
532
+ "content": "<|reserved_special_token_58|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128067": {
540
+ "content": "<|reserved_special_token_59|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128068": {
548
+ "content": "<|reserved_special_token_60|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128069": {
556
+ "content": "<|reserved_special_token_61|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128070": {
564
+ "content": "<|reserved_special_token_62|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128071": {
572
+ "content": "<|reserved_special_token_63|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128072": {
580
+ "content": "<|reserved_special_token_64|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128073": {
588
+ "content": "<|reserved_special_token_65|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128074": {
596
+ "content": "<|reserved_special_token_66|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128075": {
604
+ "content": "<|reserved_special_token_67|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128076": {
612
+ "content": "<|reserved_special_token_68|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128077": {
620
+ "content": "<|reserved_special_token_69|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128078": {
628
+ "content": "<|reserved_special_token_70|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128079": {
636
+ "content": "<|reserved_special_token_71|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128080": {
644
+ "content": "<|reserved_special_token_72|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128081": {
652
+ "content": "<|reserved_special_token_73|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128082": {
660
+ "content": "<|reserved_special_token_74|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128083": {
668
+ "content": "<|reserved_special_token_75|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128084": {
676
+ "content": "<|reserved_special_token_76|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128085": {
684
+ "content": "<|reserved_special_token_77|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128086": {
692
+ "content": "<|reserved_special_token_78|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128087": {
700
+ "content": "<|reserved_special_token_79|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128088": {
708
+ "content": "<|reserved_special_token_80|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128089": {
716
+ "content": "<|reserved_special_token_81|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128090": {
724
+ "content": "<|reserved_special_token_82|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128091": {
732
+ "content": "<|reserved_special_token_83|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128092": {
740
+ "content": "<|reserved_special_token_84|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128093": {
748
+ "content": "<|reserved_special_token_85|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128094": {
756
+ "content": "<|reserved_special_token_86|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128095": {
764
+ "content": "<|reserved_special_token_87|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128096": {
772
+ "content": "<|reserved_special_token_88|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128097": {
780
+ "content": "<|reserved_special_token_89|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128098": {
788
+ "content": "<|reserved_special_token_90|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128099": {
796
+ "content": "<|reserved_special_token_91|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128100": {
804
+ "content": "<|reserved_special_token_92|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128101": {
812
+ "content": "<|reserved_special_token_93|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128102": {
820
+ "content": "<|reserved_special_token_94|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128103": {
828
+ "content": "<|reserved_special_token_95|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128104": {
836
+ "content": "<|reserved_special_token_96|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128105": {
844
+ "content": "<|reserved_special_token_97|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128106": {
852
+ "content": "<|reserved_special_token_98|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128107": {
860
+ "content": "<|reserved_special_token_99|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128108": {
868
+ "content": "<|reserved_special_token_100|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128109": {
876
+ "content": "<|reserved_special_token_101|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128110": {
884
+ "content": "<|reserved_special_token_102|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128111": {
892
+ "content": "<|reserved_special_token_103|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128112": {
900
+ "content": "<|reserved_special_token_104|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128113": {
908
+ "content": "<|reserved_special_token_105|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128114": {
916
+ "content": "<|reserved_special_token_106|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128115": {
924
+ "content": "<|reserved_special_token_107|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128116": {
932
+ "content": "<|reserved_special_token_108|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128117": {
940
+ "content": "<|reserved_special_token_109|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128118": {
948
+ "content": "<|reserved_special_token_110|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128119": {
956
+ "content": "<|reserved_special_token_111|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128120": {
964
+ "content": "<|reserved_special_token_112|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128121": {
972
+ "content": "<|reserved_special_token_113|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128122": {
980
+ "content": "<|reserved_special_token_114|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128123": {
988
+ "content": "<|reserved_special_token_115|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128124": {
996
+ "content": "<|reserved_special_token_116|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128125": {
1004
+ "content": "<|reserved_special_token_117|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128126": {
1012
+ "content": "<|reserved_special_token_118|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128127": {
1020
+ "content": "<|reserved_special_token_119|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128128": {
1028
+ "content": "<|reserved_special_token_120|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128129": {
1036
+ "content": "<|reserved_special_token_121|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128130": {
1044
+ "content": "<|reserved_special_token_122|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128131": {
1052
+ "content": "<|reserved_special_token_123|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128132": {
1060
+ "content": "<|reserved_special_token_124|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128133": {
1068
+ "content": "<|reserved_special_token_125|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128134": {
1076
+ "content": "<|reserved_special_token_126|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128135": {
1084
+ "content": "<|reserved_special_token_127|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128136": {
1092
+ "content": "<|reserved_special_token_128|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128137": {
1100
+ "content": "<|reserved_special_token_129|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128138": {
1108
+ "content": "<|reserved_special_token_130|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128139": {
1116
+ "content": "<|reserved_special_token_131|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128140": {
1124
+ "content": "<|reserved_special_token_132|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128141": {
1132
+ "content": "<|reserved_special_token_133|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128142": {
1140
+ "content": "<|reserved_special_token_134|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128143": {
1148
+ "content": "<|reserved_special_token_135|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128144": {
1156
+ "content": "<|reserved_special_token_136|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128145": {
1164
+ "content": "<|reserved_special_token_137|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128146": {
1172
+ "content": "<|reserved_special_token_138|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128147": {
1180
+ "content": "<|reserved_special_token_139|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128148": {
1188
+ "content": "<|reserved_special_token_140|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128149": {
1196
+ "content": "<|reserved_special_token_141|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128150": {
1204
+ "content": "<|reserved_special_token_142|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128151": {
1212
+ "content": "<|reserved_special_token_143|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128152": {
1220
+ "content": "<|reserved_special_token_144|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128153": {
1228
+ "content": "<|reserved_special_token_145|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128154": {
1236
+ "content": "<|reserved_special_token_146|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128155": {
1244
+ "content": "<|reserved_special_token_147|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128156": {
1252
+ "content": "<|reserved_special_token_148|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128157": {
1260
+ "content": "<|reserved_special_token_149|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128158": {
1268
+ "content": "<|reserved_special_token_150|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128159": {
1276
+ "content": "<|reserved_special_token_151|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128160": {
1284
+ "content": "<|reserved_special_token_152|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128161": {
1292
+ "content": "<|reserved_special_token_153|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128162": {
1300
+ "content": "<|reserved_special_token_154|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128163": {
1308
+ "content": "<|reserved_special_token_155|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128164": {
1316
+ "content": "<|reserved_special_token_156|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128165": {
1324
+ "content": "<|reserved_special_token_157|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128166": {
1332
+ "content": "<|reserved_special_token_158|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128167": {
1340
+ "content": "<|reserved_special_token_159|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128168": {
1348
+ "content": "<|reserved_special_token_160|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128169": {
1356
+ "content": "<|reserved_special_token_161|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128170": {
1364
+ "content": "<|reserved_special_token_162|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128171": {
1372
+ "content": "<|reserved_special_token_163|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128172": {
1380
+ "content": "<|reserved_special_token_164|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128173": {
1388
+ "content": "<|reserved_special_token_165|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128174": {
1396
+ "content": "<|reserved_special_token_166|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128175": {
1404
+ "content": "<|reserved_special_token_167|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128176": {
1412
+ "content": "<|reserved_special_token_168|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128177": {
1420
+ "content": "<|reserved_special_token_169|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128178": {
1428
