testing / results_2025-07-13T09-59-48.191502.json
Delta-Vector's picture
Upload results_2025-07-13T09-59-48.191502.json with huggingface_hub
a67d51e verified
{
"results": {
"ifeval": {
"alias": "ifeval",
"prompt_level_strict_acc,none": 0.8125,
"prompt_level_strict_acc_stderr,none": 0.10077822185373188,
"inst_level_strict_acc,none": 0.8333333333333334,
"inst_level_strict_acc_stderr,none": "N/A",
"prompt_level_loose_acc,none": 0.8125,
"prompt_level_loose_acc_stderr,none": 0.10077822185373188,
"inst_level_loose_acc,none": 0.875,
"inst_level_loose_acc_stderr,none": "N/A"
},
"mmlu": {
"acc,none": 0.7088815789473685,
"acc_stderr,none": 0.012041450801133636,
"alias": "mmlu"
},
"mmlu_humanities": {
"acc,none": 0.8028846153846154,
"acc_stderr,none": 0.02739400408056615,
"alias": " - humanities"
},
"mmlu_formal_logic": {
"alias": " - formal_logic",
"acc,none": 0.6875,
"acc_stderr,none": 0.11967838846954226
},
"mmlu_high_school_european_history": {
"alias": " - high_school_european_history",
"acc,none": 0.9375,
"acc_stderr,none": 0.0625
},
"mmlu_high_school_us_history": {
"alias": " - high_school_us_history",
"acc,none": 0.875,
"acc_stderr,none": 0.08539125638299665
},
"mmlu_high_school_world_history": {
"alias": " - high_school_world_history",
"acc,none": 0.9375,
"acc_stderr,none": 0.0625
},
"mmlu_international_law": {
"alias": " - international_law",
"acc,none": 0.9375,
"acc_stderr,none": 0.0625
},
"mmlu_jurisprudence": {
"alias": " - jurisprudence",
"acc,none": 0.8125,
"acc_stderr,none": 0.10077822185373188
},
"mmlu_logical_fallacies": {
"alias": " - logical_fallacies",
"acc,none": 0.8125,
"acc_stderr,none": 0.10077822185373188
},
"mmlu_moral_disputes": {
"alias": " - moral_disputes",
"acc,none": 0.625,
"acc_stderr,none": 0.125
},
"mmlu_moral_scenarios": {
"alias": " - moral_scenarios",
"acc,none": 0.625,
"acc_stderr,none": 0.125
},
"mmlu_philosophy": {
"alias": " - philosophy",
"acc,none": 0.8125,
"acc_stderr,none": 0.10077822185373188
},
"mmlu_prehistory": {
"alias": " - prehistory",
"acc,none": 0.6875,
"acc_stderr,none": 0.11967838846954226
},
"mmlu_professional_law": {
"alias": " - professional_law",
"acc,none": 0.8125,
"acc_stderr,none": 0.10077822185373188
},
"mmlu_world_religions": {
"alias": " - world_religions",
"acc,none": 0.875,
"acc_stderr,none": 0.08539125638299665
},
"mmlu_other": {
"acc,none": 0.75,
"acc_stderr,none": 0.028846153846153848,
"alias": " - other"
},
"mmlu_business_ethics": {
"alias": " - business_ethics",
"acc,none": 0.9375,
"acc_stderr,none": 0.0625
},
"mmlu_clinical_knowledge": {
"alias": " - clinical_knowledge",
"acc,none": 0.6875,
"acc_stderr,none": 0.11967838846954226
},
"mmlu_college_medicine": {
"alias": " - college_medicine",
"acc,none": 0.8125,
"acc_stderr,none": 0.10077822185373188
},
"mmlu_global_facts": {
"alias": " - global_facts",
"acc,none": 0.5625,
"acc_stderr,none": 0.128086884574495
},
"mmlu_human_aging": {
"alias": " - human_aging",
"acc,none": 0.75,
"acc_stderr,none": 0.11180339887498948
},
"mmlu_management": {
"alias": " - management",
"acc,none": 0.8125,
"acc_stderr,none": 0.10077822185373188
},
"mmlu_marketing": {
"alias": " - marketing",
"acc,none": 0.875,
"acc_stderr,none": 0.08539125638299665
},
"mmlu_medical_genetics": {
"alias": " - medical_genetics",
"acc,none": 0.875,
"acc_stderr,none": 0.08539125638299665
},
"mmlu_miscellaneous": {
"alias": " - miscellaneous",
"acc,none": 0.875,
"acc_stderr,none": 0.08539125638299665
},
"mmlu_nutrition": {
"alias": " - nutrition",
"acc,none": 0.6875,
"acc_stderr,none": 0.11967838846954226
},
"mmlu_professional_accounting": {
"alias": " - professional_accounting",
"acc,none": 0.5,
"acc_stderr,none": 0.12909944487358055
},
"mmlu_professional_medicine": {
"alias": " - professional_medicine",
"acc,none": 0.9375,
"acc_stderr,none": 0.0625
},
"mmlu_virology": {
"alias": " - virology",
"acc,none": 0.4375,
"acc_stderr,none": 0.128086884574495
},
"mmlu_social_sciences": {
"acc,none": 0.8385416666666666,
"acc_stderr,none": 0.025762391391041032,
"alias": " - social sciences"
},
"mmlu_econometrics": {
"alias": " - econometrics",
"acc,none": 0.625,
"acc_stderr,none": 0.125
},
"mmlu_high_school_geography": {
"alias": " - high_school_geography",
"acc,none": 0.9375,
"acc_stderr,none": 0.0625
},
"mmlu_high_school_government_and_politics": {
"alias": " - high_school_government_and_politics",
"acc,none": 1.0,
"acc_stderr,none": 0.0
},
"mmlu_high_school_macroeconomics": {
"alias": " - high_school_macroeconomics",
"acc,none": 0.6875,
"acc_stderr,none": 0.11967838846954226
},
"mmlu_high_school_microeconomics": {
"alias": " - high_school_microeconomics",
"acc,none": 0.8125,
"acc_stderr,none": 0.10077822185373188
},
"mmlu_high_school_psychology": {
"alias": " - high_school_psychology",
"acc,none": 0.875,
"acc_stderr,none": 0.08539125638299665
},
"mmlu_human_sexuality": {
"alias": " - human_sexuality",
"acc,none": 0.875,
"acc_stderr,none": 0.08539125638299665
},
"mmlu_professional_psychology": {
"alias": " - professional_psychology",
"acc,none": 0.9375,
"acc_stderr,none": 0.0625
},
"mmlu_public_relations": {
"alias": " - public_relations",
"acc,none": 0.625,
"acc_stderr,none": 0.125
},
"mmlu_security_studies": {
"alias": " - security_studies",
"acc,none": 0.875,
"acc_stderr,none": 0.08539125638299665
},
"mmlu_sociology": {
"alias": " - sociology",
"acc,none": 0.8125,
"acc_stderr,none": 0.10077822185373188
},
"mmlu_us_foreign_policy": {
"alias": " - us_foreign_policy",
"acc,none": 1.0,
"acc_stderr,none": 0.0
},
"mmlu_stem": {
"acc,none": 0.6217105263157895,
"acc_stderr,none": 0.018126960046215203,
"alias": "stem"
},
"mmlu_abstract_algebra": {
"alias": " - abstract_algebra",
"acc,none": 0.3125,
"acc_stderr,none": 0.11967838846954226
},
"mmlu_anatomy": {
"alias": " - anatomy",
"acc,none": 0.75,
"acc_stderr,none": 0.11180339887498948
},
"mmlu_astronomy": {
"alias": " - astronomy",
"acc,none": 0.9375,
"acc_stderr,none": 0.0625
},
"mmlu_college_biology": {
"alias": " - college_biology",
"acc,none": 0.8125,
"acc_stderr,none": 0.10077822185373188
},
"mmlu_college_chemistry": {
"alias": " - college_chemistry",
"acc,none": 0.3125,
"acc_stderr,none": 0.11967838846954226
},
"mmlu_college_computer_science": {
"alias": " - college_computer_science",
"acc,none": 0.4375,
"acc_stderr,none": 0.128086884574495
},
"mmlu_college_mathematics": {
"alias": " - college_mathematics",
"acc,none": 0.25,
"acc_stderr,none": 0.11180339887498948
},
"mmlu_college_physics": {
"alias": " - college_physics",
"acc,none": 0.625,
"acc_stderr,none": 0.125
},
"mmlu_computer_security": {
"alias": " - computer_security",
"acc,none": 0.625,
"acc_stderr,none": 0.125
},
"mmlu_conceptual_physics": {
"alias": " - conceptual_physics",
"acc,none": 0.75,
"acc_stderr,none": 0.11180339887498948
},
