--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:8788 - loss:BatchAllTripletLoss base_model: cl-nagoya/sup-simcse-ja-base widget: - source_sentence: 科目:ユニット及びその他。名称:ピクチャーレールA。 sentences: - 科目:ユニット及びその他。名称:床ゴムチップ舗装。 - 科目:ユニット及びその他。名称:講堂スピーカー戸。 - 科目:ユニット及びその他。名称:C7三槽シンク。 - source_sentence: 科目:ユニット及びその他。名称:A-#小児プレイルームアート。 sentences: - 科目:ユニット及びその他。名称:F-#階ひまわり学級職員室ミニキッチン。 - 科目:ユニット及びその他。名称:連絡通路梁用バトントラス。 - 科目:ユニット及びその他。名称:体育館サブバレーボールコートライン。 - source_sentence: 科目:ユニット及びその他。名称:厨房カウンター。 sentences: - 科目:コンクリート。名称:地上部暑中コンクリート。 - 科目:コンクリート。名称:免震EXP.J用充填コンクリート。 - 科目:コンクリート。名称:基礎コンクリート。 - source_sentence: 科目:ユニット及びその他。名称:1F電話コーナーカウンター。 sentences: - 科目:ユニット及びその他。名称:1・2階男子・女子更衣室カーテンレール。 - 科目:コンクリート。名称:鉄筋コンクリート(免震下部)。 - 科目:タイル。名称:EXP.J上床磁器質タイルA。 - source_sentence: 科目:ユニット及びその他。名称:4F透析室カウンター。 sentences: - 科目:ユニット及びその他。名称:2F初療1、2カウンター。 - 科目:ユニット及びその他。名称:5Fファミリールームカウンター。 - 科目:ユニット及びその他。名称:9Fスタッフステーション1カウンター。 pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer based on cl-nagoya/sup-simcse-ja-base This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [cl-nagoya/sup-simcse-ja-base](https://huggingface.co/cl-nagoya/sup-simcse-ja-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [cl-nagoya/sup-simcse-ja-base](https://huggingface.co/cl-nagoya/sup-simcse-ja-base) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("Detomo/cl-nagoya-sup-simcse-ja-for-standard-name-v1_1") # Run inference sentences = [ '科目:ユニット及びその他。名称:4F透析室カウンター。', '科目:ユニット及びその他。名称:2F初療1、2カウンター。', '科目:ユニット及びその他。名称:9Fスタッフステーション1カウンター。', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 8,788 training samples * Columns: sentence and label * Approximate statistics based on the first 1000 samples: | | sentence | label | |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | type | string | int | | details | | | * Samples: | sentence | label | |:----------------------------------------|:---------------| | 科目:コンクリート。名称:免震基礎天端グラウト注入。 | 0 | | 科目:コンクリート。名称:免震基礎天端グラウト注入。 | 0 | | 科目:コンクリート。名称:コンクリートポンプ圧送。 | 1 | * Loss: [BatchAllTripletLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchalltripletloss) ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 256 - `per_device_eval_batch_size`: 256 - `learning_rate`: 1e-05 - `weight_decay`: 0.01 - `num_train_epochs`: 250 - `warmup_ratio`: 0.1 - `fp16`: True - `batch_sampler`: group_by_label #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 256 - `per_device_eval_batch_size`: 256 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 1e-05 - `weight_decay`: 0.01 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 250 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: group_by_label - `multi_dataset_batch_sampler`: proportional