+ "content": "<|reserved_special_token_170|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128179": {
1436
+ "content": "<|reserved_special_token_171|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128180": {
1444
+ "content": "<|reserved_special_token_172|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128181": {
1452
+ "content": "<|reserved_special_token_173|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128182": {
1460
+ "content": "<|reserved_special_token_174|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128183": {
1468
+ "content": "<|reserved_special_token_175|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128184": {
1476
+ "content": "<|reserved_special_token_176|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128185": {
1484
+ "content": "<|reserved_special_token_177|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128186": {
1492
+ "content": "<|reserved_special_token_178|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128187": {
1500
+ "content": "<|reserved_special_token_179|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128188": {
1508
+ "content": "<|reserved_special_token_180|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128189": {
1516
+ "content": "<|reserved_special_token_181|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128190": {
1524
+ "content": "<|reserved_special_token_182|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128191": {
1532
+ "content": "<|reserved_special_token_183|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128192": {
1540
+ "content": "<|reserved_special_token_184|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128193": {
1548
+ "content": "<|reserved_special_token_185|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128194": {
1556
+ "content": "<|reserved_special_token_186|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128195": {
1564
+ "content": "<|reserved_special_token_187|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128196": {
1572
+ "content": "<|reserved_special_token_188|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128197": {
1580
+ "content": "<|reserved_special_token_189|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128198": {
1588
+ "content": "<|reserved_special_token_190|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128199": {
1596
+ "content": "<|reserved_special_token_191|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128200": {
1604
+ "content": "<|reserved_special_token_192|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128201": {
1612
+ "content": "<|reserved_special_token_193|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128202": {
1620
+ "content": "<|reserved_special_token_194|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128203": {
1628
+ "content": "<|reserved_special_token_195|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128204": {
1636
+ "content": "<|reserved_special_token_196|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128205": {
1644
+ "content": "<|reserved_special_token_197|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128206": {
1652
+ "content": "<|reserved_special_token_198|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128207": {
1660
+ "content": "<|reserved_special_token_199|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128208": {
1668
+ "content": "<|reserved_special_token_200|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128209": {
1676
+ "content": "<|reserved_special_token_201|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128210": {
1684
+ "content": "<|reserved_special_token_202|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128211": {
1692
+ "content": "<|reserved_special_token_203|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128212": {
1700
+ "content": "<|reserved_special_token_204|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128213": {
1708
+ "content": "<|reserved_special_token_205|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128214": {
1716
+ "content": "<|reserved_special_token_206|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128215": {
1724
+ "content": "<|reserved_special_token_207|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128216": {
1732
+ "content": "<|reserved_special_token_208|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128217": {
1740
+ "content": "<|reserved_special_token_209|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128218": {
1748
+ "content": "<|reserved_special_token_210|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128219": {
1756
+ "content": "<|reserved_special_token_211|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128220": {
1764
+ "content": "<|reserved_special_token_212|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128221": {
1772
+ "content": "<|reserved_special_token_213|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128222": {
1780
+ "content": "<|reserved_special_token_214|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128223": {
1788
+ "content": "<|reserved_special_token_215|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128224": {
1796
+ "content": "<|reserved_special_token_216|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128225": {
1804
+ "content": "<|reserved_special_token_217|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128226": {
1812
+ "content": "<|reserved_special_token_218|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128227": {
1820
+ "content": "<|reserved_special_token_219|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128228": {
1828
+ "content": "<|reserved_special_token_220|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128229": {
1836
+ "content": "<|reserved_special_token_221|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128230": {
1844
+ "content": "<|reserved_special_token_222|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128231": {
1852
+ "content": "<|reserved_special_token_223|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128232": {
1860
+ "content": "<|reserved_special_token_224|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128233": {
1868
+ "content": "<|reserved_special_token_225|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128234": {
1876
+ "content": "<|reserved_special_token_226|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128235": {
1884
+ "content": "<|reserved_special_token_227|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128236": {
1892
+ "content": "<|reserved_special_token_228|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128237": {
1900
+ "content": "<|reserved_special_token_229|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128238": {
1908
+ "content": "<|reserved_special_token_230|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128239": {
1916
+ "content": "<|reserved_special_token_231|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128240": {
1924
+ "content": "<|reserved_special_token_232|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128241": {
1932
+ "content": "<|reserved_special_token_233|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128242": {
1940
+ "content": "<|reserved_special_token_234|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128243": {
1948
+ "content": "<|reserved_special_token_235|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128244": {
1956
+ "content": "<|reserved_special_token_236|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128245": {
1964
+ "content": "<|reserved_special_token_237|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128246": {
1972
+ "content": "<|reserved_special_token_238|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128247": {
1980
+ "content": "<|reserved_special_token_239|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128248": {
1988
+ "content": "<|reserved_special_token_240|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128249": {
1996
+ "content": "<|reserved_special_token_241|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128250": {
2004
+ "content": "<|reserved_special_token_242|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128251": {
2012
+ "content": "<|reserved_special_token_243|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128252": {
2020
+ "content": "<|reserved_special_token_244|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128253": {
2028
+ "content": "<|reserved_special_token_245|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128254": {
2036
+ "content": "<|reserved_special_token_246|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128255": {
2044
+ "content": "<|reserved_special_token_247|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ }
2051
+ },
2052
+ "bos_token": "<|begin_of_text|>",
2053
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
2054
+ "clean_up_tokenization_spaces": true,
2055
+ "eos_token": "<|im_end|>",
2056
+ "extra_special_tokens": {},
2057
+ "model_input_names": [
2058
+ "input_ids",
2059
+ "attention_mask"
2060
+ ],
2061
+ "model_max_length": 131072,
2062
+ "pad_token": "<|finetune_right_pad_id|>",
2063
+ "tokenizer_class": "PreTrainedTokenizer"
2064
+ }
checkpoint-420/trainer_state.json ADDED
@@ -0,0 +1,3014 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 0.9988109393579072,
6
+ "eval_steps": 105,
7
+ "global_step": 420,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.0023781212841854932,
14
+ "grad_norm": 32.74397118558861,
15
+ "learning_rate": 5.000000000000001e-07,
16
+ "loss": 2.9478,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.0023781212841854932,
21
+ "eval_loss": 3.373392343521118,
22
+ "eval_runtime": 78.9756,
23
+ "eval_samples_per_second": 8.091,
24
+ "eval_steps_per_second": 1.013,
25
+ "step": 1
26
+ },
27
+ {
28
+ "epoch": 0.0047562425683709865,
29
+ "grad_norm": 37.080911592721954,
30
+ "learning_rate": 1.0000000000000002e-06,
31
+ "loss": 2.8264,
32
+ "step": 2
33
+ },
34
+ {
35
+ "epoch": 0.007134363852556481,
36
+ "grad_norm": 31.107267997702266,
37
+ "learning_rate": 1.5e-06,
38
+ "loss": 2.9936,
39
+ "step": 3
40
+ },
41
+ {
42
+ "epoch": 0.009512485136741973,
43
+ "grad_norm": 27.574905774161167,
44
+ "learning_rate": 2.0000000000000003e-06,
45
+ "loss": 2.8944,
46
+ "step": 4
47
+ },
48
+ {
49
+ "epoch": 0.011890606420927468,
50
+ "grad_norm": 13.643957484299273,
51
+ "learning_rate": 2.5e-06,
52
+ "loss": 2.7687,
53
+ "step": 5
54
+ },
55
+ {
56
+ "epoch": 0.014268727705112961,
57
+ "grad_norm": 15.077028980653411,
58
+ "learning_rate": 3e-06,
59
+ "loss": 2.6623,
60
+ "step": 6
61
+ },
62
+ {
63
+ "epoch": 0.016646848989298454,
64
+ "grad_norm": 14.569557474559408,
65
+ "learning_rate": 3.5e-06,
66
+ "loss": 2.9007,
67
+ "step": 7
68
+ },
69
+ {
70
+ "epoch": 0.019024970273483946,
71
+ "grad_norm": 13.894984550517007,
72
+ "learning_rate": 4.000000000000001e-06,
73
+ "loss": 2.8359,
74
+ "step": 8
75
+ },
76
+ {
77
+ "epoch": 0.02140309155766944,
78
+ "grad_norm": 13.546442233583257,
79
+ "learning_rate": 4.5e-06,
80
+ "loss": 2.7583,
81
+ "step": 9
82
+ },
83
+ {
84
+ "epoch": 0.023781212841854936,
85
+ "grad_norm": 11.166476039936938,
86
+ "learning_rate": 5e-06,
87
+ "loss": 2.518,
88
+ "step": 10
89
+ },
90
+ {
91
+ "epoch": 0.026159334126040427,
92
+ "grad_norm": 7.787448179397784,
93
+ "learning_rate": 5.500000000000001e-06,
94
+ "loss": 2.6494,
95
+ "step": 11
96
+ },
97
+ {
98
+ "epoch": 0.028537455410225922,
99
+ "grad_norm": 4.72349822440695,
100
+ "learning_rate": 6e-06,
101
+ "loss": 2.4022,
102
+ "step": 12
103
+ },
104
+ {
105
+ "epoch": 0.030915576694411414,
106
+ "grad_norm": 4.100722460414476,
107
+ "learning_rate": 6.5000000000000004e-06,
108
+ "loss": 2.3933,
109
+ "step": 13
110
+ },
111
+ {
112
+ "epoch": 0.03329369797859691,
113
+ "grad_norm": 4.193151112965372,
114
+ "learning_rate": 7e-06,
115
+ "loss": 2.5468,
116
+ "step": 14
117
+ },
118
+ {
119
+ "epoch": 0.0356718192627824,
120
+ "grad_norm": 5.502246954578136,
121
+ "learning_rate": 7.500000000000001e-06,
122
+ "loss": 2.5126,
123
+ "step": 15
124
+ },
125
+ {
126
+ "epoch": 0.03804994054696789,
127
+ "grad_norm": 5.716937946349337,
128
+ "learning_rate": 8.000000000000001e-06,
129
+ "loss": 2.6761,
130
+ "step": 16
131
+ },
132
+ {
133
+ "epoch": 0.04042806183115339,
134
+ "grad_norm": 3.008867017303434,
135
+ "learning_rate": 8.5e-06,
136
+ "loss": 2.4264,
137
+ "step": 17
138
+ },
139
+ {
140
+ "epoch": 0.04280618311533888,
141
+ "grad_norm": 3.6016120293217178,
142
+ "learning_rate": 9e-06,