"mmlu_electrical_engineering": {
"alias": " - electrical_engineering",
"acc,none": 0.5625,
"acc_stderr,none": 0.128086884574495
},
"mmlu_elementary_mathematics": {
"alias": " - elementary_mathematics",
"acc,none": 0.5,
"acc_stderr,none": 0.12909944487358055
},
"mmlu_high_school_biology": {
"alias": " - high_school_biology",
"acc,none": 1.0,
"acc_stderr,none": 0.0
},
"mmlu_high_school_chemistry": {
"alias": " - high_school_chemistry",
"acc,none": 0.75,
"acc_stderr,none": 0.11180339887498948
},
"mmlu_high_school_computer_science": {
"alias": " - high_school_computer_science",
"acc,none": 0.875,
"acc_stderr,none": 0.08539125638299665
},
"mmlu_high_school_mathematics": {
"alias": " - high_school_mathematics",
"acc,none": 0.3125,
"acc_stderr,none": 0.11967838846954226
},
"mmlu_high_school_physics": {
"alias": " - high_school_physics",
"acc,none": 0.5625,
"acc_stderr,none": 0.128086884574495
},
"mmlu_high_school_statistics": {
"alias": " - high_school_statistics",
"acc,none": 0.8125,
"acc_stderr,none": 0.10077822185373188
},
"mmlu_machine_learning": {
"alias": " - machine_learning",
"acc,none": 0.625,
"acc_stderr,none": 0.125
}
},
"groups": {
"mmlu": {
"acc,none": 0.7088815789473685,
"acc_stderr,none": 0.012041450801133636,
"alias": "mmlu"
},
"mmlu_humanities": {
"acc,none": 0.8028846153846154,
"acc_stderr,none": 0.02739400408056615,
"alias": " - humanities"
},
"mmlu_other": {
"acc,none": 0.75,
"acc_stderr,none": 0.028846153846153848,
"alias": " - other"
},
"mmlu_social_sciences": {
"acc,none": 0.8385416666666666,
"acc_stderr,none": 0.025762391391041032,
"alias": " - social sciences"
},
"mmlu_stem": {
"acc,none": 0.6217105263157895,
"acc_stderr,none": 0.018126960046215203,
"alias": "stem"
}
},
"group_subtasks": {
"ifeval": [],
"mmlu_humanities": [
"mmlu_moral_disputes",
"mmlu_high_school_european_history",
"mmlu_moral_scenarios",
"mmlu_formal_logic",
"mmlu_prehistory",
"mmlu_professional_law",
"mmlu_world_religions",
"mmlu_international_law",
"mmlu_high_school_us_history",
"mmlu_high_school_world_history",
"mmlu_logical_fallacies",
"mmlu_jurisprudence",
"mmlu_philosophy"
],
"mmlu_social_sciences": [
"mmlu_professional_psychology",
"mmlu_high_school_psychology",
"mmlu_econometrics",
"mmlu_public_relations",
"mmlu_us_foreign_policy",
"mmlu_high_school_microeconomics",
"mmlu_high_school_macroeconomics",
"mmlu_sociology",
"mmlu_high_school_geography",
"mmlu_high_school_government_and_politics",
"mmlu_security_studies",
"mmlu_human_sexuality"
],
"mmlu_other": [
"mmlu_professional_accounting",
"mmlu_miscellaneous",
"mmlu_marketing",
"mmlu_business_ethics",
"mmlu_human_aging",
"mmlu_professional_medicine",
"mmlu_nutrition",
"mmlu_college_medicine",
"mmlu_virology",
"mmlu_medical_genetics",
"mmlu_clinical_knowledge",
"mmlu_global_facts",
"mmlu_management"
],
"mmlu": [
"mmlu_stem",
"mmlu_other",
"mmlu_social_sciences",
"mmlu_humanities"
],
"mmlu_stem": [
"mmlu_elementary_mathematics",
"mmlu_high_school_biology",
"mmlu_electrical_engineering",
"mmlu_high_school_mathematics",
"mmlu_astronomy",
"mmlu_machine_learning",
"mmlu_college_chemistry",
"mmlu_abstract_algebra",
"mmlu_high_school_chemistry",
"mmlu_computer_security",
"mmlu_college_biology",
"mmlu_high_school_computer_science",
"mmlu_anatomy",
"mmlu_college_mathematics",
"mmlu_high_school_statistics",
"mmlu_high_school_physics",
"mmlu_conceptual_physics",
"mmlu_college_computer_science",
"mmlu_college_physics"
]
},
"configs": {
"ifeval": {
"task": "ifeval",
"dataset_path": "google/IFEval",
"test_split": "train",
"doc_to_text": "prompt",
"doc_to_target": 0,
"unsafe_code": false,
"process_results": "def process_results(doc, results):\n inp = InputExample(\n key=doc[\"key\"],\n instruction_id_list=doc[\"instruction_id_list\"],\n prompt=doc[\"prompt\"],\n kwargs=doc[\"kwargs\"],\n )\n response = results[0]\n\n out_strict = test_instruction_following_strict(inp, response)\n out_loose = test_instruction_following_loose(inp, response)\n\n return {\n \"prompt_level_strict_acc\": out_strict.follow_all_instructions,\n \"inst_level_strict_acc\": out_strict.follow_instruction_list,\n \"prompt_level_loose_acc\": out_loose.follow_all_instructions,\n \"inst_level_loose_acc\": out_loose.follow_instruction_list,\n }\n",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "prompt_level_strict_acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "inst_level_strict_acc",
"aggregation": "def agg_inst_level_acc(items):\n flat_items = [item for sublist in items for item in sublist]\n inst_level_acc = sum(flat_items) / len(flat_items)\n return inst_level_acc\n",
"higher_is_better": true
},
{
"metric": "prompt_level_loose_acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "inst_level_loose_acc",
"aggregation": "def agg_inst_level_acc(items):\n flat_items = [item for sublist in items for item in sublist]\n inst_level_acc = sum(flat_items) / len(flat_items)\n return inst_level_acc\n",
"higher_is_better": true
}
],
"output_type": "generate_until",
"generation_kwargs": {
"until": [],
"do_sample": false,
"temperature": 0.0,
"max_gen_toks": 1280
},
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 4.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_abstract_algebra": {
"task": "mmlu_abstract_algebra",
"task_alias": "abstract_algebra",
"tag": "mmlu_stem_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "abstract_algebra",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about abstract algebra.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_anatomy": {
"task": "mmlu_anatomy",
"task_alias": "anatomy",
"tag": "mmlu_stem_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "anatomy",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about anatomy.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_astronomy": {
"task": "mmlu_astronomy",
"task_alias": "astronomy",
"tag": "mmlu_stem_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "astronomy",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about astronomy.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_business_ethics": {
"task": "mmlu_business_ethics",
"task_alias": "business_ethics",
"tag": "mmlu_other_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "business_ethics",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about business ethics.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_clinical_knowledge": {
"task": "mmlu_clinical_knowledge",
"task_alias": "clinical_knowledge",
"tag": "mmlu_other_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "clinical_knowledge",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about clinical knowledge.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_college_biology": {
"task": "mmlu_college_biology",
"task_alias": "college_biology",