### Training Logs
Click to expand | Epoch | Step | Training Loss | |:--------:|:----:|:-------------:| | 0.5714 | 20 | 0.787 | | 1.2 | 40 | 0.7827 | | 1.7714 | 60 | 0.7361 | | 2.4 | 80 | 0.6798 | | 3.0286 | 100 | 0.6569 | | 3.6 | 120 | 0.6669 | | 4.2286 | 140 | 0.6163 | | 4.8 | 160 | 0.6277 | | 5.4286 | 180 | 0.6449 | | 6.0571 | 200 | 0.6135 | | 6.6286 | 220 | 0.6445 | | 7.2571 | 240 | 0.6572 | | 7.8286 | 260 | 0.6268 | | 8.4571 | 280 | 0.6034 | | 9.0857 | 300 | 0.5598 | | 9.6571 | 320 | 0.5801 | | 10.2857 | 340 | 0.5471 | | 10.8571 | 360 | 0.6579 | | 11.4857 | 380 | 0.6059 | | 12.1143 | 400 | 0.5715 | | 12.6857 | 420 | 0.5986 | | 13.3143 | 440 | 0.5601 | | 13.8857 | 460 | 0.5547 | | 14.5143 | 480 | 0.5642 | | 15.1429 | 500 | 0.697 | | 15.7143 | 520 | 0.5688 | | 16.3429 | 540 | 0.5736 | | 16.9143 | 560 | 0.5088 | | 17.5429 | 580 | 0.5677 | | 18.1714 | 600 | 0.6028 | | 18.7429 | 620 | 0.5674 | | 19.3714 | 640 | 0.5665 | | 19.9429 | 660 | 0.6289 | | 20.5714 | 680 | 0.5456 | | 21.2 | 700 | 0.4944 | | 21.7714 | 720 | 0.5712 | | 22.4 | 740 | 0.6106 | | 23.0286 | 760 | 0.5209 | | 23.6 | 780 | 0.5236 | | 24.2286 | 800 | 0.6091 | | 24.8 | 820 | 0.6678 | | 25.4286 | 840 | 0.4693 | | 26.0571 | 860 | 0.4582 | | 26.6286 | 880 | 0.5627 | | 27.2571 | 900 | 0.5525 | | 27.8286 | 920 | 0.503 | | 28.4571 | 940 | 0.4801 | | 29.0857 | 960 | 0.5039 | | 29.6571 | 980 | 0.5049 | | 30.2857 | 1000 | 0.595 | | 30.8571 | 1020 | 0.4733 | | 31.4857 | 1040 | 0.5804 | | 32.1143 | 1060 | 0.4101 | | 32.6857 | 1080 | 0.4311 | | 33.3143 | 1100 | 0.4746 | | 33.8857 | 1120 | 0.4964 | | 34.5143 | 1140 | 0.4436 | | 35.1429 | 1160 | 0.6351 | | 35.7143 | 1180 | 0.5267 | | 36.3429 | 1200 | 0.4685 | | 36.9143 | 1220 | 0.4201 | | 37.5429 | 1240 | 0.4256 | | 38.1714 | 1260 | 0.5543 | | 38.7429 | 1280 | 0.5176 | | 39.3714 | 1300 | 0.4328 | | 39.9429 | 1320 | 0.4746 | | 40.5714 | 1340 | 0.4768 | | 41.2 | 1360 | 0.4663 | | 41.7714 | 1380 | 0.4729 | | 42.4 | 1400 | 0.4141 | | 43.0286 | 1420 | 0.3195 | | 43.6 | 1440 | 0.3789 | | 44.2286 | 1460 | 0.4032 | | 44.8 | 1480 | 0.443 | | 45.4286 | 1500 | 0.4116 | | 46.0571 | 1520 | 0.4951 | | 46.6286 | 1540 | 0.3845 | | 47.2571 | 1560 | 0.3461 | | 47.8286 | 1580 | 0.4754 | | 48.4571 | 1600 | 0.5583 | | 49.0857 | 1620 | 0.4282 | | 49.6571 | 1640 | 0.436 | | 50.2857 | 1660 | 0.4097 | | 50.8571 | 1680 | 0.4642 | | 51.4857 | 1700 | 0.3243 | | 52.1143 | 1720 | 0.4395 | | 52.6857 | 1740 | 0.3672 | | 53.3143 | 1760 | 0.4781 | | 53.8857 | 1780 | 0.5362 | | 54.5143 | 1800 | 0.4401 | | 55.1429 | 1820 | 0.4313 | | 55.7143 | 1840 | 0.2751 | | 56.3429 | 1860 | 0.331 | | 56.9143 | 1880 | 0.4325 | | 57.5429 | 1900 | 0.2995 | | 58.1714 | 1920 | 0.4159 | | 58.7429 | 1940 | 0.5603 | | 59.3714 | 1960 | 0.4575 | | 59.9429 | 1980 | 0.4677 | | 60.5714 | 2000 | 0.4653 | | 61.2 | 2020 | 0.3098 | | 61.7714 | 2040 | 0.3188 | | 62.4 | 2060 | 0.3769 | | 63.0286 | 2080 | 0.2902 | | 63.6 | 2100 | 0.4064 | | 64.2286 | 2120 | 0.3663 | | 64.8 | 2140 | 0.3184 | | 65.4286 | 2160 | 0.4874 | | 66.0571 | 2180 | 0.4094 | | 66.6286 | 2200 | 0.4261 | | 67.2571 | 2220 | 0.3808 | | 67.8286 | 2240 | 0.2991 | | 68.4571 | 2260 | 0.3242 | | 69.0857 | 2280 | 0.2582 | | 69.6571 | 2300 | 0.3806 | | 70.2857 | 2320 | 0.3573 | | 70.8571 | 2340 | 0.3183 | | 71.4857 | 2360 | 0.4043 | | 72.1143 | 2380 | 0.4266 | | 72.6857 | 2400 | 0.5612 | | 73.3143 | 2420 | 0.3476 | | 73.8857 | 2440 | 0.3018 | | 74.5143 | 2460 | 0.2952 | | 75.1429 | 2480 | 