143
+ "loss": 2.3836,
144
+ "step": 18
145
+ },
146
+ {
147
+ "epoch": 0.04518430439952437,
148
+ "grad_norm": 2.1431386543975908,
149
+ "learning_rate": 9.5e-06,
150
+ "loss": 2.4879,
151
+ "step": 19
152
+ },
153
+ {
154
+ "epoch": 0.04756242568370987,
155
+ "grad_norm": 3.838539096237921,
156
+ "learning_rate": 1e-05,
157
+ "loss": 2.4116,
158
+ "step": 20
159
+ },
160
+ {
161
+ "epoch": 0.04994054696789536,
162
+ "grad_norm": 1.9119200890173822,
163
+ "learning_rate": 1.0500000000000001e-05,
164
+ "loss": 2.6716,
165
+ "step": 21
166
+ },
167
+ {
168
+ "epoch": 0.052318668252080855,
169
+ "grad_norm": 2.0853737807318904,
170
+ "learning_rate": 1.1000000000000001e-05,
171
+ "loss": 2.4523,
172
+ "step": 22
173
+ },
174
+ {
175
+ "epoch": 0.054696789536266346,
176
+ "grad_norm": 1.6109539551135528,
177
+ "learning_rate": 1.15e-05,
178
+ "loss": 2.3086,
179
+ "step": 23
180
+ },
181
+ {
182
+ "epoch": 0.057074910820451845,
183
+ "grad_norm": 2.575933824126331,
184
+ "learning_rate": 1.2e-05,
185
+ "loss": 2.5576,
186
+ "step": 24
187
+ },
188
+ {
189
+ "epoch": 0.059453032104637336,
190
+ "grad_norm": 1.4827660467902501,
191
+ "learning_rate": 1.25e-05,
192
+ "loss": 2.264,
193
+ "step": 25
194
+ },
195
+ {
196
+ "epoch": 0.06183115338882283,
197
+ "grad_norm": 2.1022593224903128,
198
+ "learning_rate": 1.3000000000000001e-05,
199
+ "loss": 2.8781,
200
+ "step": 26
201
+ },
202
+ {
203
+ "epoch": 0.06420927467300833,
204
+ "grad_norm": 2.756765764204405,
205
+ "learning_rate": 1.3500000000000001e-05,
206
+ "loss": 2.5071,
207
+ "step": 27
208
+ },
209
+ {
210
+ "epoch": 0.06658739595719382,
211
+ "grad_norm": 1.6249455774563617,
212
+ "learning_rate": 1.4e-05,
213
+ "loss": 2.5085,
214
+ "step": 28
215
+ },
216
+ {
217
+ "epoch": 0.06896551724137931,
218
+ "grad_norm": 1.8653671914008603,
219
+ "learning_rate": 1.45e-05,
220
+ "loss": 2.4368,
221
+ "step": 29
222
+ },
223
+ {
224
+ "epoch": 0.0713436385255648,
225
+ "grad_norm": 1.867632087572305,
226
+ "learning_rate": 1.5000000000000002e-05,
227
+ "loss": 2.1204,
228
+ "step": 30
229
+ },
230
+ {
231
+ "epoch": 0.07372175980975029,
232
+ "grad_norm": 1.2367329590346625,
233
+ "learning_rate": 1.55e-05,
234
+ "loss": 2.1118,
235
+ "step": 31
236
+ },
237
+ {
238
+ "epoch": 0.07609988109393578,
239
+ "grad_norm": 1.5969207000997636,
240
+ "learning_rate": 1.6000000000000003e-05,
241
+ "loss": 2.4747,
242
+ "step": 32
243
+ },
244
+ {
245
+ "epoch": 0.07847800237812129,
246
+ "grad_norm": 1.5075133034220278,
247
+ "learning_rate": 1.65e-05,
248
+ "loss": 2.3349,
249
+ "step": 33
250
+ },
251
+ {
252
+ "epoch": 0.08085612366230678,
253
+ "grad_norm": 1.4803692479229955,
254
+ "learning_rate": 1.7e-05,
255
+ "loss": 2.3915,
256
+ "step": 34
257
+ },
258
+ {
259
+ "epoch": 0.08323424494649227,
260
+ "grad_norm": 2.692949771759104,
261
+ "learning_rate": 1.7500000000000002e-05,
262
+ "loss": 2.6397,
263
+ "step": 35
264
+ },
265
+ {
266
+ "epoch": 0.08561236623067776,
267
+ "grad_norm": 1.3636512770329847,
268
+ "learning_rate": 1.8e-05,
269
+ "loss": 2.2944,
270
+ "step": 36
271
+ },
272
+ {
273
+ "epoch": 0.08799048751486326,
274
+ "grad_norm": 1.8310086696195464,
275
+ "learning_rate": 1.8500000000000002e-05,
276
+ "loss": 2.2614,
277
+ "step": 37
278
+ },
279
+ {
280
+ "epoch": 0.09036860879904875,
281
+ "grad_norm": 1.7765027708264853,
282
+ "learning_rate": 1.9e-05,
283
+ "loss": 2.3579,
284
+ "step": 38
285
+ },
286
+ {
287
+ "epoch": 0.09274673008323424,
288
+ "grad_norm": 1.4484769960901491,
289
+ "learning_rate": 1.95e-05,
290
+ "loss": 2.4548,
291
+ "step": 39
292
+ },
293
+ {
294
+ "epoch": 0.09512485136741974,
295
+ "grad_norm": 3.1520205275209414,
296
+ "learning_rate": 2e-05,
297
+ "loss": 2.5208,
298
+ "step": 40
299
+ },
300
+ {
301
+ "epoch": 0.09750297265160524,
302
+ "grad_norm": 1.5897739849482102,
303
+ "learning_rate": 1.9999981652287733e-05,
304
+ "loss": 2.4216,
305
+ "step": 41
306
+ },
307
+ {
308
+ "epoch": 0.09988109393579073,
309
+ "grad_norm": 2.4520591326987495,
310
+ "learning_rate": 1.999992660921826e-05,
311
+ "loss": 2.2326,
312
+ "step": 42
313
+ },
314
+ {
315
+ "epoch": 0.10225921521997622,
316
+ "grad_norm": 1.4817926319377914,
317
+ "learning_rate": 1.999983487099356e-05,
318
+ "loss": 2.541,
319
+ "step": 43
320
+ },
321
+ {
322
+ "epoch": 0.10463733650416171,
323
+ "grad_norm": 2.4022755616863956,
324
+ "learning_rate": 1.999970643795027e-05,
325
+ "loss": 2.3645,
326
+ "step": 44
327
+ },
328
+ {
329
+ "epoch": 0.1070154577883472,
330
+ "grad_norm": 2.476073007712477,
331
+ "learning_rate": 1.9999541310559686e-05,
332
+ "loss": 2.5051,
333
+ "step": 45
334
+ },
335
+ {
336
+ "epoch": 0.10939357907253269,
337
+ "grad_norm": 3.428213096316913,
338
+ "learning_rate": 1.9999339489427746e-05,
339
+ "loss": 2.3605,
340
+ "step": 46
341
+ },
342
+ {
343
+ "epoch": 0.1117717003567182,
344
+ "grad_norm": 2.464783346708793,
345
+ "learning_rate": 1.9999100975295046e-05,
346
+ "loss": 2.3785,
347
+ "step": 47
348
+ },
349
+ {
350
+ "epoch": 0.11414982164090369,
351
+ "grad_norm": 2.0686444585541754,
352
+ "learning_rate": 1.999882576903682e-05,
353
+ "loss": 2.6035,
354
+ "step": 48
355
+ },
356
+ {
357
+ "epoch": 0.11652794292508918,
358
+ "grad_norm": 2.30832669621963,
359
+ "learning_rate": 1.9998513871662945e-05,
360
+ "loss": 2.3982,
361
+ "step": 49
362
+ },
363
+ {
364
+ "epoch": 0.11890606420927467,
365
+ "grad_norm": 1.7443884357427357,
366
+ "learning_rate": 1.9998165284317944e-05,
367
+ "loss": 2.2344,
368
+ "step": 50
369
+ },
370
+ {
371
+ "epoch": 0.12128418549346016,
372
+ "grad_norm": 1.862498116501275,
373
+ "learning_rate": 1.999778000828098e-05,
374
+ "loss": 2.0631,
375
+ "step": 51
376
+ },
377
+ {
378
+ "epoch": 0.12366230677764566,
379
+ "grad_norm": 1.3054707043181313,
380
+ "learning_rate": 1.9997358044965833e-05,
381
+ "loss": 2.4434,
382
+ "step": 52
383
+ },
384
+ {
385
+ "epoch": 0.12604042806183116,
386
+ "grad_norm": 2.6645481874919583,
387
+ "learning_rate": 1.9996899395920915e-05,
388
+ "loss": 2.4647,
389
+ "step": 53
390
+ },
391
+ {
392
+ "epoch": 0.12841854934601665,
393
+ "grad_norm": 1.6884769054479885,
394
+ "learning_rate": 1.999640406282926e-05,
395
+ "loss": 2.2864,
396
+ "step": 54
397
+ },
398
+ {
399
+ "epoch": 0.13079667063020214,
400
+ "grad_norm": 2.281038989939936,
401
+ "learning_rate": 1.9995872047508516e-05,
402
+ "loss": 2.2999,
403
+ "step": 55
404
+ },
405
+ {
406
+ "epoch": 0.13317479191438764,
407
+ "grad_norm": 1.8457967068582515,
408
+ "learning_rate": 1.9995303351910934e-05,
409
+ "loss": 2.5117,
410
+ "step": 56
411
+ },
412
+ {
413
+ "epoch": 0.13555291319857313,
414
+ "grad_norm": 1.593901860141829,
415
+ "learning_rate": 1.9994697978123363e-05,
416
+ "loss": 2.1696,
417
+ "step": 57
418
+ },
419
+ {
420
+ "epoch": 0.13793103448275862,
421
+ "grad_norm": 2.168613470386471,
422
+ "learning_rate": 1.9994055928367256e-05,
423
+ "loss": 2.6852,
424
+ "step": 58
425
+ },
426
+ {
427
+ "epoch": 0.1403091557669441,
428
+ "grad_norm": 1.5398971278043392,
429
+ "learning_rate": 1.999337720499863e-05,
430
+ "loss": 2.396,
431
+ "step": 59
432
+ },
433
+ {
434
+ "epoch": 0.1426872770511296,
435
+ "grad_norm": 1.7618365641290346,
436
+ "learning_rate": 1.99926618105081e-05,
437
+ "loss": 2.047,
438
+ "step": 60
439
+ },
440
+ {
441
+ "epoch": 0.1450653983353151,
442
+ "grad_norm": 1.3935889380673343,
443
+ "learning_rate": 1.9991909747520835e-05,
444
+ "loss": 2.1071,
445
+ "step": 61
446
+ },
447
+ {
448
+ "epoch": 0.14744351961950058,
449
+ "grad_norm": 1.3063537354837544,
450
+ "learning_rate": 1.999112101879656e-05,
451
+ "loss": 2.3992,
452
+ "step": 62
453
+ },
454
+ {
455
+ "epoch": 0.14982164090368608,
456
+ "grad_norm": 1.025531260937785,
457
+ "learning_rate": 1.9990295627229544e-05,
458
+ "loss": 2.4764,
459
+ "step": 63
460
+ },
461
+ {
462
+ "epoch": 0.15219976218787157,
463
+ "grad_norm": 1.0662434476421614,
464
+ "learning_rate": 1.99894335758486e-05,
465
+ "loss": 2.0608,
466
+ "step": 64
467
+ },
468
+ {
469
+ "epoch": 0.1545778834720571,
470
+ "grad_norm": 1.335312659171346,
471
+ "learning_rate": 1.9988534867817065e-05,
472
+ "loss": 2.0345,
473
+ "step": 65
474
+ },
475
+ {
476
+ "epoch": 0.15695600475624258,
477
+ "grad_norm": 1.7866360477276542,
478
+ "learning_rate": 1.9987599506432785e-05,
479
+ "loss": 2.4781,
480
+ "step": 66
481
+ },
482
+ {
483
+ "epoch": 0.15933412604042807,
484
+ "grad_norm": 1.3661388854405736,
485
+ "learning_rate": 1.9986627495128105e-05,
486
+ "loss": 2.3895,
487
+ "step": 67
488
+ },
489
+ {
490
+ "epoch": 0.16171224732461356,
491
+ "grad_norm": 1.69413799763372,
492
+ "learning_rate": 1.9985618837469864e-05,
493
+ "loss": 2.415,
494
+ "step": 68
495
+ },
496
+ {
497
+ "epoch": 0.16409036860879905,
498
+ "grad_norm": 1.6458921632697698,
499
+ "learning_rate": 1.998457353715938e-05,
500
+ "loss": 2.4017,
501
+ "step": 69
502
+ },
503
+ {
504
+ "epoch": 0.16646848989298454,
505
+ "grad_norm": 1.705150979387567,
506
+ "learning_rate": 1.998349159803241e-05,
507
+ "loss": 2.317,
508
+ "step": 70
509
+ },
510
+ {
511
+ "epoch": 0.16884661117717004,
512
+ "grad_norm": 1.4786622132550975,
513
+ "learning_rate": 1.9982373024059195e-05,
514
+ "loss": 2.4046,
515
+ "step": 71
516
+ },
517
+ {
518
+ "epoch": 0.17122473246135553,
519
+ "grad_norm": 1.1257378401253821,
520
+ "learning_rate": 1.998121781934438e-05,
521
+ "loss": 2.196,
522
+ "step": 72
523
+ },
524
+ {
525
+ "epoch": 0.17360285374554102,
526
+ "grad_norm": 1.2450243917414825,
527
+ "learning_rate": 1.9980025988127037e-05,
528
+ "loss": 2.1235,
529
+ "step": 73
530
+ },
531
+ {
532
+ "epoch": 0.1759809750297265,
533
+ "grad_norm": 1.2574977788035384,
534
+ "learning_rate": 1.9978797534780646e-05,
535
+ "loss": 2.4466,
536
+ "step": 74
537
+ },
538
+ {
539
+ "epoch": 0.178359096313912,
540
+ "grad_norm": 1.390309850165232,
541
+ "learning_rate": 1.9977532463813064e-05,
542
+ "loss": 2.4469,
543
+ "step": 75
544
+ },
545
+ {
546
+ "epoch": 0.1807372175980975,
547
+ "grad_norm": 1.2146735833909619,
548
+ "learning_rate": 1.9976230779866527e-05,
549
+ "loss": 2.3705,
550
+ "step": 76
551
+ },
552
+ {
553
+ "epoch": 0.18311533888228299,
554
+ "grad_norm": 1.26356031715395,
555
+ "learning_rate": 1.9974892487717613e-05,
556
+ "loss": 2.4926,
557
+ "step": 77
558
+ },
559
+ {
560
+ "epoch": 0.18549346016646848,
561
+ "grad_norm": 1.3934309027656608,
562
+ "learning_rate": 1.997351759227725e-05,
563
+ "loss": 2.47,
564
+ "step": 78
565
+ },
566
+ {
567
+ "epoch": 0.187871581450654,
568
+ "grad_norm": 1.129998342751621,
569
+ "learning_rate": 1.9972106098590665e-05,
570
+ "loss": 2.3718,
571
+ "step": 79
572
+ },
573
+ {
574
+ "epoch": 0.1902497027348395,
575
+ "grad_norm": 1.3957720808228478,
576
+ "learning_rate": 1.9970658011837404e-05,
577
+ "loss": 2.2057,
578
+ "step": 80
579
+ },
580
+ {
581
+ "epoch": 0.19262782401902498,
582
+ "grad_norm": 1.5835508346410572,
583
+ "learning_rate": 1.9969173337331283e-05,
584
+ "loss": 2.2551,
585
+ "step": 81
586
+ },
587
+ {
588
+ "epoch": 0.19500594530321047,
589
+ "grad_norm": 1.0726363834452401,
590
+ "learning_rate": 1.996765208052037e-05,
591
+ "loss": 1.9962,
592
+ "step": 82
593
+ },
594
+ {
595
+ "epoch": 0.19738406658739596,
596
+ "grad_norm": 1.5380248440103288,
597
+ "learning_rate": 1.9966094246986983e-05,
598
+ "loss": 2.1986,
599
+ "step": 83
600
+ },
601
+ {
602
+ "epoch": 0.19976218787158145,
603
+ "grad_norm": 1.2953387209833067,
604
+ "learning_rate": 1.9964499842447665e-05,
605
+ "loss": 2.5842,
606
+ "step": 84
607
+ },
608
+ {
609
+ "epoch": 0.20214030915576695,
610
+ "grad_norm": 1.0712033116668103,
611
+ "learning_rate": 1.9962868872753144e-05,
612
+ "loss": 2.1298,
613
+ "step": 85
614
+ },
615
+ {
616
+ "epoch": 0.20451843043995244,
617
+ "grad_norm": 1.095761902776689,
618
+ "learning_rate": 1.996120134388834e-05,
619
+ "loss": 2.3641,
620
+ "step": 86
621
+ },
622
+ {
623
+ "epoch": 0.20689655172413793,
624
+ "grad_norm": 1.186679631328553,
625
+ "learning_rate": 1.995949726197231e-05,
626
+ "loss": 2.4801,
627
+ "step": 87
628
+ },
629
+ {
630
+ "epoch": 0.20927467300832342,
631
+ "grad_norm": 1.1887498108170933,
632
+ "learning_rate": 1.9957756633258264e-05,
633
+ "loss": 2.2866,
634
+ "step": 88
635
+ },
636
+ {
637
+ "epoch": 0.2116527942925089,
638
+ "grad_norm": 1.0909023774872124,
639
+ "learning_rate": 1.9955979464133515e-05,
640
+ "loss": 2.2916,
641
+ "step": 89
642
+ },
643
+ {
644
+ "epoch": 0.2140309155766944,