"tag": "mmlu_stem_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "college_biology",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about college biology.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_college_chemistry": {
"task": "mmlu_college_chemistry",
"task_alias": "college_chemistry",
"tag": "mmlu_stem_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "college_chemistry",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about college chemistry.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_college_computer_science": {
"task": "mmlu_college_computer_science",
"task_alias": "college_computer_science",
"tag": "mmlu_stem_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "college_computer_science",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about college computer science.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_college_mathematics": {
"task": "mmlu_college_mathematics",
"task_alias": "college_mathematics",
"tag": "mmlu_stem_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "college_mathematics",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about college mathematics.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_college_medicine": {
"task": "mmlu_college_medicine",
"task_alias": "college_medicine",
"tag": "mmlu_other_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "college_medicine",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about college medicine.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_college_physics": {
"task": "mmlu_college_physics",
"task_alias": "college_physics",
"tag": "mmlu_stem_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "college_physics",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about college physics.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_computer_security": {
"task": "mmlu_computer_security",
"task_alias": "computer_security",
"tag": "mmlu_stem_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "computer_security",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about computer security.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_conceptual_physics": {
"task": "mmlu_conceptual_physics",
"task_alias": "conceptual_physics",
"tag": "mmlu_stem_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "conceptual_physics",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about conceptual physics.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_econometrics": {
"task": "mmlu_econometrics",
"task_alias": "econometrics",
"tag": "mmlu_social_sciences_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "econometrics",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about econometrics.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_electrical_engineering": {
"task": "mmlu_electrical_engineering",
"task_alias": "electrical_engineering",
"tag": "mmlu_stem_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "electrical_engineering",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about electrical engineering.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_elementary_mathematics": {
"task": "mmlu_elementary_mathematics",
"task_alias": "elementary_mathematics",
"tag": "mmlu_stem_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "elementary_mathematics",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about elementary mathematics.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_formal_logic": {
"task": "mmlu_formal_logic",
"task_alias": "formal_logic",
"tag": "mmlu_humanities_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "formal_logic",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about formal logic.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_global_facts": {
"task": "mmlu_global_facts",
"task_alias": "global_facts",
"tag": "mmlu_other_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "global_facts",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about global facts.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_high_school_biology": {
"task": "mmlu_high_school_biology",
"task_alias": "high_school_biology",
"tag": "mmlu_stem_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "high_school_biology",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about high school biology.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_high_school_chemistry": {
"task": "mmlu_high_school_chemistry",
"task_alias": "high_school_chemistry",
"tag": "mmlu_stem_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "high_school_chemistry",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about high school chemistry.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_high_school_computer_science": {
"task": "mmlu_high_school_computer_science",
"task_alias": "high_school_computer_science",
"tag": "mmlu_stem_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "high_school_computer_science",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about high school computer science.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_high_school_european_history": {
"task": "mmlu_high_school_european_history",
"task_alias": "high_school_european_history",
"tag": "mmlu_humanities_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "high_school_european_history",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about high school european history.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_high_school_geography": {
"task": "mmlu_high_school_geography",
"task_alias": "high_school_geography",
"tag": "mmlu_social_sciences_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "high_school_geography",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about high school geography.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_high_school_government_and_politics": {
"task": "mmlu_high_school_government_and_politics",
"task_alias": "high_school_government_and_politics",
"tag": "mmlu_social_sciences_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "high_school_government_and_politics",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about high school government and politics.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_high_school_macroeconomics": {
"task": "mmlu_high_school_macroeconomics",
"task_alias": "high_school_macroeconomics",
"tag": "mmlu_social_sciences_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "high_school_macroeconomics",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about high school macroeconomics.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_high_school_mathematics": {
"task": "mmlu_high_school_mathematics",
"task_alias": "high_school_mathematics",
