--- License: apache-2.0 Language: - En Pipeline_tag: text-generation Base_model: nvidia/Llama-3.1-Minitron-4 B-Width-Base Tags: - Chat license: agpl-3.0 datasets: - anthracite-org/kalo-opus-instruct-22k-no-refusal - PJMixers/lodrick-the-lafted_OpusStories-ShareGPT - NewEden/Gryphe-3.5-16k-Subset - Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned tags: - chat --- A model made to continue off my previous work on [Magnum 4B](https://huggingface.co/anthracite-org/magnum-v2-4b), A small model made for creative writing / General assistant tasks, finetuned ontop of [IntervitensInc/Llama-3.1-Minitron-4B-Width-Base-chatml](https://huggingface.co/IntervitensInc/Llama-3.1-Minitron-4B-Width-Base-chatml), this model is made to be more coherent and generally be better then the 4B at both writing and assistant tasks. # Quants GGUF: https://huggingface.co/NewEden/Holland-4B-gguf EXL2: https://huggingface.co/NewEden/Holland-4B-exl2 ## Prompting Model has been Instruct tuned with the ChatML formatting. A typical input would look like this: ```py """<|im_start|>system system prompt<|im_end|> <|im_start|>user Hi there!<|im_end|> <|im_start|>assistant Nice to meet you!<|im_end|> <|im_start|>user Can I ask a question?<|im_end|> <|im_start|>assistant """ ``` ## Support ## No longer needed as LCPP has merged support - just update. To run inference on this model, you'll need to use Aphrodite, vLLM or EXL 2/tabbyAPI, as llama.cpp hasn't yet merged the required pull request to fix the llama 3.1 rope_freqs issue with custom head dimensions. However, you can work around this by quantizing the model yourself to create a functional GGUF file. Note that until [this PR](https://github.com/ggerganov/llama.cpp/pull/9141) is merged, the context will be limited to 8 k tokens. To create a working GGUF file, make the following adjustments: 1. Remove the `"rope_scaling": {}` entry from `config.json` 2. Change `"max_position_embeddings"` to `8192` in `config.json` These modifications should allow you to use the model with llama. Cpp, albeit with the mentioned context limitation. ## Axolotl config
See axolotl config Axolotl version: `0.4.1` ```yaml base_model: IntervitensInc/Llama-3.1-Minitron-4B-Width-Base-chatml model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false datasets: - path: NewEden/Gryphe-3.5-16k-Subset type: sharegpt conversation: chatml - path: Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned type: sharegpt conversation: chatml - path: anthracite-org/kalo-opus-instruct-22k-no-refusal type: sharegpt conversation: chatml - path: PJMixers/lodrick-the-lafted_OpusStories-ShareGPT type: sharegpt conversation: chatml chat_template: chatml val_set_size: 0.01 output_dir: ./outputs/out adapter: lora_r: lora_alpha: lora_dropout: lora_target_linear: sequence_len: 16384 # sequence_len: 32768 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_swiglu: true liger_fused_linear_cross_entropy: true wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 32 micro_batch_size: 1 num_epochs: 2 optimizer: adamw_bnb_8bit #optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 0.00002 weight_decay: 0.05 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: true gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_ratio: 0.1 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: /workspace/axolotl/deepspeed_configs/zero2.json #deepspeed: fsdp: fsdp_config: special_tokens: pad_token: <|finetune_right_pad_id|> ```

## Credits - [anthracite-org/kalo-opus-instruct-22k-no-refusal](https://huggingface.co/datasets/anthracite-org/kalo-opus-instruct-22k-no-refusal) - [NewEden/Gryphe-3.5-16k-Subset](https://huggingface.co/datasets/NewEden/Gryphe-3.5-16k-Subset) - [Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned](https://huggingface.co/datasets/Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned) - [lodrick-the-lafted/OpusStories](https://huggingface.co/datasets/lodrick-the-lafted/OpusStories) ## Training The training was done for 2 epochs. We used 2 x [RTX 6000s](https://store.nvidia.com/en-us/nvidia-rtx/products/nvidia-rtx-6000-ada-generation/) GPUs graciously provided by [Kubernetes_Bad](https://huggingface.co/kubernetes-bad) for the full-parameter fine-tuning of the model. [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)