645
+ "grad_norm": 1.1077175360558418,
646
+ "learning_rate": 1.995416576111945e-05,
647
+ "loss": 2.1077,
648
+ "step": 90
649
+ },
650
+ {
651
+ "epoch": 0.2164090368608799,
652
+ "grad_norm": 1.1526064687436712,
653
+ "learning_rate": 1.9952315530871537e-05,
654
+ "loss": 2.2723,
655
+ "step": 91
656
+ },
657
+ {
658
+ "epoch": 0.21878715814506539,
659
+ "grad_norm": 1.1818210038912647,
660
+ "learning_rate": 1.9950428780179274e-05,
661
+ "loss": 2.2338,
662
+ "step": 92
663
+ },
664
+ {
665
+ "epoch": 0.2211652794292509,
666
+ "grad_norm": 1.164942154271255,
667
+ "learning_rate": 1.994850551596617e-05,
668
+ "loss": 2.3817,
669
+ "step": 93
670
+ },
671
+ {
672
+ "epoch": 0.2235434007134364,
673
+ "grad_norm": 1.339398993177121,
674
+ "learning_rate": 1.9946545745289727e-05,
675
+ "loss": 2.5508,
676
+ "step": 94
677
+ },
678
+ {
679
+ "epoch": 0.2259215219976219,
680
+ "grad_norm": 1.3267763052855093,
681
+ "learning_rate": 1.9944549475341404e-05,
682
+ "loss": 2.247,
683
+ "step": 95
684
+ },
685
+ {
686
+ "epoch": 0.22829964328180738,
687
+ "grad_norm": 1.1953250811556597,
688
+ "learning_rate": 1.99425167134466e-05,
689
+ "loss": 2.3373,
690
+ "step": 96
691
+ },
692
+ {
693
+ "epoch": 0.23067776456599287,
694
+ "grad_norm": 1.4321452409301854,
695
+ "learning_rate": 1.9940447467064624e-05,
696
+ "loss": 2.4776,
697
+ "step": 97
698
+ },
699
+ {
700
+ "epoch": 0.23305588585017836,
701
+ "grad_norm": 1.0224444212683161,
702
+ "learning_rate": 1.9938341743788658e-05,
703
+ "loss": 2.1837,
704
+ "step": 98
705
+ },
706
+ {
707
+ "epoch": 0.23543400713436385,
708
+ "grad_norm": 1.0977574950238398,
709
+ "learning_rate": 1.9936199551345744e-05,
710
+ "loss": 2.1478,
711
+ "step": 99
712
+ },
713
+ {
714
+ "epoch": 0.23781212841854935,
715
+ "grad_norm": 1.0660069054078747,
716
+ "learning_rate": 1.9934020897596752e-05,
717
+ "loss": 2.2816,
718
+ "step": 100
719
+ },
720
+ {
721
+ "epoch": 0.24019024970273484,
722
+ "grad_norm": 1.0312993672336248,
723
+ "learning_rate": 1.9931805790536342e-05,
724
+ "loss": 2.2468,
725
+ "step": 101
726
+ },
727
+ {
728
+ "epoch": 0.24256837098692033,
729
+ "grad_norm": 1.1278898252066067,
730
+ "learning_rate": 1.9929554238292944e-05,
731
+ "loss": 2.0526,
732
+ "step": 102
733
+ },
734
+ {
735
+ "epoch": 0.24494649227110582,
736
+ "grad_norm": 1.288343002944789,
737
+ "learning_rate": 1.992726624912872e-05,
738
+ "loss": 2.512,
739
+ "step": 103
740
+ },
741
+ {
742
+ "epoch": 0.2473246135552913,
743
+ "grad_norm": 1.1840020386119305,
744
+ "learning_rate": 1.992494183143955e-05,
745
+ "loss": 2.6356,
746
+ "step": 104
747
+ },
748
+ {
749
+ "epoch": 0.2497027348394768,
750
+ "grad_norm": 1.1014678408276726,
751
+ "learning_rate": 1.9922580993754985e-05,
752
+ "loss": 2.3521,
753
+ "step": 105
754
+ },
755
+ {
756
+ "epoch": 0.2497027348394768,
757
+ "eval_loss": 2.5365779399871826,
758
+ "eval_runtime": 66.0796,
759
+ "eval_samples_per_second": 9.67,
760
+ "eval_steps_per_second": 1.211,
761
+ "step": 105
762
+ },
763
+ {
764
+ "epoch": 0.2520808561236623,
765
+ "grad_norm": 0.9957844757920508,
766
+ "learning_rate": 1.9920183744738208e-05,
767
+ "loss": 2.355,
768
+ "step": 106
769
+ },
770
+ {
771
+ "epoch": 0.2544589774078478,
772
+ "grad_norm": 1.0070598447313825,
773
+ "learning_rate": 1.9917750093186036e-05,
774
+ "loss": 2.1747,
775
+ "step": 107
776
+ },
777
+ {
778
+ "epoch": 0.2568370986920333,
779
+ "grad_norm": 1.2463453868295562,
780
+ "learning_rate": 1.9915280048028853e-05,
781
+ "loss": 2.4131,
782
+ "step": 108
783
+ },
784
+ {
785
+ "epoch": 0.25921521997621877,
786
+ "grad_norm": 1.158558292534161,
787
+ "learning_rate": 1.9912773618330595e-05,
788
+ "loss": 2.4527,
789
+ "step": 109
790
+ },
791
+ {
792
+ "epoch": 0.2615933412604043,
793
+ "grad_norm": 1.1875643459332377,
794
+ "learning_rate": 1.9910230813288713e-05,
795
+ "loss": 2.1523,
796
+ "step": 110
797
+ },
798
+ {
799
+ "epoch": 0.26397146254458975,
800
+ "grad_norm": 0.892269173897758,
801
+ "learning_rate": 1.9907651642234138e-05,
802
+ "loss": 1.9606,
803
+ "step": 111
804
+ },
805
+ {
806
+ "epoch": 0.26634958382877527,
807
+ "grad_norm": 1.181952902180908,
808
+ "learning_rate": 1.9905036114631247e-05,
809
+ "loss": 2.3201,
810
+ "step": 112
811
+ },
812
+ {
813
+ "epoch": 0.26872770511296074,
814
+ "grad_norm": 0.9689153704257877,
815
+ "learning_rate": 1.990238424007783e-05,
816
+ "loss": 2.2329,
817
+ "step": 113
818
+ },
819
+ {
820
+ "epoch": 0.27110582639714625,
821
+ "grad_norm": 1.3665918769424286,
822
+ "learning_rate": 1.989969602830505e-05,
823
+ "loss": 2.2387,
824
+ "step": 114
825
+ },
826
+ {
827
+ "epoch": 0.2734839476813318,
828
+ "grad_norm": 1.0478434719151144,
829
+ "learning_rate": 1.9896971489177417e-05,
830
+ "loss": 2.2798,
831
+ "step": 115
832
+ },
833
+ {
834
+ "epoch": 0.27586206896551724,
835
+ "grad_norm": 1.5752154316391798,
836
+ "learning_rate": 1.9894210632692745e-05,
837
+ "loss": 2.201,
838
+ "step": 116
839
+ },
840
+ {
841
+ "epoch": 0.27824019024970276,
842
+ "grad_norm": 1.0264277011384757,
843
+ "learning_rate": 1.9891413468982112e-05,
844
+ "loss": 2.2756,
845
+ "step": 117
846
+ },
847
+ {
848
+ "epoch": 0.2806183115338882,
849
+ "grad_norm": 1.1750703393359614,
850
+ "learning_rate": 1.988858000830983e-05,
851
+ "loss": 2.1907,
852
+ "step": 118
853
+ },
854
+ {
855
+ "epoch": 0.28299643281807374,
856
+ "grad_norm": 0.9456957190962577,
857
+ "learning_rate": 1.9885710261073402e-05,
858
+ "loss": 2.2993,
859
+ "step": 119
860
+ },
861
+ {
862
+ "epoch": 0.2853745541022592,
863
+ "grad_norm": 1.37591692336223,
864
+ "learning_rate": 1.9882804237803487e-05,
865
+ "loss": 2.0751,
866
+ "step": 120
867
+ },
868
+ {
869
+ "epoch": 0.2877526753864447,
870
+ "grad_norm": 0.991181263305241,
871
+ "learning_rate": 1.9879861949163863e-05,
872
+ "loss": 2.1946,
873
+ "step": 121
874
+ },
875
+ {
876
+ "epoch": 0.2901307966706302,
877
+ "grad_norm": 1.2826616603092615,
878
+ "learning_rate": 1.9876883405951378e-05,
879
+ "loss": 2.3084,
880
+ "step": 122
881
+ },
882
+ {
883
+ "epoch": 0.2925089179548157,
884
+ "grad_norm": 1.3162982027829009,
885
+ "learning_rate": 1.987386861909593e-05,
886
+ "loss": 2.294,
887
+ "step": 123
888
+ },
889
+ {
890
+ "epoch": 0.29488703923900117,
891
+ "grad_norm": 1.086311999313279,
892
+ "learning_rate": 1.98708175996604e-05,
893
+ "loss": 2.3025,
894
+ "step": 124
895
+ },
896
+ {
897
+ "epoch": 0.2972651605231867,
898
+ "grad_norm": 1.10683170372015,
899
+ "learning_rate": 1.986773035884064e-05,
900
+ "loss": 2.3447,
901
+ "step": 125
902
+ },
903
+ {
904
+ "epoch": 0.29964328180737215,
905
+ "grad_norm": 1.090568761480393,
906
+ "learning_rate": 1.9864606907965407e-05,
907
+ "loss": 2.4104,
908
+ "step": 126
909
+ },
910
+ {
911
+ "epoch": 0.30202140309155767,
912
+ "grad_norm": 1.4024759238343605,
913
+ "learning_rate": 1.986144725849634e-05,
914
+ "loss": 2.298,
915
+ "step": 127
916
+ },
917
+ {
918
+ "epoch": 0.30439952437574314,
919
+ "grad_norm": 0.9324914520062791,
920
+ "learning_rate": 1.9858251422027903e-05,
921
+ "loss": 2.1123,
922
+ "step": 128
923
+ },
924
+ {
925
+ "epoch": 0.30677764565992865,
926
+ "grad_norm": 1.3818136151492852,
927
+ "learning_rate": 1.9855019410287355e-05,
928
+ "loss": 2.2786,
929
+ "step": 129
930
+ },
931
+ {
932
+ "epoch": 0.3091557669441142,
933
+ "grad_norm": 0.9879756737720099,
934
+ "learning_rate": 1.98517512351347e-05,
935
+ "loss": 2.2735,
936
+ "step": 130
937
+ },
938
+ {
939
+ "epoch": 0.31153388822829964,
940
+ "grad_norm": 1.4107106057474024,
941
+ "learning_rate": 1.9848446908562647e-05,
942
+ "loss": 2.2421,
943
+ "step": 131
944
+ },
945
+ {
946
+ "epoch": 0.31391200951248516,
947
+ "grad_norm": 0.978862094447652,
948
+ "learning_rate": 1.9845106442696563e-05,
949
+ "loss": 2.4152,
950
+ "step": 132
951
+ },
952
+ {
953
+ "epoch": 0.3162901307966706,
954
+ "grad_norm": 1.3714074038447606,
955
+ "learning_rate": 1.9841729849794427e-05,
956
+ "loss": 2.4567,
957
+ "step": 133
958
+ },
959
+ {
960
+ "epoch": 0.31866825208085614,
961
+ "grad_norm": 1.030641093673837,
962
+ "learning_rate": 1.983831714224679e-05,
963
+ "loss": 2.3015,
964
+ "step": 134
965
+ },
966
+ {
967
+ "epoch": 0.3210463733650416,
968
+ "grad_norm": 1.1744699755999302,
969
+ "learning_rate": 1.9834868332576727e-05,
970
+ "loss": 2.2878,
971
+ "step": 135
972
+ },
973
+ {
974
+ "epoch": 0.3234244946492271,
975
+ "grad_norm": 0.9733999816490441,
976
+ "learning_rate": 1.9831383433439798e-05,
977
+ "loss": 2.1571,
978
+ "step": 136
979
+ },
980
+ {
981
+ "epoch": 0.3258026159334126,
982
+ "grad_norm": 1.0470367999253474,
983
+ "learning_rate": 1.982786245762398e-05,
984
+ "loss": 2.0943,
985
+ "step": 137
986
+ },
987
+ {
988
+ "epoch": 0.3281807372175981,
989
+ "grad_norm": 1.0748276455064096,
990
+ "learning_rate": 1.9824305418049645e-05,
991
+ "loss": 2.4156,
992
+ "step": 138
993
+ },
994
+ {
995
+ "epoch": 0.33055885850178357,
996
+ "grad_norm": 1.0220509349947084,
997
+ "learning_rate": 1.9820712327769503e-05,
998
+ "loss": 2.1898,
999
+ "step": 139
1000
+ },
1001
+ {
1002
+ "epoch": 0.3329369797859691,
1003
+ "grad_norm": 0.9811166423920332,
1004
+ "learning_rate": 1.9817083199968552e-05,
1005
+ "loss": 2.3449,
1006
+ "step": 140
1007
+ },
1008
+ {
1009
+ "epoch": 0.33531510107015455,
1010
+ "grad_norm": 1.0664757695722766,
1011
+ "learning_rate": 1.9813418047964025e-05,
1012
+ "loss": 2.1514,
1013
+ "step": 141
1014
+ },
1015
+ {
1016
+ "epoch": 0.3376932223543401,
1017
+ "grad_norm": 1.1228830278366924,
1018
+ "learning_rate": 1.9809716885205363e-05,
1019
+ "loss": 2.3371,
1020
+ "step": 142
1021
+ },
1022
+ {
1023
+ "epoch": 0.3400713436385256,
1024
+ "grad_norm": 1.0703957613617774,
1025
+ "learning_rate": 1.980597972527413e-05,
1026
+ "loss": 2.2577,
1027
+ "step": 143
1028
+ },
1029
+ {
1030
+ "epoch": 0.34244946492271106,
1031
+ "grad_norm": 0.9971842999532138,
1032
+ "learning_rate": 1.9802206581883992e-05,
1033
+ "loss": 2.2048,
1034
+ "step": 144
1035
+ },
1036
+ {
1037
+ "epoch": 0.3448275862068966,
1038
+ "grad_norm": 0.9969712850303254,
1039
+ "learning_rate": 1.979839746888067e-05,
1040
+ "loss": 2.1725,
1041
+ "step": 145
1042
+ },
1043
+ {
1044
+ "epoch": 0.34720570749108204,
1045
+ "grad_norm": 0.9782490093980141,
1046
+ "learning_rate": 1.979455240024186e-05,
1047
+ "loss": 2.1598,
1048
+ "step": 146
1049
+ },
1050
+ {
1051
+ "epoch": 0.34958382877526756,
1052
+ "grad_norm": 1.1595035293528873,
1053
+ "learning_rate": 1.97906713900772e-05,
1054
+ "loss": 2.1812,
1055
+ "step": 147
1056
+ },
1057
+ {
1058
+ "epoch": 0.351961950059453,
1059
+ "grad_norm": 1.0488323565717943,
1060
+ "learning_rate": 1.9786754452628226e-05,
1061
+ "loss": 2.126,
1062
+ "step": 148
1063
+ },
1064
+ {
1065
+ "epoch": 0.35434007134363854,
1066
+ "grad_norm": 1.0236205683546673,
1067
+ "learning_rate": 1.9782801602268306e-05,
1068
+ "loss": 1.9399,
1069
+ "step": 149
1070
+ },
1071
+ {
1072
+ "epoch": 0.356718192627824,
1073
+ "grad_norm": 0.983049547537296,
1074
+ "learning_rate": 1.9778812853502592e-05,
1075
+ "loss": 2.0336,
1076
+ "step": 150
1077
+ },
1078
+ {
1079
+ "epoch": 0.3590963139120095,
1080
+ "grad_norm": 1.0856474713800959,
1081
+ "learning_rate": 1.9774788220967968e-05,
1082
+ "loss": 2.2103,
1083
+ "step": 151
1084
+ },
1085
+ {
1086
+ "epoch": 0.361474435196195,
1087
+ "grad_norm": 1.098143269144179,
1088
+ "learning_rate": 1.9770727719432994e-05,
1089
+ "loss": 2.1425,
1090
+ "step": 152
1091
+ },
1092
+ {
1093
+ "epoch": 0.3638525564803805,
1094
+ "grad_norm": 1.1908904777112574,
1095
+ "learning_rate": 1.9766631363797852e-05,
1096
+ "loss": 2.2516,
1097
+ "step": 153
1098
+ },
1099
+ {
1100
+ "epoch": 0.36623067776456597,
1101
+ "grad_norm": 1.1823343263781934,
1102
+ "learning_rate": 1.9762499169094288e-05,
1103
+ "loss": 2.0991,
1104
+ "step": 154
1105
+ },
1106
+ {
1107
+ "epoch": 0.3686087990487515,
1108
+ "grad_norm": 1.1543274307271654,
1109
+ "learning_rate": 1.9758331150485576e-05,
1110
+ "loss": 2.2917,
1111
+ "step": 155
1112
+ },
1113
+ {
1114
+ "epoch": 0.37098692033293695,
1115
+ "grad_norm": 1.1828452156246019,
1116
+ "learning_rate": 1.9754127323266426e-05,
1117
+ "loss": 2.3577,
1118
+ "step": 156
1119
+ },
1120
+ {
1121
+ "epoch": 0.3733650416171225,
1122
+ "grad_norm": 1.2458434785978698,
1123
+ "learning_rate": 1.9749887702862972e-05,
1124
+ "loss": 2.2291,
1125
+ "step": 157
1126
+ },
1127
+ {
1128
+ "epoch": 0.375743162901308,
1129
+ "grad_norm": 1.0632348458757013,
1130