"tag": "mmlu_stem_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "high_school_mathematics",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about high school mathematics.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_high_school_microeconomics": {
"task": "mmlu_high_school_microeconomics",
"task_alias": "high_school_microeconomics",
"tag": "mmlu_social_sciences_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "high_school_microeconomics",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about high school microeconomics.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_high_school_physics": {
"task": "mmlu_high_school_physics",
"task_alias": "high_school_physics",
"tag": "mmlu_stem_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "high_school_physics",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about high school physics.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_high_school_psychology": {
"task": "mmlu_high_school_psychology",
"task_alias": "high_school_psychology",
"tag": "mmlu_social_sciences_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "high_school_psychology",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about high school psychology.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_high_school_statistics": {
"task": "mmlu_high_school_statistics",
"task_alias": "high_school_statistics",
"tag": "mmlu_stem_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "high_school_statistics",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about high school statistics.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_high_school_us_history": {
"task": "mmlu_high_school_us_history",
"task_alias": "high_school_us_history",
"tag": "mmlu_humanities_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "high_school_us_history",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about high school us history.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_high_school_world_history": {
"task": "mmlu_high_school_world_history",
"task_alias": "high_school_world_history",
"tag": "mmlu_humanities_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "high_school_world_history",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about high school world history.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_human_aging": {
"task": "mmlu_human_aging",
"task_alias": "human_aging",
"tag": "mmlu_other_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "human_aging",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about human aging.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_human_sexuality": {
"task": "mmlu_human_sexuality",
"task_alias": "human_sexuality",
"tag": "mmlu_social_sciences_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "human_sexuality",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about human sexuality.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_international_law": {
"task": "mmlu_international_law",
"task_alias": "international_law",
"tag": "mmlu_humanities_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "international_law",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about international law.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_jurisprudence": {
"task": "mmlu_jurisprudence",
"task_alias": "jurisprudence",
"tag": "mmlu_humanities_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "jurisprudence",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about jurisprudence.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_logical_fallacies": {
"task": "mmlu_logical_fallacies",
"task_alias": "logical_fallacies",
"tag": "mmlu_humanities_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "logical_fallacies",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about logical fallacies.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_machine_learning": {
"task": "mmlu_machine_learning",
"task_alias": "machine_learning",
"tag": "mmlu_stem_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "machine_learning",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about machine learning.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_management": {
"task": "mmlu_management",
"task_alias": "management",
"tag": "mmlu_other_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "management",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about management.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_marketing": {
"task": "mmlu_marketing",
"task_alias": "marketing",
"tag": "mmlu_other_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "marketing",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about marketing.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_medical_genetics": {
"task": "mmlu_medical_genetics",
"task_alias": "medical_genetics",
"tag": "mmlu_other_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "medical_genetics",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about medical genetics.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_miscellaneous": {
"task": "mmlu_miscellaneous",
"task_alias": "miscellaneous",
"tag": "mmlu_other_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "miscellaneous",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about miscellaneous.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_moral_disputes": {
"task": "mmlu_moral_disputes",
"task_alias": "moral_disputes",
"tag": "mmlu_humanities_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "moral_disputes",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about moral disputes.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_moral_scenarios": {
"task": "mmlu_moral_scenarios",
"task_alias": "moral_scenarios",
"tag": "mmlu_humanities_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "moral_scenarios",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about moral scenarios.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_nutrition": {
"task": "mmlu_nutrition",
"task_alias": "nutrition",
"tag": "mmlu_other_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "nutrition",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about nutrition.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_philosophy": {
"task": "mmlu_philosophy",
"task_alias": "philosophy",
"tag": "mmlu_humanities_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "philosophy",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about philosophy.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_prehistory": {
"task": "mmlu_prehistory",
"task_alias": "prehistory",
"tag": "mmlu_humanities_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "prehistory",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about prehistory.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_professional_accounting": {
"task": "mmlu_professional_accounting",
"task_alias": "professional_accounting",
"tag": "mmlu_other_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "professional_accounting",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about professional accounting.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_professional_law": {
"task": "mmlu_professional_law",
"task_alias": "professional_law",
"tag": "mmlu_humanities_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "professional_law",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about professional law.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_professional_medicine": {
"task": "mmlu_professional_medicine",
"task_alias": "professional_medicine",
"tag": "mmlu_other_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "professional_medicine",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about professional medicine.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_professional_psychology": {
"task": "mmlu_professional_psychology",
"task_alias": "professional_psychology",
"tag": "mmlu_social_sciences_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "professional_psychology",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about professional psychology.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_public_relations": {
"task": "mmlu_public_relations",
"task_alias": "public_relations",
"tag": "mmlu_social_sciences_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "public_relations",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about public relations.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_security_studies": {
"task": "mmlu_security_studies",
"task_alias": "security_studies",
"tag": "mmlu_social_sciences_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "security_studies",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about security studies.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_sociology": {
"task": "mmlu_sociology",
"task_alias": "sociology",
"tag": "mmlu_social_sciences_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "sociology",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about sociology.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_us_foreign_policy": {
"task": "mmlu_us_foreign_policy",
"task_alias": "us_foreign_policy",
"tag": "mmlu_social_sciences_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "us_foreign_policy",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about us foreign policy.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_virology": {
"task": "mmlu_virology",
"task_alias": "virology",
"tag": "mmlu_other_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "virology",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about virology.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
},
"mmlu_world_religions": {
"task": "mmlu_world_religions",
"task_alias": "world_religions",
"tag": "mmlu_humanities_tasks",
"dataset_path": "cais/mmlu",
"dataset_name": "world_religions",
"dataset_kwargs": {
"trust_remote_code": true
},
"test_split": "test",
"fewshot_split": "dev",
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
"doc_to_target": "answer",
"unsafe_code": false,
"doc_to_choice": [
"A",
"B",
"C",
"D"
],
"description": "The following are multiple choice questions (with answers) about world religions.\n\n",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"fewshot_config": {
"sampler": "first_n"
},
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0,
"pretrained": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"tokenizer": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"max_gen_toks": 4096,
"max_model_len": 8192,
"enable_prefix_caching": true,
"enable_chunked_prefill": true,
"tensor_parallel_size": 8
}
}
},
"versions": {
"ifeval": 4.0,
"mmlu": 2,
"mmlu_abstract_algebra": 1.0,
"mmlu_anatomy": 1.0,
"mmlu_astronomy": 1.0,
"mmlu_business_ethics": 1.0,
"mmlu_clinical_knowledge": 1.0,
"mmlu_college_biology": 1.0,
"mmlu_college_chemistry": 1.0,
"mmlu_college_computer_science": 1.0,
"mmlu_college_mathematics": 1.0,
"mmlu_college_medicine": 1.0,
"mmlu_college_physics": 1.0,
"mmlu_computer_security": 1.0,
"mmlu_conceptual_physics": 1.0,
"mmlu_econometrics": 1.0,
"mmlu_electrical_engineering": 1.0,
"mmlu_elementary_mathematics": 1.0,
"mmlu_formal_logic": 1.0,
"mmlu_global_facts": 1.0,
"mmlu_high_school_biology": 1.0,
"mmlu_high_school_chemistry": 1.0,
"mmlu_high_school_computer_science": 1.0,
"mmlu_high_school_european_history": 1.0,
"mmlu_high_school_geography": 1.0,
"mmlu_high_school_government_and_politics": 1.0,
"mmlu_high_school_macroeconomics": 1.0,
"mmlu_high_school_mathematics": 1.0,
"mmlu_high_school_microeconomics": 1.0,
"mmlu_high_school_physics": 1.0,
"mmlu_high_school_psychology": 1.0,
"mmlu_high_school_statistics": 1.0,
"mmlu_high_school_us_history": 1.0,
"mmlu_high_school_world_history": 1.0,
"mmlu_human_aging": 1.0,
"mmlu_human_sexuality": 1.0,
"mmlu_humanities": 2,
"mmlu_international_law": 1.0,
"mmlu_jurisprudence": 1.0,
"mmlu_logical_fallacies": 1.0,
"mmlu_machine_learning": 1.0,
"mmlu_management": 1.0,
"mmlu_marketing": 1.0,
"mmlu_medical_genetics": 1.0,
"mmlu_miscellaneous": 1.0,
"mmlu_moral_disputes": 1.0,
"mmlu_moral_scenarios": 1.0,
"mmlu_nutrition": 1.0,
"mmlu_other": 2,
"mmlu_philosophy": 1.0,
"mmlu_prehistory": 1.0,
"mmlu_professional_accounting": 1.0,
"mmlu_professional_law": 1.0,
"mmlu_professional_medicine": 1.0,
"mmlu_professional_psychology": 1.0,
"mmlu_public_relations": 1.0,
"mmlu_security_studies": 1.0,
"mmlu_social_sciences": 2,
"mmlu_sociology": 1.0,
"mmlu_stem": 2,
"mmlu_us_foreign_policy": 1.0,
"mmlu_virology": 1.0,
"mmlu_world_religions": 1.0
},
"n-shot": {
"ifeval": 0,
"mmlu_abstract_algebra": 0,
"mmlu_anatomy": 0,
"mmlu_astronomy": 0,
"mmlu_business_ethics": 0,
"mmlu_clinical_knowledge": 0,
"mmlu_college_biology": 0,
"mmlu_college_chemistry": 0,
"mmlu_college_computer_science": 0,
"mmlu_college_mathematics": 0,
"mmlu_college_medicine": 0,
"mmlu_college_physics": 0,
"mmlu_computer_security": 0,
"mmlu_conceptual_physics": 0,
"mmlu_econometrics": 0,
"mmlu_electrical_engineering": 0,
"mmlu_elementary_mathematics": 0,
"mmlu_formal_logic": 0,
"mmlu_global_facts": 0,
"mmlu_high_school_biology": 0,
"mmlu_high_school_chemistry": 0,
"mmlu_high_school_computer_science": 0,
"mmlu_high_school_european_history": 0,
"mmlu_high_school_geography": 0,
"mmlu_high_school_government_and_politics": 0,
"mmlu_high_school_macroeconomics": 0,
"mmlu_high_school_mathematics": 0,
"mmlu_high_school_microeconomics": 0,
"mmlu_high_school_physics": 0,
"mmlu_high_school_psychology": 0,
"mmlu_high_school_statistics": 0,
"mmlu_high_school_us_history": 0,
"mmlu_high_school_world_history": 0,
"mmlu_human_aging": 0,
"mmlu_human_sexuality": 0,
"mmlu_international_law": 0,