+ "learning_rate": 1.9745612304832672e-05,
1131
+ "loss": 2.495,
1132
+ "step": 158
1133
+ },
1134
+ {
1135
+ "epoch": 0.37812128418549346,
1136
+ "grad_norm": 1.2413557275846534,
1137
+ "learning_rate": 1.9741301144864284e-05,
1138
+ "loss": 2.3006,
1139
+ "step": 159
1140
+ },
1141
+ {
1142
+ "epoch": 0.380499405469679,
1143
+ "grad_norm": 1.068837985332943,
1144
+ "learning_rate": 1.9736954238777793e-05,
1145
+ "loss": 2.2228,
1146
+ "step": 160
1147
+ },
1148
+ {
1149
+ "epoch": 0.38287752675386444,
1150
+ "grad_norm": 1.181973772137545,
1151
+ "learning_rate": 1.9732571602524353e-05,
1152
+ "loss": 2.3419,
1153
+ "step": 161
1154
+ },
1155
+ {
1156
+ "epoch": 0.38525564803804996,
1157
+ "grad_norm": 0.9361759344356807,
1158
+ "learning_rate": 1.972815325218624e-05,
1159
+ "loss": 2.2727,
1160
+ "step": 162
1161
+ },
1162
+ {
1163
+ "epoch": 0.3876337693222354,
1164
+ "grad_norm": 1.2300672941710984,
1165
+ "learning_rate": 1.9723699203976768e-05,
1166
+ "loss": 2.3947,
1167
+ "step": 163
1168
+ },
1169
+ {
1170
+ "epoch": 0.39001189060642094,
1171
+ "grad_norm": 0.9647921025871186,
1172
+ "learning_rate": 1.9719209474240263e-05,
1173
+ "loss": 1.8388,
1174
+ "step": 164
1175
+ },
1176
+ {
1177
+ "epoch": 0.3923900118906064,
1178
+ "grad_norm": 1.1390311715526416,
1179
+ "learning_rate": 1.971468407945198e-05,
1180
+ "loss": 2.4054,
1181
+ "step": 165
1182
+ },
1183
+ {
1184
+ "epoch": 0.3947681331747919,
1185
+ "grad_norm": 0.9830051867519547,
1186
+ "learning_rate": 1.9710123036218044e-05,
1187
+ "loss": 2.0355,
1188
+ "step": 166
1189
+ },
1190
+ {
1191
+ "epoch": 0.3971462544589774,
1192
+ "grad_norm": 1.1244517585073737,
1193
+ "learning_rate": 1.97055263612754e-05,
1194
+ "loss": 2.0188,
1195
+ "step": 167
1196
+ },
1197
+ {
1198
+ "epoch": 0.3995243757431629,
1199
+ "grad_norm": 1.0256020852263494,
1200
+ "learning_rate": 1.9700894071491736e-05,
1201
+ "loss": 2.0774,
1202
+ "step": 168
1203
+ },
1204
+ {
1205
+ "epoch": 0.40190249702734837,
1206
+ "grad_norm": 1.011023720252716,
1207
+ "learning_rate": 1.9696226183865436e-05,
1208
+ "loss": 2.2592,
1209
+ "step": 169
1210
+ },
1211
+ {
1212
+ "epoch": 0.4042806183115339,
1213
+ "grad_norm": 1.046975898884085,
1214
+ "learning_rate": 1.969152271552552e-05,
1215
+ "loss": 2.1791,
1216
+ "step": 170
1217
+ },
1218
+ {
1219
+ "epoch": 0.40665873959571935,
1220
+ "grad_norm": 1.1800984480399852,
1221
+ "learning_rate": 1.9686783683731557e-05,
1222
+ "loss": 2.3941,
1223
+ "step": 171
1224
+ },
1225
+ {
1226
+ "epoch": 0.4090368608799049,
1227
+ "grad_norm": 1.2459882622321672,
1228
+ "learning_rate": 1.9682009105873633e-05,
1229
+ "loss": 2.1522,
1230
+ "step": 172
1231
+ },
1232
+ {
1233
+ "epoch": 0.4114149821640904,
1234
+ "grad_norm": 1.0732133381850257,
1235
+ "learning_rate": 1.9677198999472257e-05,
1236
+ "loss": 2.1233,
1237
+ "step": 173
1238
+ },
1239
+ {
1240
+ "epoch": 0.41379310344827586,
1241
+ "grad_norm": 1.2405484917580802,
1242
+ "learning_rate": 1.967235338217832e-05,
1243
+ "loss": 2.3016,
1244
+ "step": 174
1245
+ },
1246
+ {
1247
+ "epoch": 0.4161712247324614,
1248
+ "grad_norm": 1.0759940201219593,
1249
+ "learning_rate": 1.9667472271773026e-05,
1250
+ "loss": 2.2947,
1251
+ "step": 175
1252
+ },
1253
+ {
1254
+ "epoch": 0.41854934601664684,
1255
+ "grad_norm": 1.2008734320661734,
1256
+ "learning_rate": 1.9662555686167808e-05,
1257
+ "loss": 2.2155,
1258
+ "step": 176
1259
+ },
1260
+ {
1261
+ "epoch": 0.42092746730083236,
1262
+ "grad_norm": 0.9303619935178572,
1263
+ "learning_rate": 1.965760364340429e-05,
1264
+ "loss": 2.1234,
1265
+ "step": 177
1266
+ },
1267
+ {
1268
+ "epoch": 0.4233055885850178,
1269
+ "grad_norm": 1.3884826767438652,
1270
+ "learning_rate": 1.9652616161654204e-05,
1271
+ "loss": 2.2539,
1272
+ "step": 178
1273
+ },
1274
+ {
1275
+ "epoch": 0.42568370986920334,
1276
+ "grad_norm": 0.9947187673832885,
1277
+ "learning_rate": 1.9647593259219328e-05,
1278
+ "loss": 2.2052,
1279
+ "step": 179
1280
+ },
1281
+ {
1282
+ "epoch": 0.4280618311533888,
1283
+ "grad_norm": 1.4655922792083054,
1284
+ "learning_rate": 1.964253495453141e-05,
1285
+ "loss": 2.1552,
1286
+ "step": 180
1287
+ },
1288
+ {
1289
+ "epoch": 0.4304399524375743,
1290
+ "grad_norm": 1.1481294188693778,
1291
+ "learning_rate": 1.963744126615212e-05,
1292
+ "loss": 2.3942,
1293
+ "step": 181
1294
+ },
1295
+ {
1296
+ "epoch": 0.4328180737217598,
1297
+ "grad_norm": 1.239760521409481,
1298
+ "learning_rate": 1.9632312212772956e-05,
1299
+ "loss": 2.3091,
1300
+ "step": 182
1301
+ },
1302
+ {
1303
+ "epoch": 0.4351961950059453,
1304
+ "grad_norm": 1.0524654460411744,
1305
+ "learning_rate": 1.9627147813215207e-05,
1306
+ "loss": 2.302,
1307
+ "step": 183
1308
+ },
1309
+ {
1310
+ "epoch": 0.43757431629013077,
1311
+ "grad_norm": 1.0231645108607732,
1312
+ "learning_rate": 1.9621948086429847e-05,
1313
+ "loss": 2.2334,
1314
+ "step": 184
1315
+ },
1316
+ {
1317
+ "epoch": 0.4399524375743163,
1318
+ "grad_norm": 1.0600582051447691,
1319
+ "learning_rate": 1.9616713051497496e-05,
1320
+ "loss": 2.2044,
1321
+ "step": 185
1322
+ },
1323
+ {
1324
+ "epoch": 0.4423305588585018,
1325
+ "grad_norm": 1.0861978175484295,
1326
+ "learning_rate": 1.9611442727628344e-05,
1327
+ "loss": 2.3267,
1328
+ "step": 186
1329
+ },
1330
+ {
1331
+ "epoch": 0.4447086801426873,
1332
+ "grad_norm": 1.0122924353396487,
1333
+ "learning_rate": 1.960613713416206e-05,
1334
+ "loss": 2.2327,
1335
+ "step": 187
1336
+ },
1337
+ {
1338
+ "epoch": 0.4470868014268728,
1339
+ "grad_norm": 1.1275635495135592,
1340
+ "learning_rate": 1.9600796290567747e-05,
1341
+ "loss": 2.2474,
1342
+ "step": 188
1343
+ },
1344
+ {
1345
+ "epoch": 0.44946492271105826,
1346
+ "grad_norm": 1.0778906611663819,
1347
+ "learning_rate": 1.9595420216443864e-05,
1348
+ "loss": 2.2777,
1349
+ "step": 189
1350
+ },
1351
+ {
1352
+ "epoch": 0.4518430439952438,
1353
+ "grad_norm": 1.0593499669893551,
1354
+ "learning_rate": 1.9590008931518133e-05,
1355
+ "loss": 2.4937,
1356
+ "step": 190
1357
+ },
1358
+ {
1359
+ "epoch": 0.45422116527942924,
1360
+ "grad_norm": 1.0887914371115388,
1361
+ "learning_rate": 1.9584562455647494e-05,
1362
+ "loss": 2.2577,
1363
+ "step": 191
1364
+ },
1365
+ {
1366
+ "epoch": 0.45659928656361476,
1367
+ "grad_norm": 1.0280779311785984,
1368
+ "learning_rate": 1.9579080808818035e-05,
1369
+ "loss": 2.2352,
1370
+ "step": 192
1371
+ },
1372
+ {
1373
+ "epoch": 0.4589774078478002,
1374
+ "grad_norm": 1.1201705856067985,
1375
+ "learning_rate": 1.9573564011144873e-05,
1376
+ "loss": 2.1482,
1377
+ "step": 193
1378
+ },
1379
+ {
1380
+ "epoch": 0.46135552913198574,
1381
+ "grad_norm": 1.0039435227655624,
1382
+ "learning_rate": 1.9568012082872148e-05,
1383
+ "loss": 2.1069,
1384
+ "step": 194
1385
+ },
1386
+ {
1387
+ "epoch": 0.4637336504161712,
1388
+ "grad_norm": 1.0523831000821406,
1389
+ "learning_rate": 1.9562425044372884e-05,
1390
+ "loss": 1.9268,
1391
+ "step": 195
1392
+ },
1393
+ {
1394
+ "epoch": 0.4661117717003567,
1395
+ "grad_norm": 1.0635880350342213,
1396
+ "learning_rate": 1.9556802916148963e-05,
1397
+ "loss": 2.2722,
1398
+ "step": 196
1399
+ },
1400
+ {
1401
+ "epoch": 0.4684898929845422,
1402
+ "grad_norm": 2.4351848601787287,
1403
+ "learning_rate": 1.955114571883102e-05,
1404
+ "loss": 2.1402,
1405
+ "step": 197
1406
+ },
1407
+ {
1408
+ "epoch": 0.4708680142687277,
1409
+ "grad_norm": 1.2199308274597462,
1410
+ "learning_rate": 1.9545453473178384e-05,
1411
+ "loss": 2.2599,
1412
+ "step": 198
1413
+ },
1414
+ {
1415
+ "epoch": 0.47324613555291317,
1416
+ "grad_norm": 0.9936114796299212,
1417
+ "learning_rate": 1.9539726200078987e-05,
1418
+ "loss": 2.0662,
1419
+ "step": 199
1420
+ },
1421
+ {
1422
+ "epoch": 0.4756242568370987,
1423
+ "grad_norm": 1.0692703333507547,
1424
+ "learning_rate": 1.9533963920549307e-05,
1425
+ "loss": 2.3739,
1426
+ "step": 200
1427
+ },
1428
+ {
1429
+ "epoch": 0.4780023781212842,
1430
+ "grad_norm": 1.0406002686664542,
1431
+ "learning_rate": 1.9528166655734267e-05,
1432
+ "loss": 2.3611,
1433
+ "step": 201
1434
+ },
1435
+ {
1436
+ "epoch": 0.4803804994054697,
1437
+ "grad_norm": 1.9375905536343168,
1438
+ "learning_rate": 1.9522334426907185e-05,
1439
+ "loss": 2.0971,
1440
+ "step": 202
1441
+ },
1442
+ {
1443
+ "epoch": 0.4827586206896552,
1444
+ "grad_norm": 1.024548704059581,
1445
+ "learning_rate": 1.951646725546966e-05,
1446
+ "loss": 2.2498,
1447
+ "step": 203
1448
+ },
1449
+ {
1450
+ "epoch": 0.48513674197384066,
1451
+ "grad_norm": 1.0033895284405978,
1452
+ "learning_rate": 1.9510565162951538e-05,
1453
+ "loss": 2.299,
1454
+ "step": 204
1455
+ },
1456
+ {
1457
+ "epoch": 0.4875148632580262,
1458
+ "grad_norm": 1.541631519071697,
1459
+ "learning_rate": 1.950462817101079e-05,
1460
+ "loss": 2.4076,
1461
+ "step": 205
1462
+ },
1463
+ {
1464
+ "epoch": 0.48989298454221164,
1465
+ "grad_norm": 0.9499702987331401,
1466
+ "learning_rate": 1.9498656301433466e-05,
1467
+ "loss": 2.0754,
1468
+ "step": 206
1469
+ },
1470
+ {
1471
+ "epoch": 0.49227110582639716,
1472
+ "grad_norm": 1.099383371761328,
1473
+ "learning_rate": 1.9492649576133594e-05,
1474
+ "loss": 2.2514,
1475
+ "step": 207
1476
+ },
1477
+ {
1478
+ "epoch": 0.4946492271105826,
1479
+ "grad_norm": 0.9296431838496088,
1480
+ "learning_rate": 1.94866080171531e-05,
1481
+ "loss": 2.2308,
1482
+ "step": 208
1483
+ },
1484
+ {
1485
+ "epoch": 0.49702734839476814,
1486
+ "grad_norm": 4.140796209905845,
1487
+ "learning_rate": 1.9480531646661753e-05,
1488
+ "loss": 2.4388,
1489
+ "step": 209
1490
+ },
1491
+ {
1492
+ "epoch": 0.4994054696789536,
1493
+ "grad_norm": 1.011142238194789,
1494
+ "learning_rate": 1.9474420486957045e-05,
1495
+ "loss": 2.2414,
1496
+ "step": 210
1497
+ },
1498
+ {
1499
+ "epoch": 0.4994054696789536,
1500
+ "eval_loss": 2.49302339553833,
1501
+ "eval_runtime": 65.8636,
1502
+ "eval_samples_per_second": 9.702,
1503
+ "eval_steps_per_second": 1.215,
1504
+ "step": 210
1505
+ },
1506
+ {
1507
+ "epoch": 0.5017835909631391,
1508
+ "grad_norm": 0.9941401750604694,
1509
+ "learning_rate": 1.9468274560464134e-05,
1510
+ "loss": 2.2182,
1511
+ "step": 211
1512
+ },
1513
+ {
1514
+ "epoch": 0.5041617122473246,
1515
+ "grad_norm": 1.035068690961865,
1516
+ "learning_rate": 1.9462093889735766e-05,
1517
+ "loss": 2.3569,
1518
+ "step": 212
1519
+ },
1520
+ {
1521
+ "epoch": 0.5065398335315101,
1522
+ "grad_norm": 1.5052185888965133,
1523
+ "learning_rate": 1.945587849745217e-05,
1524
+ "loss": 2.4474,
1525
+ "step": 213
1526
+ },
1527
+ {
1528
+ "epoch": 0.5089179548156956,
1529
+ "grad_norm": 1.01730612362564,
1530
+ "learning_rate": 1.944962840642099e-05,
1531
+ "loss": 2.3912,
1532
+ "step": 214
1533
+ },
1534
+ {
1535
+ "epoch": 0.5112960760998811,
1536
+ "grad_norm": 0.9513743221196854,
1537
+ "learning_rate": 1.9443343639577206e-05,
1538
+ "loss": 2.2842,
1539
+ "step": 215
1540
+ },
1541
+ {
1542
+ "epoch": 0.5136741973840666,
1543
+ "grad_norm": 0.9759286606572132,
1544
+ "learning_rate": 1.943702421998303e-05,
1545
+ "loss": 2.3117,
1546
+ "step": 216
1547
+ },
1548
+ {
1549
+ "epoch": 0.5160523186682521,
1550
+ "grad_norm": 0.9357816333722543,
1551
+ "learning_rate": 1.9430670170827844e-05,
1552
+ "loss": 2.1091,
1553
+ "step": 217
1554
+ },
1555
+ {
1556
+ "epoch": 0.5184304399524375,
1557
+ "grad_norm": 1.1804547022456764,
1558
+ "learning_rate": 1.94242815154281e-05,
1559
+ "loss": 2.2333,
1560
+ "step": 218
1561
+ },
1562
+ {
1563
+ "epoch": 0.5208085612366231,
1564
+ "grad_norm": 1.0289463651234612,
1565
+ "learning_rate": 1.9417858277227244e-05,
1566
+ "loss": 2.0495,
1567
+ "step": 219
1568
+ },
1569
+ {
1570
+ "epoch": 0.5231866825208086,
1571
+ "grad_norm": 0.9297621773216459,
1572
+ "learning_rate": 1.9411400479795618e-05,
1573
+ "loss": 2.2102,
1574
+ "step": 220
1575
+ },
1576
+ {
1577
+ "epoch": 0.525564803804994,
1578
+ "grad_norm": 0.9468558483075745,
1579
+ "learning_rate": 1.9404908146830383e-05,
1580
+ "loss": 2.2593,
1581
+ "step": 221
1582
+ },
1583
+ {
1584
+ "epoch": 0.5279429250891795,
1585
+ "grad_norm": 1.03418169808611,
1586
+ "learning_rate": 1.9398381302155435e-05,
1587
+ "loss": 2.185,
1588
+ "step": 222
1589
+ },
1590
+ {
1591
+ "epoch": 0.5303210463733651,
1592
+ "grad_norm": 0.84914434823741,
1593
+ "learning_rate": 1.93918199697213e-05,
1594
+ "loss": 1.8499,
1595
+ "step": 223
1596
+ },
1597
+ {
1598
+ "epoch": 0.5326991676575505,
1599
+ "grad_norm": 1.0824133835143805,
1600
+ "learning_rate": 1.9385224173605072e-05,
1601
+ "loss": 2.2171,