"mmlu_jurisprudence": 0,
"mmlu_logical_fallacies": 0,
"mmlu_machine_learning": 0,
"mmlu_management": 0,
"mmlu_marketing": 0,
"mmlu_medical_genetics": 0,
"mmlu_miscellaneous": 0,
"mmlu_moral_disputes": 0,
"mmlu_moral_scenarios": 0,
"mmlu_nutrition": 0,
"mmlu_philosophy": 0,
"mmlu_prehistory": 0,
"mmlu_professional_accounting": 0,
"mmlu_professional_law": 0,
"mmlu_professional_medicine": 0,
"mmlu_professional_psychology": 0,
"mmlu_public_relations": 0,
"mmlu_security_studies": 0,
"mmlu_sociology": 0,
"mmlu_us_foreign_policy": 0,
"mmlu_virology": 0,
"mmlu_world_religions": 0
},
"higher_is_better": {
"ifeval": {
"prompt_level_strict_acc": true,
"inst_level_strict_acc": true,
"prompt_level_loose_acc": true,
"inst_level_loose_acc": true
},
"mmlu": {
"acc": true
},
"mmlu_abstract_algebra": {
"acc": true
},
"mmlu_anatomy": {
"acc": true
},
"mmlu_astronomy": {
"acc": true
},
"mmlu_business_ethics": {
"acc": true
},
"mmlu_clinical_knowledge": {
"acc": true
},
"mmlu_college_biology": {
"acc": true
},
"mmlu_college_chemistry": {
"acc": true
},
"mmlu_college_computer_science": {
"acc": true
},
"mmlu_college_mathematics": {
"acc": true
},
"mmlu_college_medicine": {
"acc": true
},
"mmlu_college_physics": {
"acc": true
},
"mmlu_computer_security": {
"acc": true
},
"mmlu_conceptual_physics": {
"acc": true
},
"mmlu_econometrics": {
"acc": true
},
"mmlu_electrical_engineering": {
"acc": true
},
"mmlu_elementary_mathematics": {
"acc": true
},
"mmlu_formal_logic": {
"acc": true
},
"mmlu_global_facts": {
"acc": true
},
"mmlu_high_school_biology": {
"acc": true
},
"mmlu_high_school_chemistry": {
"acc": true
},
"mmlu_high_school_computer_science": {
"acc": true
},
"mmlu_high_school_european_history": {
"acc": true
},
"mmlu_high_school_geography": {
"acc": true
},
"mmlu_high_school_government_and_politics": {
"acc": true
},
"mmlu_high_school_macroeconomics": {
"acc": true
},
"mmlu_high_school_mathematics": {
"acc": true
},
"mmlu_high_school_microeconomics": {
"acc": true
},
"mmlu_high_school_physics": {
"acc": true
},
"mmlu_high_school_psychology": {
"acc": true
},
"mmlu_high_school_statistics": {
"acc": true
},
"mmlu_high_school_us_history": {
"acc": true
},
"mmlu_high_school_world_history": {
"acc": true
},
"mmlu_human_aging": {
"acc": true
},
"mmlu_human_sexuality": {
"acc": true
},
"mmlu_humanities": {
"acc": true
},
"mmlu_international_law": {
"acc": true
},
"mmlu_jurisprudence": {
"acc": true
},
"mmlu_logical_fallacies": {
"acc": true
},
"mmlu_machine_learning": {
"acc": true
},
"mmlu_management": {
"acc": true
},
"mmlu_marketing": {
"acc": true
},
"mmlu_medical_genetics": {
"acc": true
},
"mmlu_miscellaneous": {
"acc": true
},
"mmlu_moral_disputes": {
"acc": true
},
"mmlu_moral_scenarios": {
"acc": true
},
"mmlu_nutrition": {
"acc": true
},
"mmlu_other": {
"acc": true
},
"mmlu_philosophy": {
"acc": true
},
"mmlu_prehistory": {
"acc": true
},
"mmlu_professional_accounting": {
"acc": true
},
"mmlu_professional_law": {
"acc": true
},
"mmlu_professional_medicine": {
"acc": true
},
"mmlu_professional_psychology": {
"acc": true
},
"mmlu_public_relations": {
"acc": true
},
"mmlu_security_studies": {
"acc": true
},
"mmlu_social_sciences": {
"acc": true
},
"mmlu_sociology": {
"acc": true
},
"mmlu_stem": {
"acc": true
},
"mmlu_us_foreign_policy": {
"acc": true
},
"mmlu_virology": {
"acc": true
},
"mmlu_world_religions": {
"acc": true
}
},
"n-samples": {
"mmlu_elementary_mathematics": {
"original": 378,
"effective": 16
},
"mmlu_high_school_biology": {
"original": 310,
"effective": 16
},
"mmlu_electrical_engineering": {
"original": 145,
"effective": 16
},
"mmlu_high_school_mathematics": {
"original": 270,
"effective": 16
},
"mmlu_astronomy": {
"original": 152,
"effective": 16
},
"mmlu_machine_learning": {
"original": 112,
"effective": 16
},
"mmlu_college_chemistry": {
"original": 100,
"effective": 16
},
"mmlu_abstract_algebra": {
"original": 100,
"effective": 16
},
"mmlu_high_school_chemistry": {
"original": 203,
"effective": 16
},
"mmlu_computer_security": {
"original": 100,
"effective": 16
},
"mmlu_college_biology": {
"original": 144,
"effective": 16
},
"mmlu_high_school_computer_science": {
"original": 100,
"effective": 16
},
"mmlu_anatomy": {
"original": 135,
"effective": 16
},
"mmlu_college_mathematics": {
"original": 100,
"effective": 16
},
"mmlu_high_school_statistics": {
"original": 216,
"effective": 16
},
"mmlu_high_school_physics": {
"original": 151,
"effective": 16
},
"mmlu_conceptual_physics": {
"original": 235,
"effective": 16
},
"mmlu_college_computer_science": {
"original": 100,
"effective": 16
},
"mmlu_college_physics": {
"original": 102,
"effective": 16
},
"mmlu_professional_accounting": {
"original": 282,
"effective": 16
},
"mmlu_miscellaneous": {
"original": 783,
"effective": 16
},
"mmlu_marketing": {
"original": 234,
"effective": 16
},
"mmlu_business_ethics": {
"original": 100,
"effective": 16
},
"mmlu_human_aging": {
"original": 223,
"effective": 16
},
"mmlu_professional_medicine": {
"original": 272,
"effective": 16
},
"mmlu_nutrition": {
"original": 306,
"effective": 16
},
"mmlu_college_medicine": {
"original": 173,
"effective": 16
},
"mmlu_virology": {
"original": 166,
"effective": 16
},
"mmlu_medical_genetics": {
"original": 100,
"effective": 16
},
"mmlu_clinical_knowledge": {
"original": 265,
"effective": 16
},
"mmlu_global_facts": {
"original": 100,
"effective": 16
},
"mmlu_management": {
"original": 103,
"effective": 16
},
"mmlu_professional_psychology": {
"original": 612,
"effective": 16
},
"mmlu_high_school_psychology": {
"original": 545,
"effective": 16
},
"mmlu_econometrics": {
"original": 114,
"effective": 16
},
"mmlu_public_relations": {
"original": 110,
"effective": 16
},
"mmlu_us_foreign_policy": {
"original": 100,
"effective": 16
},
"mmlu_high_school_microeconomics": {
"original": 238,
"effective": 16
},
"mmlu_high_school_macroeconomics": {
"original": 390,
"effective": 16
},
"mmlu_sociology": {
"original": 201,
"effective": 16
},
"mmlu_high_school_geography": {
"original": 198,
"effective": 16
},
"mmlu_high_school_government_and_politics": {
"original": 193,
"effective": 16
},
"mmlu_security_studies": {
"original": 245,
"effective": 16
},
"mmlu_human_sexuality": {
"original": 131,
"effective": 16
},
"mmlu_moral_disputes": {
"original": 346,
"effective": 16
},
"mmlu_high_school_european_history": {
"original": 165,
"effective": 16
},
"mmlu_moral_scenarios": {
"original": 895,
"effective": 16
},
"mmlu_formal_logic": {
"original": 126,
"effective": 16
},
"mmlu_prehistory": {
"original": 324,
"effective": 16
},
"mmlu_professional_law": {
"original": 1534,
"effective": 16
},
"mmlu_world_religions": {
"original": 171,
"effective": 16
},
"mmlu_international_law": {
"original": 121,
"effective": 16
},