1602
+ "step": 224
1603
+ },
1604
+ {
1605
+ "epoch": 0.535077288941736,
1606
+ "grad_norm": 0.9478237708740055,
1607
+ "learning_rate": 1.9378593938010302e-05,
1608
+ "loss": 2.2397,
1609
+ "step": 225
1610
+ },
1611
+ {
1612
+ "epoch": 0.5374554102259215,
1613
+ "grad_norm": 2.4277055664527065,
1614
+ "learning_rate": 1.937192928726692e-05,
1615
+ "loss": 2.2262,
1616
+ "step": 226
1617
+ },
1618
+ {
1619
+ "epoch": 0.539833531510107,
1620
+ "grad_norm": 1.5223794932859396,
1621
+ "learning_rate": 1.936523024583115e-05,
1622
+ "loss": 2.2664,
1623
+ "step": 227
1624
+ },
1625
+ {
1626
+ "epoch": 0.5422116527942925,
1627
+ "grad_norm": 1.2991334808397113,
1628
+ "learning_rate": 1.9358496838285408e-05,
1629
+ "loss": 2.1967,
1630
+ "step": 228
1631
+ },
1632
+ {
1633
+ "epoch": 0.544589774078478,
1634
+ "grad_norm": 1.132823106642245,
1635
+ "learning_rate": 1.9351729089338214e-05,
1636
+ "loss": 2.2516,
1637
+ "step": 229
1638
+ },
1639
+ {
1640
+ "epoch": 0.5469678953626635,
1641
+ "grad_norm": 1.0872118899678849,
1642
+ "learning_rate": 1.9344927023824112e-05,
1643
+ "loss": 2.3602,
1644
+ "step": 230
1645
+ },
1646
+ {
1647
+ "epoch": 0.549346016646849,
1648
+ "grad_norm": 0.9596136441748024,
1649
+ "learning_rate": 1.933809066670357e-05,
1650
+ "loss": 2.3944,
1651
+ "step": 231
1652
+ },
1653
+ {
1654
+ "epoch": 0.5517241379310345,
1655
+ "grad_norm": 1.3340981902899025,
1656
+ "learning_rate": 1.9331220043062894e-05,
1657
+ "loss": 1.8085,
1658
+ "step": 232
1659
+ },
1660
+ {
1661
+ "epoch": 0.5541022592152199,
1662
+ "grad_norm": 0.9780209403031624,
1663
+ "learning_rate": 1.9324315178114127e-05,
1664
+ "loss": 2.2626,
1665
+ "step": 233
1666
+ },
1667
+ {
1668
+ "epoch": 0.5564803804994055,
1669
+ "grad_norm": 0.8441113781121591,
1670
+ "learning_rate": 1.9317376097194964e-05,
1671
+ "loss": 1.904,
1672
+ "step": 234
1673
+ },
1674
+ {
1675
+ "epoch": 0.558858501783591,
1676
+ "grad_norm": 0.9000708142025062,
1677
+ "learning_rate": 1.9310402825768655e-05,
1678
+ "loss": 2.1239,
1679
+ "step": 235
1680
+ },
1681
+ {
1682
+ "epoch": 0.5612366230677764,
1683
+ "grad_norm": 0.9819927724537073,
1684
+ "learning_rate": 1.9303395389423918e-05,
1685
+ "loss": 2.2526,
1686
+ "step": 236
1687
+ },
1688
+ {
1689
+ "epoch": 0.5636147443519619,
1690
+ "grad_norm": 0.9835396213176555,
1691
+ "learning_rate": 1.9296353813874838e-05,
1692
+ "loss": 2.1293,
1693
+ "step": 237
1694
+ },
1695
+ {
1696
+ "epoch": 0.5659928656361475,
1697
+ "grad_norm": 0.8705520689865173,
1698
+ "learning_rate": 1.9289278124960777e-05,
1699
+ "loss": 1.9911,
1700
+ "step": 238
1701
+ },
1702
+ {
1703
+ "epoch": 0.5683709869203329,
1704
+ "grad_norm": 1.0080028925541162,
1705
+ "learning_rate": 1.9282168348646268e-05,
1706
+ "loss": 2.0903,
1707
+ "step": 239
1708
+ },
1709
+ {
1710
+ "epoch": 0.5707491082045184,
1711
+ "grad_norm": 1.0304202570689127,
1712
+ "learning_rate": 1.927502451102095e-05,
1713
+ "loss": 2.0784,
1714
+ "step": 240
1715
+ },
1716
+ {
1717
+ "epoch": 0.5731272294887039,
1718
+ "grad_norm": 1.0836386452615874,
1719
+ "learning_rate": 1.926784663829943e-05,
1720
+ "loss": 2.2297,
1721
+ "step": 241
1722
+ },
1723
+ {
1724
+ "epoch": 0.5755053507728894,
1725
+ "grad_norm": 0.972327672270083,
1726
+ "learning_rate": 1.926063475682121e-05,
1727
+ "loss": 2.2518,
1728
+ "step": 242
1729
+ },
1730
+ {
1731
+ "epoch": 0.5778834720570749,
1732
+ "grad_norm": 1.1250553185490555,
1733
+ "learning_rate": 1.9253388893050612e-05,
1734
+ "loss": 2.2419,
1735
+ "step": 243
1736
+ },
1737
+ {
1738
+ "epoch": 0.5802615933412604,
1739
+ "grad_norm": 1.6628057931903235,
1740
+ "learning_rate": 1.924610907357663e-05,
1741
+ "loss": 2.2409,
1742
+ "step": 244
1743
+ },
1744
+ {
1745
+ "epoch": 0.582639714625446,
1746
+ "grad_norm": 1.3164993193299928,
1747
+ "learning_rate": 1.9238795325112867e-05,
1748
+ "loss": 2.4277,
1749
+ "step": 245
1750
+ },
1751
+ {
1752
+ "epoch": 0.5850178359096314,
1753
+ "grad_norm": 0.9607216662774912,
1754
+ "learning_rate": 1.9231447674497444e-05,
1755
+ "loss": 2.0357,
1756
+ "step": 246
1757
+ },
1758
+ {
1759
+ "epoch": 0.5873959571938169,
1760
+ "grad_norm": 0.9753564233974246,
1761
+ "learning_rate": 1.922406614869287e-05,
1762
+ "loss": 2.1743,
1763
+ "step": 247
1764
+ },
1765
+ {
1766
+ "epoch": 0.5897740784780023,
1767
+ "grad_norm": 0.9514731158004311,
1768
+ "learning_rate": 1.9216650774785975e-05,
1769
+ "loss": 2.2775,
1770
+ "step": 248
1771
+ },
1772
+ {
1773
+ "epoch": 0.5921521997621879,
1774
+ "grad_norm": 1.1514073630104866,
1775
+ "learning_rate": 1.9209201579987777e-05,
1776
+ "loss": 2.0307,
1777
+ "step": 249
1778
+ },
1779
+ {
1780
+ "epoch": 0.5945303210463734,
1781
+ "grad_norm": 1.0070268666833808,
1782
+ "learning_rate": 1.9201718591633417e-05,
1783
+ "loss": 2.405,
1784
+ "step": 250
1785
+ },
1786
+ {
1787
+ "epoch": 0.5969084423305588,
1788
+ "grad_norm": 0.9724192667298419,
1789
+ "learning_rate": 1.9194201837182045e-05,
1790
+ "loss": 2.3375,
1791
+ "step": 251
1792
+ },
1793
+ {
1794
+ "epoch": 0.5992865636147443,
1795
+ "grad_norm": 0.9184225452723915,
1796
+ "learning_rate": 1.9186651344216703e-05,
1797
+ "loss": 2.0576,
1798
+ "step": 252
1799
+ },
1800
+ {
1801
+ "epoch": 0.6016646848989299,
1802
+ "grad_norm": 0.9277770597042948,
1803
+ "learning_rate": 1.9179067140444246e-05,
1804
+ "loss": 2.065,
1805
+ "step": 253
1806
+ },
1807
+ {
1808
+ "epoch": 0.6040428061831153,
1809
+ "grad_norm": 0.9971241617303254,
1810
+ "learning_rate": 1.9171449253695233e-05,
1811
+ "loss": 2.0388,
1812
+ "step": 254
1813
+ },
1814
+ {
1815
+ "epoch": 0.6064209274673008,
1816
+ "grad_norm": 0.968526625269074,
1817
+ "learning_rate": 1.9163797711923822e-05,
1818
+ "loss": 2.2154,
1819
+ "step": 255
1820
+ },
1821
+ {
1822
+ "epoch": 0.6087990487514863,
1823
+ "grad_norm": 1.0974259939522593,
1824
+ "learning_rate": 1.9156112543207674e-05,
1825
+ "loss": 2.0897,
1826
+ "step": 256
1827
+ },
1828
+ {
1829
+ "epoch": 0.6111771700356718,
1830
+ "grad_norm": 1.0661979784688387,
1831
+ "learning_rate": 1.9148393775747842e-05,
1832
+ "loss": 2.3986,
1833
+ "step": 257
1834
+ },
1835
+ {
1836
+ "epoch": 0.6135552913198573,
1837
+ "grad_norm": 1.3741439020152701,
1838
+ "learning_rate": 1.9140641437868664e-05,
1839
+ "loss": 2.1249,
1840
+ "step": 258
1841
+ },
1842
+ {
1843
+ "epoch": 0.6159334126040428,
1844
+ "grad_norm": 0.9207355567454468,
1845
+ "learning_rate": 1.913285555801768e-05,
1846
+ "loss": 2.2715,
1847
+ "step": 259
1848
+ },
1849
+ {
1850
+ "epoch": 0.6183115338882283,
1851
+ "grad_norm": 1.0171260467381849,
1852
+ "learning_rate": 1.9125036164765502e-05,
1853
+ "loss": 2.2638,
1854
+ "step": 260
1855
+ },
1856
+ {
1857
+ "epoch": 0.6206896551724138,
1858
+ "grad_norm": 0.9849622761444283,
1859
+ "learning_rate": 1.9117183286805726e-05,
1860
+ "loss": 2.148,
1861
+ "step": 261
1862
+ },
1863
+ {
1864
+ "epoch": 0.6230677764565993,
1865
+ "grad_norm": 1.384730629468189,
1866
+ "learning_rate": 1.9109296952954826e-05,
1867
+ "loss": 2.2442,
1868
+ "step": 262
1869
+ },
1870
+ {
1871
+ "epoch": 0.6254458977407847,
1872
+ "grad_norm": 1.066860211861379,
1873
+ "learning_rate": 1.9101377192152033e-05,
1874
+ "loss": 2.451,
1875
+ "step": 263
1876
+ },
1877
+ {
1878
+ "epoch": 0.6278240190249703,
1879
+ "grad_norm": 1.1537333721148562,
1880
+ "learning_rate": 1.909342403345925e-05,
1881
+ "loss": 2.3076,
1882
+ "step": 264
1883
+ },
1884
+ {
1885
+ "epoch": 0.6302021403091558,
1886
+ "grad_norm": 1.388798426336895,
1887
+ "learning_rate": 1.9085437506060925e-05,
1888
+ "loss": 2.3458,
1889
+ "step": 265
1890
+ },
1891
+ {
1892
+ "epoch": 0.6325802615933412,
1893
+ "grad_norm": 1.057136103530956,
1894
+ "learning_rate": 1.9077417639263966e-05,
1895
+ "loss": 2.1901,
1896
+ "step": 266
1897
+ },
1898
+ {
1899
+ "epoch": 0.6349583828775267,
1900
+ "grad_norm": 1.0267855180849,
1901
+ "learning_rate": 1.906936446249761e-05,
1902
+ "loss": 2.2597,
1903
+ "step": 267
1904
+ },
1905
+ {
1906
+ "epoch": 0.6373365041617123,
1907
+ "grad_norm": 0.984822259782258,
1908
+ "learning_rate": 1.906127800531333e-05,
1909
+ "loss": 1.9602,
1910
+ "step": 268
1911
+ },
1912
+ {
1913
+ "epoch": 0.6397146254458977,
1914
+ "grad_norm": 1.0914462759031294,
1915
+ "learning_rate": 1.905315829738473e-05,
1916
+ "loss": 2.4246,
1917
+ "step": 269
1918
+ },
1919
+ {
1920
+ "epoch": 0.6420927467300832,
1921
+ "grad_norm": 1.007066333419377,
1922
+ "learning_rate": 1.9045005368507418e-05,
1923
+ "loss": 2.2638,
1924
+ "step": 270
1925
+ },
1926
+ {
1927
+ "epoch": 0.6444708680142688,
1928
+ "grad_norm": 0.8517882887076221,
1929
+ "learning_rate": 1.9036819248598914e-05,
1930
+ "loss": 1.9905,
1931
+ "step": 271
1932
+ },
1933
+ {
1934
+ "epoch": 0.6468489892984542,
1935
+ "grad_norm": 1.0217039586834744,
1936
+ "learning_rate": 1.9028599967698533e-05,
1937
+ "loss": 2.2177,
1938
+ "step": 272
1939
+ },
1940
+ {
1941
+ "epoch": 0.6492271105826397,
1942
+ "grad_norm": 0.9930930260750681,
1943
+ "learning_rate": 1.902034755596727e-05,
1944
+ "loss": 2.093,
1945
+ "step": 273
1946
+ },
1947
+ {
1948
+ "epoch": 0.6516052318668252,
1949
+ "grad_norm": 1.4476621256505835,
1950
+ "learning_rate": 1.9012062043687713e-05,
1951
+ "loss": 2.2535,
1952
+ "step": 274
1953
+ },
1954
+ {
1955
+ "epoch": 0.6539833531510107,
1956
+ "grad_norm": 0.9679973366177126,
1957
+ "learning_rate": 1.9003743461263887e-05,
1958
+ "loss": 2.2304,
1959
+ "step": 275
1960
+ },
1961
+ {
1962
+ "epoch": 0.6563614744351962,
1963
+ "grad_norm": 1.0576995279849084,
1964
+ "learning_rate": 1.899539183922119e-05,
1965
+ "loss": 2.0678,
1966
+ "step": 276
1967
+ },
1968
+ {
1969
+ "epoch": 0.6587395957193817,
1970
+ "grad_norm": 0.9196543804308106,
1971
+ "learning_rate": 1.8987007208206254e-05,
1972
+ "loss": 2.1106,
1973
+ "step": 277
1974
+ },
1975
+ {
1976
+ "epoch": 0.6611177170035671,
1977
+ "grad_norm": 1.0412924135468502,
1978
+ "learning_rate": 1.8978589598986838e-05,
1979
+ "loss": 2.3659,
1980
+ "step": 278
1981
+ },
1982
+ {
1983
+ "epoch": 0.6634958382877527,
1984
+ "grad_norm": 1.1221322457101093,
1985
+ "learning_rate": 1.8970139042451712e-05,
1986
+ "loss": 2.0853,
1987
+ "step": 279
1988
+ },
1989
+ {
1990
+ "epoch": 0.6658739595719382,
1991
+ "grad_norm": 0.8927332524290843,
1992
+ "learning_rate": 1.8961655569610557e-05,
1993
+ "loss": 2.2388,
1994
+ "step": 280
1995
+ },
1996
+ {
1997
+ "epoch": 0.6682520808561236,
1998
+ "grad_norm": 1.0304293869359518,
1999
+ "learning_rate": 1.8953139211593838e-05,
2000
+ "loss": 2.381,
2001
+ "step": 281
2002
+ },
2003
+ {
2004
+ "epoch": 0.6706302021403091,
2005
+ "grad_norm": 1.0508469543032843,
2006
+ "learning_rate": 1.8944589999652687e-05,
2007
+ "loss": 2.214,
2008
+ "step": 282
2009
+ },
2010
+ {
2011
+ "epoch": 0.6730083234244947,
2012
+ "grad_norm": 0.8545452252368634,
2013
+ "learning_rate": 1.8936007965158806e-05,
2014
+ "loss": 2.0308,
2015
+ "step": 283
2016
+ },
2017
+ {
2018
+ "epoch": 0.6753864447086801,
2019
+ "grad_norm": 1.3101079437708238,
2020
+ "learning_rate": 1.8927393139604327e-05,
2021
+ "loss": 2.3389,
2022
+ "step": 284
2023
+ },
2024
+ {
2025
+ "epoch": 0.6777645659928656,
2026
+ "grad_norm": 0.8257605335721794,
2027
+ "learning_rate": 1.8918745554601726e-05,
2028
+ "loss": 1.9511,
2029
+ "step": 285
2030
+ },
2031
+ {
2032
+ "epoch": 0.6801426872770512,
2033
+ "grad_norm": 0.9918391764529991,
2034
+ "learning_rate": 1.891006524188368e-05,
2035
+ "loss": 2.3694,
2036
+ "step": 286
2037
+ },
2038
+ {
2039
+ "epoch": 0.6825208085612366,
2040
+ "grad_norm": 0.8841124075255721,
2041
+ "learning_rate": 1.8901352233302964e-05,
2042
+ "loss": 2.1977,
2043
+ "step": 287
2044
+ },
2045
+ {
2046
+ "epoch": 0.6848989298454221,
2047
+ "grad_norm": 0.8100832981740426,
2048
+ "learning_rate": 1.8892606560832335e-05,
2049
+ "loss": 1.9161,
2050
+ "step": 288
2051
+ },
2052
+ {
2053
+ "epoch": 0.6872770511296076,
2054
+ "grad_norm": 0.8738803349826288,
2055
+ "learning_rate": 1.8883828256564413e-05,
2056
+ "loss": 2.2419,
2057
+ "step": 289
2058
+ },
2059
+ {
2060
+ "epoch": 0.6896551724137931,
2061
+ "grad_norm": 0.8961748350433363,
2062
+ "learning_rate": 1.8875017352711547e-05,
2063
+ "loss": 2.1639,
2064
+ "step": 290
2065
+ },
2066
+ {
2067
+ "epoch": 0.6920332936979786,
2068
+ "grad_norm": 1.0902732587802257,
2069
+ "learning_rate": 1.886617388160573e-05,
2070
+ "loss": 2.4486,
2071
+ "step": 291
2072
+ },
2073
+ {
2074
+ "epoch": 0.6944114149821641,
2075
+ "grad_norm": 0.9653296144522788,
2076
+ "learning_rate": 1.8857297875698455e-05,
2077
+ "loss": 2.0904,
2078
+ "step": 292
2079
+ },
2080
+ {
2081
+ "epoch": 0.6967895362663495,
2082
+ "grad_norm": 1.0898489125890396,
2083
+ "learning_rate": 1.8848389367560604e-05,
2084
+ "loss": 2.2726,
2085
+ "step": 293
2086
+ },
2087
+ {
2088
+ "epoch": 0.6991676575505351,
2089
+ "grad_norm": 0.8892982592369411,
2090
+ "learning_rate": 1.883944838988232e-05,
2091
+ "loss": 1.8982,
2092
+ "step": 294
2093
+ },
2094
+ {
2095
+ "epoch": 0.7015457788347206,
2096
+ "grad_norm": 0.9481426246994946,
2097
+ "learning_rate": 1.8830474975472904e-05,
2098
+ "loss": 2.1466,
2099
+ "step": 295
2100
+ },
2101
+ {
2102
+ "epoch": 0.703923900118906,
2103
+ "grad_norm": 0.8426682151678768,
2104
+ "learning_rate": 1.8821469157260687e-05,
2105
+ "loss": 2.1086,
2106
+ "step": 296
2107
+ },
2108
+ {
2109
+ "epoch": 0.7063020214030915,
2110
+ "grad_norm": 1.0388273479050054,
2111
+ "learning_rate": 1.8812430968292888e-05,
2112
+ "loss": 2.3994,
2113
+ "step": 297
2114
+ },
2115
+ {
2116
+ "epoch": 0.7086801426872771,
2117
+ "grad_norm": 0.9544054737799986,
2118
+ "learning_rate": 1.8803360441735533e-05,
2119
+ "loss": 2.0918,
2120
+ "step": 298
2121
+ },
2122
+ {
2123
+ "epoch": 0.7110582639714625,
2124
+ "grad_norm": 0.9333443425947632,
2125
+ "learning_rate": 1.8794257610873307e-05,
2126
+ "loss": 2.2388,
2127
+ "step": 299
2128
+ },
2129
+ {
2130
+ "epoch": 0.713436385255648,
2131
+ "grad_norm": 0.9411120276164652,
2132
+ "learning_rate": 1.8785122509109425e-05,
2133
+ "loss": 2.1787,
2134
+ "step": 300
2135
+ },
2136
+ {
2137
+ "epoch": 0.7158145065398336,
2138
+ "grad_norm": 0.899942759501507,
2139
+ "learning_rate": 1.877595516996554e-05,
2140
+ "loss": 2.2007,
2141
+ "step": 301
2142
+ },
2143
+ {
2144
+ "epoch": 0.718192627824019,
2145
+ "grad_norm": 0.952238040187914,
2146
+ "learning_rate": 1.8766755627081586e-05,
2147
+ "loss": 2.1491,
2148
+ "step": 302
2149
+ },
2150
+ {
2151
+ "epoch": 0.7205707491082045,
2152
+ "grad_norm": 1.0704167928673332,
2153
+ "learning_rate": 1.875752391421568e-05,
2154
+ "loss": 2.4306,
2155
+ "step": 303
2156
+ },
2157
+ {
2158
+ "epoch": 0.72294887039239,
2159
+ "grad_norm": 1.0126343580756334,
2160
+ "learning_rate": 1.8748260065243985e-05,
2161
+ "loss": 2.3258,
2162
+ "step": 304
2163
+ },
2164
+ {
2165
+ "epoch": 0.7253269916765755,
2166
+ "grad_norm": 0.9203276329051738,
2167
+ "learning_rate": 1.8738964114160586e-05,
2168
+ "loss": 2.0469,
2169
+ "step": 305
2170
+ },
2171
+ {
2172
+ "epoch": 0.727705112960761,
2173
+ "grad_norm": 1.0298534605384366,
2174
+ "learning_rate": 1.8729636095077368e-05,
2175
+ "loss": 2.3807,
2176
+ "step": 306
2177
+ },
2178
+ {
2179
+ "epoch": 0.7300832342449465,
2180
+ "grad_norm": 0.9102516225979571,
2181
+ "learning_rate": 1.8720276042223896e-05,
2182
+ "loss": 2.0705,
2183
+ "step": 307
2184
+ },
2185
+ {
2186
+ "epoch": 0.7324613555291319,
2187
+ "grad_norm": 0.8450936687346169,
2188
+ "learning_rate": 1.8710883989947278e-05,
2189
+ "loss": 1.9468,
2190
+ "step": 308
2191
+ },
2192
+ {
2193
+ "epoch": 0.7348394768133175,
2194
+ "grad_norm": 10.37449210680128,
2195
+ "learning_rate": 1.870145997271206e-05,
2196
+ "loss": 2.2267,
2197
+ "step": 309
2198
+ },
2199
+ {
2200
+ "epoch": 0.737217598097503,
2201
+ "grad_norm": 0.9380258905092027,
2202
+ "learning_rate": 1.8692004025100054e-05,
2203
+ "loss": 2.2396,
2204
+ "step": 310
2205
+ },
2206
+ {
2207
+ "epoch": 0.7395957193816884,
2208
+ "grad_norm": 0.9949249727532327,
2209
+ "learning_rate": 1.868251618181028e-05,
2210
+ "loss": 2.2737,
2211
+ "step": 311
2212
+ },
2213
+ {
2214
+ "epoch": 0.7419738406658739,
2215
+ "grad_norm": 0.8650417909396523,
2216
+ "learning_rate": 1.8672996477658767e-05,
2217
+ "loss": 2.2057,
2218
+ "step": 312
2219
+ },
2220
+ {
2221
+ "epoch": 0.7443519619500595,
2222
+ "grad_norm": 0.9963224791105781,
2223
+ "learning_rate": 1.866344494757848e-05,
2224
+ "loss": 2.3958,
2225
+ "step": 313
2226
+ },
2227
+ {
2228
+ "epoch": 0.746730083234245,
2229
+ "grad_norm": 0.9782743745256545,
2230
+ "learning_rate": 1.8653861626619166e-05,
2231
+ "loss": 2.105,
2232
+ "step": 314
2233
+ },
2234
+ {
2235
+ "epoch": 0.7491082045184304,
2236
+ "grad_norm": 0.9991591823799537,
2237
+ "learning_rate": 1.8644246549947226e-05,
2238
+ "loss": 2.3339,
2239
+ "step": 315
2240
+ },
2241
+ {
2242
+ "epoch": 0.7491082045184304,
2243
+ "eval_loss": 2.453089952468872,
2244
+ "eval_runtime": 65.8189,
2245
+ "eval_samples_per_second": 9.708,
2246
+ "eval_steps_per_second": 1.215,
2247
+ "step": 315
2248
+ },
2249
+ {
2250
+ "epoch": 0.751486325802616,
2251
+ "grad_norm": 0.8595275246052216,
2252
+ "learning_rate": 1.8634599752845594e-05,
2253
+ "loss": 2.2405,
2254
+ "step": 316
2255
+ },
2256
+ {
2257
+ "epoch": 0.7538644470868014,
2258
+ "grad_norm": 0.9508091435584168,
2259
+ "learning_rate": 1.86249212707136e-05,
2260
+ "loss": 2.0259,
2261
+ "step": 317
2262
+ },
2263
+ {
2264
+ "epoch": 0.7562425683709869,
2265
+ "grad_norm": 1.007143450486727,
2266
+ "learning_rate": 1.861521113906684e-05,
2267
+ "loss": 2.2581,
2268
+ "step": 318
2269
+ },
2270
+ {
2271
+ "epoch": 0.7586206896551724,
2272
+ "grad_norm": 0.8694388672608973,
2273
+ "learning_rate": 1.8605469393537062e-05,
2274
+ "loss": 2.1028,
2275
+ "step": 319
2276
+ },
2277
+ {
2278
+ "epoch": 0.760998810939358,
2279
+ "grad_norm": 1.1523113038633086,
2280
+ "learning_rate": 1.8595696069872013e-05,
2281
+ "loss": 2.5605,
2282
+ "step": 320
2283
+ },
2284
+ {
2285
+ "epoch": 0.7633769322235434,
2286
+ "grad_norm": 1.0752431273595597,
2287
+ "learning_rate": 1.8585891203935315e-05,
2288
+ "loss": 2.179,
2289
+ "step": 321
2290
+ },
2291
+ {
2292
+ "epoch": 0.7657550535077289,
2293
+ "grad_norm": 1.4087896659381576,
2294
+ "learning_rate": 1.8576054831706348e-05,
2295
+ "loss": 2.3727,
2296
+ "step": 322
2297
+ },
2298
+ {
2299
+ "epoch": 0.7681331747919143,
2300
+ "grad_norm": 1.0235487680455349,
2301
+ "learning_rate": 1.856618698928009e-05,
2302
+ "loss": 2.0918,
2303
+ "step": 323
2304
+ },
2305
+ {
2306
+ "epoch": 0.7705112960760999,
2307
+ "grad_norm": 0.9904332707712578,
2308
+ "learning_rate": 1.8556287712867006e-05,
2309
+ "loss": 2.2627,
2310
+ "step": 324
2311
+ },
2312
+ {
2313
+ "epoch": 0.7728894173602854,
2314
+ "grad_norm": 0.9900875612198691,
2315
+ "learning_rate": 1.8546357038792918e-05,
2316
+ "loss": 2.2281,
2317
+ "step": 325
2318
+ },
2319
+ {
2320
+ "epoch": 0.7752675386444708,
2321
+ "grad_norm": 0.8882946865776852,
2322
+ "learning_rate": 1.8536395003498857e-05,
2323
+ "loss": 2.2966,
2324
+ "step": 326
2325
+ },
2326
+ {
2327
+ "epoch": 0.7776456599286563,
2328
+ "grad_norm": 0.9917259649244573,
2329
+ "learning_rate": 1.8526401643540924e-05,
2330
+ "loss": 2.2903,
2331
+ "step": 327
2332
+ },
2333
+ {
2334
+ "epoch": 0.7800237812128419,
2335
+ "grad_norm": 1.0110335104954997,
2336
+ "learning_rate": 1.8516376995590185e-05,
2337
+ "loss": 2.2732,
2338
+ "step": 328
2339
+ },
2340
+ {
2341
+ "epoch": 0.7824019024970273,
2342
+ "grad_norm": 1.0613748791083453,
2343
+ "learning_rate": 1.8506321096432516e-05,
2344
+ "loss": 2.1801,
2345
+ "step": 329
2346
+ },
2347
+ {
2348
+ "epoch": 0.7847800237812128,
2349
+ "grad_norm": 0.8280074594268549,
2350
+ "learning_rate": 1.849623398296846e-05,
2351
+ "loss": 2.0413,
2352
+ "step": 330
2353
+ },
2354
+ {
2355
+ "epoch": 0.7871581450653984,
2356
+ "grad_norm": 1.061771296332105,
2357
+ "learning_rate": 1.84861156922131e-05,
2358
+ "loss": 2.3187,
2359
+ "step": 331
2360
+ },
2361
+ {
2362
+ "epoch": 0.7895362663495838,
2363
+ "grad_norm": 1.003700059201312,
2364
+ "learning_rate": 1.8475966261295947e-05,
2365
+ "loss": 2.2117,
2366
+ "step": 332
2367
+ },
2368
+ {
2369
+ "epoch": 0.7919143876337693,
2370
+ "grad_norm": 1.0346094081558943,
2371
+ "learning_rate": 1.8465785727460763e-05,
2372
+ "loss": 2.35,
2373
+ "step": 333
2374
+ },
2375
+ {
2376
+ "epoch": 0.7942925089179548,
2377
+ "grad_norm": 1.0628441168006169,
2378
+ "learning_rate": 1.845557412806545e-05,
2379
+ "loss": 2.2907,
2380
+ "step": 334
2381
+ },
2382
+ {
2383
+ "epoch": 0.7966706302021404,
2384
+ "grad_norm": 0.9035239279839531,
2385
+ "learning_rate": 1.8445331500581905e-05,
2386
+ "loss": 2.3114,
2387
+ "step": 335
2388
+ },
2389
+ {
2390
+ "epoch": 0.7990487514863258,
2391
+ "grad_norm": 0.8520631758698989,
2392
+ "learning_rate": 1.8435057882595885e-05,
2393
+ "loss": 2.236,
2394
+ "step": 336
2395
+ },
2396
+ {
2397
+ "epoch": 0.8014268727705113,
2398
+ "grad_norm": 0.9909579691053704,
2399
+ "learning_rate": 1.8424753311806867e-05,
2400
+ "loss": 2.164,
2401
+ "step": 337
2402
+ },
2403
+ {
2404
+ "epoch": 0.8038049940546967,
2405
+ "grad_norm": 1.3497517322085937,
2406
+ "learning_rate": 1.8414417826027907e-05,
2407
+ "loss": 2.1371,
2408
+ "step": 338
2409
+ },
2410
+ {
2411
+ "epoch": 0.8061831153388823,
2412
+ "grad_norm": 0.9733174734597209,
2413
+ "learning_rate": 1.840405146318552e-05,
2414
+ "loss": 2.2605,
2415
+ "step": 339
2416
+ },
2417
+ {
2418
+ "epoch": 0.8085612366230678,
2419
+ "grad_norm": 0.991877145495908,
2420
+ "learning_rate": 1.8393654261319504e-05,
2421
+ "loss": 2.2597,
2422
+ "step": 340
2423
+ },
2424
+ {
2425
+ "epoch": 0.8109393579072532,
2426
+ "grad_norm": 0.8567918308119495,
2427
+ "learning_rate": 1.8383226258582833e-05,
2428
+ "loss": 2.0034,
2429
+ "step": 341
2430
+ },
2431
+ {
2432
+ "epoch": 0.8133174791914387,
2433
+ "grad_norm": 1.065116900935523,
2434
+ "learning_rate": 1.837276749324151e-05,
2435
+ "loss": 2.3297,
2436
+ "step": 342
2437
+ },
2438
+ {
2439
+ "epoch": 0.8156956004756243,
2440
+ "grad_norm": 0.945929516741479,
2441
+ "learning_rate": 1.8362278003674417e-05,
2442
+ "loss": 2.1654,
2443
+ "step": 343
2444
+ },
2445
+ {
2446
+ "epoch": 0.8180737217598097,
2447
+ "grad_norm": 1.2321854339549771,
2448
+ "learning_rate": 1.8351757828373183e-05,
2449
+ "loss": 2.3218,
2450
+ "step": 344
2451
+ },
2452
+ {
2453
+ "epoch": 0.8204518430439952,
2454
+ "grad_norm": 0.8769538008656999,
2455
+ "learning_rate": 1.8341207005942033e-05,
2456
+ "loss": 1.9733,
2457
+ "step": 345
2458
+ },
2459
+ {
2460
+ "epoch": 0.8228299643281808,
2461
+ "grad_norm": 0.9563552488015744,
2462
+ "learning_rate": 1.8330625575097663e-05,
2463
+ "loss": 1.8932,
2464
+ "step": 346
2465
+ },
2466
+ {
2467
+ "epoch": 0.8252080856123662,
2468
+ "grad_norm": 0.9405864126962645,
2469
+ "learning_rate": 1.8320013574669083e-05,
2470
+ "loss": 2.2498,
2471
+ "step": 347
2472
+ },
2473
+ {
2474
+ "epoch": 0.8275862068965517,
2475
+ "grad_norm": 0.910096309278826,
2476
+ "learning_rate": 1.8309371043597472e-05,
2477
+ "loss": 2.0247,
2478
+ "step": 348
2479
+ },
2480
+ {
2481
+ "epoch": 0.8299643281807372,
2482
+ "grad_norm": 0.8784633584470368,
2483
+ "learning_rate": 1.829869802093606e-05,
2484
+ "loss": 1.9894,
2485
+ "step": 349
2486
+ },
2487
+ {
2488
+ "epoch": 0.8323424494649228,
2489
+ "grad_norm": 0.8541120126588495,
2490
+ "learning_rate": 1.8287994545849948e-05,
2491
+ "loss": 2.0511,
2492
+ "step": 350
2493
+ },
2494
+ {
2495
+ "epoch": 0.8347205707491082,
2496
+ "grad_norm": 0.9979547733824415,
2497
+ "learning_rate": 1.8277260657615993e-05,
2498
+ "loss": 2.0893,
2499
+ "step": 351
2500
+ },
2501
+ {
2502
+ "epoch": 0.8370986920332937,
2503
+ "grad_norm": 1.0836986822911394,
2504
+ "learning_rate": 1.826649639562266e-05,
2505
+ "loss": 2.3076,
2506
+ "step": 352
2507
+ },
2508
+ {
2509
+ "epoch": 0.8394768133174791,
2510
+ "grad_norm": 1.035582585906488,
2511
+ "learning_rate": 1.825570179936986e-05,
2512
+ "loss": 2.2928,
2513
+ "step": 353
2514
+ },
2515
+ {
2516
+ "epoch": 0.8418549346016647,
2517
+ "grad_norm": 0.8458996980228227,
2518
+ "learning_rate": 1.8244876908468826e-05,
2519
+ "loss": 2.0421,
2520
+ "step": 354
2521
+ },
2522
+ {
2523
+ "epoch": 0.8442330558858502,
2524
+ "grad_norm": 0.9377520676275963,
2525
+ "learning_rate": 1.8234021762641946e-05,
2526
+ "loss": 2.2872,
2527
+ "step": 355
2528
+ },
2529
+ {
2530
+ "epoch": 0.8466111771700356,
2531
+ "grad_norm": 0.9662487818099018,
2532
+ "learning_rate": 1.8223136401722648e-05,
2533
+ "loss": 2.2357,
2534
+ "step": 356
2535
+ },
2536
+ {
2537
+ "epoch": 0.8489892984542212,
2538
+ "grad_norm": 0.9373837869014561,
2539
+ "learning_rate": 1.8212220865655224e-05,
2540
+ "loss": 2.3807,
2541
+ "step": 357
2542
+ },
2543
+ {
2544
+ "epoch": 0.8513674197384067,
2545
+ "grad_norm": 0.8767072116092074,
2546
+ "learning_rate": 1.8201275194494695e-05,
2547
+ "loss": 2.0453,
2548