"mmlu_high_school_us_history": {
"original": 204,
"effective": 16
},
"mmlu_high_school_world_history": {
"original": 237,
"effective": 16
},
"mmlu_logical_fallacies": {
"original": 163,
"effective": 16
},
"mmlu_jurisprudence": {
"original": 108,
"effective": 16
},
"mmlu_philosophy": {
"original": 311,
"effective": 16
},
"ifeval": {
"original": 541,
"effective": 16
}
},
"config": {
"model": "vllm",
"model_args": "pretrained=/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged,tokenizer=/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged,max_gen_toks=4096,max_model_len=8192,enable_prefix_caching=True,enable_chunked_prefill=True,tensor_parallel_size=8",
"batch_size": "auto",
"batch_sizes": [],
"device": null,
"use_cache": null,
"limit": 16.0,
"bootstrap_iters": 100000,
"gen_kwargs": null,
"random_seed": 0,
"numpy_seed": 1234,
"torch_seed": 1234,
"fewshot_seed": 1234
},
"git_hash": "ff41a85",
"date": 1752425792.898692,
"pretty_env_info": "PyTorch version: 2.7.0+cu126\nIs debug build: False\nCUDA used to build PyTorch: 12.6\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.22.1\nLibc version: glibc-2.35\n\nPython version: 3.11.11 (main, Dec 11 2024, 16:28:39) [GCC 11.2.0] (64-bit runtime)\nPython platform: Linux-5.15.0-1053-nvidia-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 11.5.119\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 535.161.08\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 43 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 256\nOn-line CPU(s) list: 0-255\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7742 64-Core Processor\nCPU family: 23\nModel: 49\nThread(s) per core: 2\nCore(s) per socket: 64\nSocket(s): 2\nStepping: 0\nFrequency boost: enabled\nCPU max MHz: 2250.0000\nCPU min MHz: 1500.0000\nBogoMIPS: 4491.75\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip rdpid overflow_recov succor smca sme sev sev_es\nVirtualization: AMD-V\nL1d cache: 4 MiB (128 instances)\nL1i cache: 4 MiB (128 instances)\nL2 cache: 64 MiB (128 instances)\nL3 cache: 512 MiB (32 instances)\nNUMA node(s): 8\nNUMA node0 CPU(s): 0-15,128-143\nNUMA node1 CPU(s): 16-31,144-159\nNUMA node2 CPU(s): 32-47,160-175\nNUMA node3 CPU(s): 48-63,176-191\nNUMA node4 CPU(s): 64-79,192-207\nNUMA node5 CPU(s): 80-95,208-223\nNUMA node6 CPU(s): 96-111,224-239\nNUMA node7 CPU(s): 112-127,240-255\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Mitigation; untrained return thunk; SMT enabled with STIBP protection\nVulnerability Spec rstack overflow: Mitigation; safe RET\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==2.2.6\n[pip3] nvidia-cublas-cu12==12.6.4.1\n[pip3] nvidia-cuda-cupti-cu12==12.6.80\n[pip3] nvidia-cuda-nvrtc-cu12==12.6.77\n[pip3] nvidia-cuda-runtime-cu12==12.6.77\n[pip3] nvidia-cudnn-cu12==9.5.1.17\n[pip3] nvidia-cufft-cu12==11.3.0.4\n[pip3] nvidia-curand-cu12==10.3.7.77\n[pip3] nvidia-cusolver-cu12==11.7.1.2\n[pip3] nvidia-cusparse-cu12==12.5.4.2\n[pip3] nvidia-cusparselt-cu12==0.6.3\n[pip3] nvidia-nccl-cu12==2.26.2\n[pip3] nvidia-nvjitlink-cu12==12.6.85\n[pip3] nvidia-nvtx-cu12==12.6.77\n[pip3] torch==2.7.0\n[pip3] torchaudio==2.7.0\n[pip3] torchvision==0.22.0\n[pip3] triton==3.3.0\n[conda] blas 1.0 mkl \n[conda] cuda-cudart 12.1.105 0 nvidia\n[conda] cuda-cupti 12.1.105 0 nvidia\n[conda] cuda-libraries 12.1.0 0 nvidia\n[conda] cuda-nvrtc 12.1.105 0 nvidia\n[conda] cuda-nvtx 12.1.105 0 nvidia\n[conda] cuda-opencl 12.9.19 0 nvidia\n[conda] cuda-runtime 12.1.0 0 nvidia\n[conda] ffmpeg 4.3 hf484d3e_0 pytorch\n[conda] libcublas 12.1.0.26 0 nvidia\n[conda] libcufft 11.0.2.4 0 nvidia\n[conda] libcurand 10.3.10.19 0 nvidia\n[conda] libcusolver 11.4.4.55 0 nvidia\n[conda] libcusparse 12.0.2.55 0 nvidia\n[conda] libjpeg-turbo 2.0.0 h9bf148f_0 pytorch\n[conda] libnvjitlink 12.1.105 0 nvidia\n[conda] mkl 2023.1.0 h213fc3f_46344 \n[conda] mkl-service 2.4.0 py311h5eee18b_2 \n[conda] mkl_fft 1.3.11 py311h5eee18b_0 \n[conda] mkl_random 1.2.8 py311ha02d727_0 \n[conda] numpy 1.26.4 pypi_0 pypi\n[conda] nvidia-cublas-cu12 12.1.3.1 pypi_0 pypi\n[conda] nvidia-cuda-cupti-cu12 12.1.105 pypi_0 pypi\n[conda] nvidia-cuda-nvrtc-cu12 12.1.105 pypi_0 pypi\n[conda] nvidia-cuda-runtime-cu12 12.1.105 pypi_0 pypi\n[conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi\n[conda] nvidia-cufft-cu12 11.0.2.54 pypi_0 pypi\n[conda] nvidia-curand-cu12 10.3.2.106 pypi_0 pypi\n[conda] nvidia-cusolver-cu12 11.4.5.107 pypi_0 pypi\n[conda] nvidia-cusparse-cu12 12.1.0.106 pypi_0 pypi\n[conda] nvidia-nccl-cu12 2.20.5 pypi_0 pypi\n[conda] nvidia-nvjitlink-cu12 12.9.41 pypi_0 pypi\n[conda] nvidia-nvtx-cu12 12.1.105 pypi_0 pypi\n[conda] pytorch-cuda 12.1 ha16c6d3_6 pytorch\n[conda] pytorch-mutex 1.0 cuda pytorch\n[conda] torch 2.4.0 pypi_0 pypi\n[conda] torchaudio 2.5.1 py311_cu121 pytorch\n[conda] torchvision 0.19.0 pypi_0 pypi\n[conda] triton 3.0.0 pypi_0 pypi",
"transformers_version": "4.53.0",
"lm_eval_version": "0.4.9",
"upper_git_hash": null,
"tokenizer_pad_token": [
"<pad>",
"11"
],
"tokenizer_eos_token": [
"</s>",
"2"
],
"tokenizer_bos_token": [
"<s>",
"1"
],
"eot_token_id": 2,
"max_length": 8192,
"task_hashes": {
"mmlu_elementary_mathematics": "cac3e448edd825647459c36f45c72ddca2182eb7bfe581d790dbb497cede64bf",
"mmlu_high_school_biology": "3fb7646b3c9def6448c305937401933fb1ccb7a3750aaaf734765b66962264a8",
"mmlu_electrical_engineering": "4696db1142e8bb63912cf56de182540aa886d09572df8cf6d5da37ff6d144516",
"mmlu_high_school_mathematics": "dd6e0b3b2b92b9d0cd5afb9e3888a3e5c89b80b47c8620b7ff6b5664e08e6fdf",
"mmlu_astronomy": "a7840590c8a89d853ebf69e7f8bc4cf2b7eb69b89ef2801f74232536870638fc",
"mmlu_machine_learning": "e25a5b36ff8737d059df510dfac2e0083e1eccae98a49515ccc9d5fbf69bc8bc",
"mmlu_college_chemistry": "596c0db68c89b2a413409b39dcdb5bb0f0e7cce78eaaf952e3ddb2f09c22def1",
"mmlu_abstract_algebra": "1760b21fd56dfa201c3f46c9ae96522b7e0a5e33c1fc2bc341cbd422d207bd10",
"mmlu_high_school_chemistry": "2b482509203f92c9adafbbcbdf6b5d32e746c55ccf5c1e772023a368ce4df531",
"mmlu_computer_security": "a3be1d0d63e0b526e5ea59b37b14d1d3ad0aee73406ef2699f35ddea0c20cb6c",
"mmlu_college_biology": "0ce125904aaef337576696045bff1b640d99bb11ccbd9321bf8f9c79966b2e8d",
"mmlu_high_school_computer_science": "ccf3f4fa7a64240052e5d17ce0d73a02dc72a81cf3b762f3b81555fb9eed8598",
"mmlu_anatomy": "7cdc7d2dee6647bc50e4ef4444cc0c703ff0c75eaff474fe1c377b17e48b9e8f",
"mmlu_college_mathematics": "10707801abe204183d7003ea787824209b6539dbba9dc195a65a9e4b7507165f",
"mmlu_high_school_statistics": "1b358c9b61563eda3ab0ccbfd51b14f07bbe71aaad21eac68378a82c7c7d147c",
"mmlu_high_school_physics": "094b0c3b09a361853332905ce5bcdeaa27a59324e4fd9a26504c7b19c82a81ce",
"mmlu_conceptual_physics": "666eb6ecf3b91eeb146659e30475a67e20af5414efc8220c6187b9d9cc28a369",