+ "step": 358
2549
+ },
2550
+ {
2551
+ "epoch": 0.8537455410225921,
2552
+ "grad_norm": 0.9164578385360742,
2553
+ "learning_rate": 1.8190299428406667e-05,
2554
+ "loss": 2.1177,
2555
+ "step": 359
2556
+ },
2557
+ {
2558
+ "epoch": 0.8561236623067776,
2559
+ "grad_norm": 2.207352437074081,
2560
+ "learning_rate": 1.8179293607667177e-05,
2561
+ "loss": 2.2001,
2562
+ "step": 360
2563
+ },
2564
+ {
2565
+ "epoch": 0.8585017835909632,
2566
+ "grad_norm": 0.983155025111798,
2567
+ "learning_rate": 1.8168257772662556e-05,
2568
+ "loss": 2.3009,
2569
+ "step": 361
2570
+ },
2571
+ {
2572
+ "epoch": 0.8608799048751486,
2573
+ "grad_norm": 0.9734880504382539,
2574
+ "learning_rate": 1.8157191963889265e-05,
2575
+ "loss": 2.3093,
2576
+ "step": 362
2577
+ },
2578
+ {
2579
+ "epoch": 0.8632580261593341,
2580
+ "grad_norm": 0.8887247626382502,
2581
+ "learning_rate": 1.8146096221953767e-05,
2582
+ "loss": 2.1673,
2583
+ "step": 363
2584
+ },
2585
+ {
2586
+ "epoch": 0.8656361474435196,
2587
+ "grad_norm": 0.9468700496948975,
2588
+ "learning_rate": 1.8134970587572345e-05,
2589
+ "loss": 2.2193,
2590
+ "step": 364
2591
+ },
2592
+ {
2593
+ "epoch": 0.8680142687277052,
2594
+ "grad_norm": 0.9774148680996411,
2595
+ "learning_rate": 1.8123815101570996e-05,
2596
+ "loss": 2.2185,
2597
+ "step": 365
2598
+ },
2599
+ {
2600
+ "epoch": 0.8703923900118906,
2601
+ "grad_norm": 1.0377594097114105,
2602
+ "learning_rate": 1.8112629804885248e-05,
2603
+ "loss": 2.1385,
2604
+ "step": 366
2605
+ },
2606
+ {
2607
+ "epoch": 0.8727705112960761,
2608
+ "grad_norm": 0.9257473414011718,
2609
+ "learning_rate": 1.8101414738560018e-05,
2610
+ "loss": 2.309,
2611
+ "step": 367
2612
+ },
2613
+ {
2614
+ "epoch": 0.8751486325802615,
2615
+ "grad_norm": 0.8751605326561603,
2616
+ "learning_rate": 1.8090169943749477e-05,
2617
+ "loss": 2.0981,
2618
+ "step": 368
2619
+ },
2620
+ {
2621
+ "epoch": 0.8775267538644471,
2622
+ "grad_norm": 0.8318450854470809,
2623
+ "learning_rate": 1.8078895461716867e-05,
2624
+ "loss": 2.0499,
2625
+ "step": 369
2626
+ },
2627
+ {
2628
+ "epoch": 0.8799048751486326,
2629
+ "grad_norm": 0.9229990617872996,
2630
+ "learning_rate": 1.8067591333834382e-05,
2631
+ "loss": 2.0931,
2632
+ "step": 370
2633
+ },
2634
+ {
2635
+ "epoch": 0.882282996432818,
2636
+ "grad_norm": 0.8885903764744792,
2637
+ "learning_rate": 1.8056257601583004e-05,
2638
+ "loss": 2.1094,
2639
+ "step": 371
2640
+ },
2641
+ {
2642
+ "epoch": 0.8846611177170036,
2643
+ "grad_norm": 0.8862767802235494,
2644
+ "learning_rate": 1.8044894306552338e-05,
2645
+ "loss": 2.1633,
2646
+ "step": 372
2647
+ },
2648
+ {
2649
+ "epoch": 0.8870392390011891,
2650
+ "grad_norm": 0.8644263027922633,
2651
+ "learning_rate": 1.8033501490440478e-05,
2652
+ "loss": 2.1869,
2653
+ "step": 373
2654
+ },
2655
+ {
2656
+ "epoch": 0.8894173602853745,
2657
+ "grad_norm": 0.8908757391357947,
2658
+ "learning_rate": 1.802207919505385e-05,
2659
+ "loss": 2.0867,
2660
+ "step": 374
2661
+ },
2662
+ {
2663
+ "epoch": 0.89179548156956,
2664
+ "grad_norm": 0.9706439808339724,
2665
+ "learning_rate": 1.801062746230705e-05,
2666
+ "loss": 2.2817,
2667
+ "step": 375
2668
+ },
2669
+ {
2670
+ "epoch": 0.8941736028537456,
2671
+ "grad_norm": 0.9665648406193532,
2672
+ "learning_rate": 1.79991463342227e-05,
2673
+ "loss": 2.109,
2674
+ "step": 376
2675
+ },
2676
+ {
2677
+ "epoch": 0.896551724137931,
2678
+ "grad_norm": 0.8628669010410803,
2679
+ "learning_rate": 1.798763585293128e-05,
2680
+ "loss": 2.0049,
2681
+ "step": 377
2682
+ },
2683
+ {
2684
+ "epoch": 0.8989298454221165,
2685
+ "grad_norm": 0.9905082003227874,
2686
+ "learning_rate": 1.7976096060671e-05,
2687
+ "loss": 2.3004,
2688
+ "step": 378
2689
+ },
2690
+ {
2691
+ "epoch": 0.901307966706302,
2692
+ "grad_norm": 0.9857769539636477,
2693
+ "learning_rate": 1.7964526999787606e-05,
2694
+ "loss": 2.2076,
2695
+ "step": 379
2696
+ },
2697
+ {
2698
+ "epoch": 0.9036860879904876,
2699
+ "grad_norm": 0.9874365687027726,
2700
+ "learning_rate": 1.7952928712734266e-05,
2701
+ "loss": 2.2918,
2702
+ "step": 380
2703
+ },
2704
+ {
2705
+ "epoch": 0.906064209274673,
2706
+ "grad_norm": 0.8854059768194814,
2707
+ "learning_rate": 1.7941301242071384e-05,
2708
+ "loss": 2.1416,
2709
+ "step": 381
2710
+ },
2711
+ {
2712
+ "epoch": 0.9084423305588585,
2713
+ "grad_norm": 0.8891010909161526,
2714
+ "learning_rate": 1.792964463046646e-05,
2715
+ "loss": 2.2335,
2716
+ "step": 382
2717
+ },
2718
+ {
2719
+ "epoch": 0.9108204518430439,
2720
+ "grad_norm": 0.8836139495461457,
2721
+ "learning_rate": 1.7917958920693923e-05,
2722
+ "loss": 2.0156,
2723
+ "step": 383
2724
+ },
2725
+ {
2726
+ "epoch": 0.9131985731272295,
2727
+ "grad_norm": 0.862309723766035,
2728
+ "learning_rate": 1.790624415563498e-05,
2729
+ "loss": 2.2668,
2730
+ "step": 384
2731
+ },
2732
+ {
2733
+ "epoch": 0.915576694411415,
2734
+ "grad_norm": 0.8736380448815635,
2735
+ "learning_rate": 1.7894500378277463e-05,
2736
+ "loss": 2.1338,
2737
+ "step": 385
2738
+ },
2739
+ {
2740
+ "epoch": 0.9179548156956004,
2741
+ "grad_norm": 0.8450572821559386,
2742
+ "learning_rate": 1.7882727631715655e-05,
2743
+ "loss": 2.0142,
2744
+ "step": 386
2745
+ },
2746
+ {
2747
+ "epoch": 0.920332936979786,
2748
+ "grad_norm": 0.9862096866699867,
2749
+ "learning_rate": 1.7870925959150155e-05,
2750
+ "loss": 1.9915,
2751
+ "step": 387
2752
+ },
2753
+ {
2754
+ "epoch": 0.9227110582639715,
2755
+ "grad_norm": 1.0092700839816597,
2756
+ "learning_rate": 1.7859095403887697e-05,
2757
+ "loss": 2.0294,
2758
+ "step": 388
2759
+ },
2760
+ {
2761
+ "epoch": 0.925089179548157,
2762
+ "grad_norm": 1.1074789492464077,
2763
+ "learning_rate": 1.7847236009341007e-05,
2764
+ "loss": 2.2817,
2765
+ "step": 389
2766
+ },
2767
+ {
2768
+ "epoch": 0.9274673008323424,
2769
+ "grad_norm": 1.1905201839698938,
2770
+ "learning_rate": 1.7835347819028642e-05,
2771
+ "loss": 2.1793,
2772
+ "step": 390
2773
+ },
2774
+ {
2775
+ "epoch": 0.929845422116528,
2776
+ "grad_norm": 0.9783879172577963,
2777
+ "learning_rate": 1.7823430876574815e-05,
2778
+ "loss": 2.0936,
2779
+ "step": 391
2780
+ },
2781
+ {
2782
+ "epoch": 0.9322235434007135,
2783
+ "grad_norm": 0.8747590280954227,
2784
+ "learning_rate": 1.7811485225709255e-05,
2785
+ "loss": 2.0459,
2786
+ "step": 392
2787
+ },
2788
+ {
2789
+ "epoch": 0.9346016646848989,
2790
+ "grad_norm": 0.9379273246769285,
2791
+ "learning_rate": 1.7799510910267032e-05,
2792
+ "loss": 2.3024,
2793
+ "step": 393
2794
+ },
2795
+ {
2796
+ "epoch": 0.9369797859690844,
2797
+ "grad_norm": 1.0154785871015584,
2798
+ "learning_rate": 1.778750797418841e-05,
2799
+ "loss": 2.2336,
2800
+ "step": 394
2801
+ },
2802
+ {
2803
+ "epoch": 0.93935790725327,
2804
+ "grad_norm": 2.334020052582292,
2805
+ "learning_rate": 1.7775476461518668e-05,
2806
+ "loss": 2.2146,
2807
+ "step": 395
2808
+ },
2809
+ {
2810
+ "epoch": 0.9417360285374554,
2811
+ "grad_norm": 1.028424946167679,
2812
+ "learning_rate": 1.7763416416407953e-05,
2813
+ "loss": 2.148,
2814
+ "step": 396
2815
+ },
2816
+ {
2817
+ "epoch": 0.9441141498216409,
2818
+ "grad_norm": 0.9939249719466411,
2819
+ "learning_rate": 1.7751327883111117e-05,
2820
+ "loss": 2.3384,
2821
+ "step": 397
2822
+ },
2823
+ {
2824
+ "epoch": 0.9464922711058263,
2825
+ "grad_norm": 0.9622526498121815,
2826
+ "learning_rate": 1.773921090598754e-05,
2827
+ "loss": 2.2333,
2828
+ "step": 398
2829
+ },
2830
+ {
2831
+ "epoch": 0.9488703923900119,
2832
+ "grad_norm": 0.9627114271614428,
2833
+ "learning_rate": 1.7727065529500986e-05,
2834
+ "loss": 2.0078,
2835
+ "step": 399
2836
+ },
2837
+ {
2838
+ "epoch": 0.9512485136741974,
2839
+ "grad_norm": 1.0739248368345071,
2840
+ "learning_rate": 1.7714891798219432e-05,
2841
+ "loss": 2.431,
2842
+ "step": 400
2843
+ },
2844
+ {
2845
+ "epoch": 0.9536266349583828,
2846
+ "grad_norm": 0.9459448330629742,
2847
+ "learning_rate": 1.7702689756814898e-05,
2848
+ "loss": 2.195,
2849
+ "step": 401
2850
+ },
2851
+ {
2852
+ "epoch": 0.9560047562425684,
2853
+ "grad_norm": 0.985098727152756,
2854
+ "learning_rate": 1.7690459450063297e-05,
2855
+ "loss": 2.378,
2856
+ "step": 402
2857
+ },
2858
+ {
2859
+ "epoch": 0.9583828775267539,
2860
+ "grad_norm": 0.9004480308740594,
2861
+ "learning_rate": 1.7678200922844256e-05,
2862
+ "loss": 2.0375,
2863
+ "step": 403
2864
+ },
2865
+ {
2866
+ "epoch": 0.9607609988109393,
2867
+ "grad_norm": 1.0816635115771127,
2868
+ "learning_rate": 1.7665914220140964e-05,
2869
+ "loss": 2.2932,
2870
+ "step": 404
2871
+ },
2872
+ {
2873
+ "epoch": 0.9631391200951248,
2874
+ "grad_norm": 0.856817467594963,
2875
+ "learning_rate": 1.7653599387039993e-05,
2876
+ "loss": 2.1395,
2877
+ "step": 405
2878
+ },
2879
+ {
2880
+ "epoch": 0.9655172413793104,
2881
+ "grad_norm": 0.9816466176158317,
2882
+ "learning_rate": 1.764125646873115e-05,
2883
+ "loss": 2.2032,
2884
+ "step": 406
2885
+ },
2886
+ {
2887
+ "epoch": 0.9678953626634959,
2888
+ "grad_norm": 1.0159180902253635,
2889
+ "learning_rate": 1.7628885510507295e-05,
2890
+ "loss": 2.3814,
2891
+ "step": 407
2892
+ },
2893
+ {
2894
+ "epoch": 0.9702734839476813,
2895
+ "grad_norm": 0.8765185622300491,
2896
+ "learning_rate": 1.7616486557764187e-05,
2897
+ "loss": 2.1377,
2898
+ "step": 408
2899
+ },
2900
+ {
2901
+ "epoch": 0.9726516052318668,
2902
+ "grad_norm": 0.8581340453429611,
2903
+ "learning_rate": 1.7604059656000313e-05,
2904
+ "loss": 2.1687,
2905
+ "step": 409
2906
+ },
2907
+ {
2908
+ "epoch": 0.9750297265160524,
2909
+ "grad_norm": 1.0106580156311586,
2910
+ "learning_rate": 1.7591604850816705e-05,
2911
+ "loss": 2.4389,
2912
+ "step": 410
2913
+ },
2914
+ {
2915
+ "epoch": 0.9774078478002378,
2916
+ "grad_norm": 0.9102932420528898,
2917
+ "learning_rate": 1.757912218791681e-05,
2918
+ "loss": 2.1774,
2919
+ "step": 411
2920
+ },
2921
+ {
2922
+ "epoch": 0.9797859690844233,
2923
+ "grad_norm": 0.8897815759878576,
2924
+ "learning_rate": 1.7566611713106287e-05,
2925
+ "loss": 2.0938,
2926
+ "step": 412
2927
+ },
2928
+ {
2929
+ "epoch": 0.9821640903686087,
2930
+ "grad_norm": 0.8151179975871685,
2931
+ "learning_rate": 1.7554073472292854e-05,
2932
+ "loss": 2.0923,
2933
+ "step": 413
2934
+ },
2935
+ {
2936
+ "epoch": 0.9845422116527943,
2937
+ "grad_norm": 0.9325421154931588,
2938
+ "learning_rate": 1.7541507511486114e-05,
2939
+ "loss": 2.2798,
2940
+ "step": 414
2941
+ },
2942
+ {
2943
+ "epoch": 0.9869203329369798,
2944
+ "grad_norm": 0.9169184208068022,
2945
+ "learning_rate": 1.75289138767974e-05,
2946
+ "loss": 2.2266,
2947
+ "step": 415
2948
+ },
2949
+ {
2950
+ "epoch": 0.9892984542211652,
2951
+ "grad_norm": 0.9539647094698775,
2952
+ "learning_rate": 1.7516292614439586e-05,
2953
+ "loss": 2.3459,
2954
+ "step": 416
2955
+ },
2956
+ {
2957
+ "epoch": 0.9916765755053508,
2958
+ "grad_norm": 1.0372921455846975,
2959
+ "learning_rate": 1.7503643770726924e-05,
2960
+ "loss": 2.2152,
2961
+ "step": 417
2962
+ },
2963
+ {
2964
+ "epoch": 0.9940546967895363,
2965
+ "grad_norm": 0.8903926236033542,
2966
+ "learning_rate": 1.7490967392074897e-05,
2967
+ "loss": 2.1959,
2968
+ "step": 418
2969
+ },
2970
+ {
2971
+ "epoch": 0.9964328180737217,
2972
+ "grad_norm": 0.8491943369235393,
2973
+ "learning_rate": 1.7478263525000003e-05,
2974
+ "loss": 2.265,
2975
+ "step": 419
2976
+ },
2977
+ {
2978
+ "epoch": 0.9988109393579072,
2979
+ "grad_norm": 0.9138223778798192,
2980
+ "learning_rate": 1.7465532216119628e-05,
2981
+ "loss": 2.2167,
2982
+ "step": 420
2983
+ },
2984
+ {
2985
+ "epoch": 0.9988109393579072,
2986
+ "eval_loss": 2.4223339557647705,
2987
+ "eval_runtime": 65.3623,
2988
+ "eval_samples_per_second": 9.776,
2989
+ "eval_steps_per_second": 1.224,
2990
+ "step": 420
2991
+ }
2992
+ ],
2993
+ "logging_steps": 1,
2994
+ "max_steps": 1680,
2995
+ "num_input_tokens_seen": 0,
2996
+ "num_train_epochs": 4,
2997
+ "save_steps": 210,
2998
+ "stateful_callbacks": {
2999
+ "TrainerControl": {
3000
+ "args": {
3001
+ "should_epoch_stop": false,
3002
+ "should_evaluate": false,
3003
+ "should_log": false,
3004
+ "should_save": true,
3005
+ "should_training_stop": false
3006
+ },
3007
+ "attributes": {}
3008
+ }
3009
+ },
3010
+ "total_flos": 2.6054264560287744e+17,
3011
+ "train_batch_size": 1,
3012
+ "trial_name": null,
3013
+ "trial_params": null
3014
+ }
checkpoint-420/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c4afa27d1a40ecd661f9724785c2e34f68177e49c01784ff719ada5cf02a780
3
+ size 8504
checkpoint-420/zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)