"mmlu_college_computer_science": "a1aa72a3e01ad366b67d7ebed525ade4206eaff2c6381fc6050cd7685a2cfd9a",
"mmlu_college_physics": "8672c562212c39fe69b873034389d76b75cc3d3b7f730df935419ea3607e527a",
"mmlu_professional_accounting": "edddaf2b0b5498d62abecce2332fda8e9e107bb28d22fa27637381b8dd3c19f6",
"mmlu_miscellaneous": "7ba50686b4ba6df6f2d8bb3ce367b65288f08615d147de92ce2e5495d96804f4",
"mmlu_marketing": "d0af9d3d2eda28135469ce80800867c78538f9b51366c0b3cf5efd73cf8cfd15",
"mmlu_business_ethics": "34f65c098a84c264b0de81a9379e456e5517b111feeadccddeb7f558cb2487fc",
"mmlu_human_aging": "473a517fc08f3bc0d4128ee4fdb80b5c60c70c253d0241f2165bd9f9072515d9",
"mmlu_professional_medicine": "fdaa3dc281e7e8f2a621f127cc0b61f6cf4f2905bdf6764b6f8bc67c10f368e9",
"mmlu_nutrition": "bd4a0a9359f9ccac441169c8eca7f70663a725c8f0e7950e0a6bb55fd2613a2f",
"mmlu_college_medicine": "3f88054d4d7028fc97247da43bd891e15c8f34c2546e616c8ce5589536cc1513",
"mmlu_virology": "dfbaafba5f0c937e86674895beb0843b6f0bcb29aeb092f9606ed9b51750dccd",
"mmlu_medical_genetics": "a9d74fd7757846dfe2052395438a04e3d56cef00ea85dbc17ba95a1be8bfbc7a",
"mmlu_clinical_knowledge": "53127bc6fcfb7b737956616aa719dff9a91aecbc4dbf057275f5e6c9075614ab",
"mmlu_global_facts": "2704929c2616e3d28049446f3e55a5b0693d3db0a04639e2e6931d400b73ddb5",
"mmlu_management": "72e55f0fc994bdcab9637f77266bcd8e2257fa11ff18d8de11f10420c0d13cef",
"mmlu_professional_psychology": "cf6ba9795e9c35c4164944b538b06bcb1b5fd62576f725bfd0d0d0e11bbc9c90",
"mmlu_high_school_psychology": "d7baca339c8d39818c69cf69741440a5212150d8e68cdc0adf2118c6296929cf",
"mmlu_econometrics": "5394e602a3460ea966b8643fa05686bc9632e45293ad9a09459ce8c0680b6f8b",
"mmlu_public_relations": "38ff316870de2c090664e7aa56faa40394968a63906d218d6316ff62269057d9",
"mmlu_us_foreign_policy": "53f21ad8af5210fcffe27ff6973c88fadf0786a3b4483c687b2d73dfdead268a",
"mmlu_high_school_microeconomics": "b0102ca8a44b6ad80dc0c28dc2ec918c29a16fccec060aa10f9657061637a965",
"mmlu_high_school_macroeconomics": "cb55006e034dcff2c156ba299b6e8070c9561f5ec924db94db0ccc88d64da196",
"mmlu_sociology": "4265f0662f9e6df19005cf787f082a9da07cd01a73734ae7c9a884f289483ec8",
"mmlu_high_school_geography": "a5db03886bd1d35f8bfc4fd0006bebcfa53e4399242facbd02397aad3de49d66",
"mmlu_high_school_government_and_politics": "2f744868ef55512df499f2fb74cf0b669a025f2b9215d1d52fc10517aee0901a",
"mmlu_security_studies": "855ad01a63496fa90b92f921e6121a5dc7b5e587cb5d5e9cb83ac4b328fda4ff",
"mmlu_human_sexuality": "662c92104fad0625d2a7ecff56c772f82e36e0a79de27fb601c1201230cff256",
"mmlu_moral_disputes": "397867ddeb953c9f52220268940892383d9d3e89557473a838653f2030db9201",
"mmlu_high_school_european_history": "ccc6b22125efc74e3bc212fff35aa2e70f65860c6327e508285f9119cf250c05",
"mmlu_moral_scenarios": "afc41c2e1274717c0eec6b773e8c245375967c35e45f476ce90c8222cdaef2f1",
"mmlu_formal_logic": "1e3c3e734525ff4ee19578a18ae9e15a0184047943952f5117e638c947357285",
"mmlu_prehistory": "19a95ac367b336762ec53cb6360fbaa24f534ef3ee94f188dfb05077613a42fd",
"mmlu_professional_law": "4312b3bf29579626f568c61070e5823650fbc2f798205c62699ddf03a0ace2b8",
"mmlu_world_religions": "f8933575ee37dca64ab9e29ee6de2cf322192c79ec8f823ea292aa2b53226d64",
"mmlu_international_law": "848a6905ed42bd71baedcb49979a031686ecfa5f8e0a8e475380609b0eea67dc",
"mmlu_high_school_us_history": "0b165de1f249e606810f4bfb22b43d75c3177e66e277d3d60ec410f9bcd683bf",
"mmlu_high_school_world_history": "8be40d262d6b12f30cbd6dc7ebf3d72b04a8939414bb077285817e9d52999989",
"mmlu_logical_fallacies": "4d29d91f40e565b5b3bf71e071c2af5ce59ddb721116fa26fe8b14666ad565a3",
"mmlu_jurisprudence": "fa41a99aafcdd9381fd281d721d7d60bd9dea714c242a63ac01045f00af2ae3c",
"mmlu_philosophy": "620490d4bbf6c3127f79c1f97b35aea67524c9825982b2a0a0a78fdf80017874",
"ifeval": "a0944d2495291b61306df9a0bf350e60f502aa595fcc7123383a414265a514be"
},
"model_source": "vllm",
"model_name": "/home/dgxuser/workspace/Mango/axolotl/24B-Retrain/merged",
"model_name_sanitized": "__home__dgxuser__workspace__Mango__axolotl__24B-Retrain__merged",
"system_instruction": null,
"system_instruction_sha": null,
"fewshot_as_multiturn": true,
"chat_template": "{%- set today = strftime_now(\"%Y-%m-%d\") %}\n{%- set default_system_message = \"You are Mistral Small 3, a Large Language Model (LLM) created by Mistral AI, a French startup headquartered in Paris.\\nYour knowledge base was last updated on 2023-10-01. The current date is \" + today + \".\\n\\nWhen you're not sure about some information, you say that you don't have the information and don't make up anything.\\nIf the user's question is not clear, ambiguous, or does not provide enough context for you to accurately answer the question, you do not try to answer it right away and you rather ask the user to clarify their request (e.g. \\\"What are some good restaurants around me?\\\" => \\\"Where are you?\\\" or \\\"When is the next flight to Tokyo\\\" => \\\"Where do you travel from?\\\")\" %}\n\n{{- bos_token }}\n\n{%- if messages[0]['role'] == 'system' %}\n {%- if messages[0]['content'] is string %}\n {%- set system_message = messages[0]['content'] %}\n {%- else %}\n {%- set system_message = messages[0]['content'][0]['text'] %}\n {%- endif %}\n {%- set loop_messages = messages[1:] %}\n{%- else %}\n {%- set system_message = default_system_message %}\n {%- set loop_messages = messages %}\n{%- endif %}\n{{- '[SYSTEM_PROMPT]' + system_message + '[/SYSTEM_PROMPT]' }}\n\n{%- for message in loop_messages %}\n {%- if message['role'] == 'user' %}\n {%- if message['content'] is string %}\n {{- '[INST]' + message['content'] + '[/INST]' }}\n {%- else %}\n {{- '[INST]' }}\n {%- for block in message['content'] %}\n {%- if block['type'] == 'text' %}\n {{- block['text'] }}\n {%- elif block['type'] in ['image', 'image_url'] %}\n {{- '[IMG]' }}\n {%- else %}\n {{- raise_exception('Only text and image blocks are supported in message content!') }}\n {%- endif %}\n {%- endfor %}\n {{- '[/INST]' }}\n {%- endif %}\n {%- elif message['role'] == 'system' %}\n {%- if message['content'] is string %}\n {{- '[SYSTEM_PROMPT]' + message['content'] + '[/SYSTEM_PROMPT]' }}\n {%- else %}\n {{- '[SYSTEM_PROMPT]' + message['content'][0]['text'] + '[/SYSTEM_PROMPT]' }}\n {%- endif %}\n {%- elif message['role'] == 'assistant' %}\n {%- if message['content'] is string %}\n {{- message['content'] + eos_token }}\n {%- else %}\n {{- message['content'][0]['text'] + eos_token }}\n {%- endif %}\n {%- else %}\n {{- raise_exception('Only user, system and assistant roles are supported!') }}\n {%- endif %}\n{%- endfor %}",
"chat_template_sha": "5f42291cf1b71a8eeae031eafd5bdc669586dbbbebba344a5d641322af152aa7",
"start_time": 1331416.233509223,
"end_time": 1331614.076114171,
"total_evaluation_time_seconds": "197.8426049479749"
}