0.2633 | | 75.7143 | 2500 | 0.3564 | | 76.3429 | 2520 | 0.2283 | | 76.9143 | 2540 | 0.3615 | | 77.5429 | 2560 | 0.2174 | | 78.1714 | 2580 | 0.3049 | | 78.7429 | 2600 | 0.2838 | | 79.3714 | 2620 | 0.3191 | | 79.9429 | 2640 | 0.2529 | | 80.5714 | 2660 | 0.3192 | | 81.2 | 2680 | 0.5119 | | 81.7714 | 2700 | 0.2459 | | 82.4 | 2720 | 0.4136 | | 83.0286 | 2740 | 0.3266 | | 83.6 | 2760 | 0.2863 | | 84.2286 | 2780 | 0.3563 | | 84.8 | 2800 | 0.2605 | | 85.4286 | 2820 | 0.254 | | 86.0571 | 2840 | 0.2252 | | 86.6286 | 2860 | 0.3191 | | 87.2571 | 2880 | 0.3074 | | 87.8286 | 2900 | 0.274 | | 88.4571 | 2920 | 0.3864 | | 89.0857 | 2940 | 0.3206 | | 89.6571 | 2960 | 0.2752 | | 90.2857 | 2980 | 0.2033 | | 90.8571 | 3000 | 0.3979 | | 91.4857 | 3020 | 0.4327 | | 92.1143 | 3040 | 0.1999 | | 92.6857 | 3060 | 0.3939 | | 93.3143 | 3080 | 0.2733 | | 93.8857 | 3100 | 0.4334 | | 94.5143 | 3120 | 0.3726 | | 95.1429 | 3140 | 0.2567 | | 95.7143 | 3160 | 0.258 | | 96.3429 | 3180 | 0.1805 | | 96.9143 | 3200 | 0.3244 | | 97.5429 | 3220 | 0.2038 | | 98.1714 | 3240 | 0.2689 | | 98.7429 | 3260 | 0.433 | | 99.3714 | 3280 | 0.1587 | | 99.9429 | 3300 | 0.3088 | | 100.5714 | 3320 | 0.3049 | | 101.2 | 3340 | 0.335 | | 101.7714 | 3360 | 0.2688 | | 102.4 | 3380 | 0.359 | | 103.0286 | 3400 | 0.2512 | | 103.6 | 3420 | 0.2818 | | 104.2286 | 3440 | 0.3606 | | 104.8 | 3460 | 0.3254 | | 105.4286 | 3480 | 0.2487 | | 106.0571 | 3500 | 0.2184 | | 106.6286 | 3520 | 0.2897 | | 107.2571 | 3540 | 0.2849 | | 107.8286 | 3560 | 0.362 | | 108.4571 | 3580 | 0.2418 | | 109.0857 | 3600 | 0.1498 | | 109.6571 | 3620 | 0.2566 | | 110.2857 | 3640 | 0.1181 | | 110.8571 | 3660 | 0.3675 | | 111.4857 | 3680 | 0.2722 | | 112.1143 | 3700 | 0.3779 | | 112.6857 | 3720 | 0.3882 | | 113.3143 | 3740 | 0.1941 | | 113.8857 | 3760 | 0.2281 | | 114.5143 | 3780 | 0.2079 | | 115.1429 | 3800 | 0.3443 | | 115.7143 | 3820 | 0.2763 | | 116.3429 | 3840 | 0.2331 | | 116.9143 | 3860 | 0.2093 | | 117.5429 | 3880 | 0.2439 | | 118.1714 | 3900 | 0.1312 | | 118.7429 | 3920 | 0.1098 | | 119.3714 | 3940 | 0.2295 | | 119.9429 | 3960 | 0.2501 | | 120.5714 | 3980 | 0.3522 | | 121.2 | 4000 | 0.3293 | | 121.7714 | 4020 | 0.1698 | | 122.4 | 4040 | 0.3992 | | 123.0286 | 4060 | 0.1931 | | 123.6 | 4080 | 0.1755 | | 124.2286 | 4100 | 0.3408 | | 124.8 | 4120 | 0.2337 | | 125.4286 | 4140 | 0.2121 | | 126.0571 | 4160 | 0.1628 | | 126.6286 | 4180 | 0.2455 | | 127.2571 | 4200 | 0.3342 | | 127.8286 | 4220 | 0.1725 | | 128.4571 | 4240 | 0.3714 | | 129.0857 | 4260 | 0.2775 | | 129.6571 | 4280 | 0.1764 | | 130.2857 | 4300 | 0.1863 | | 130.8571 | 4320 | 0.276 | | 131.4857 | 4340 | 0.2006 | | 132.1143 | 4360 | 0.2099 | | 132.6857 | 4380 | 0.2397 | | 133.3143 | 4400 | 0.223 | | 133.8857 | 4420 | 0.1321 | | 134.5143 | 4440 | 0.2499 | | 135.1429 | 4460 | 0.2107 | | 135.7143 | 4480 | 0.2374 | | 136.3429 | 4500 | 0.2589 | | 136.9143 | 4520 | 0.2382 | | 137.5429 | 4540 | 0.1058 | | 138.1714 | 4560 | 0.2519 | | 138.7429 | 4580 | 0.23 | | 139.3714 | 4600 | 0.2031 | | 139.9429 | 4620 | 0.2424 | | 140.5714 | 4640 | 0.1312 | | 141.2 | 4660 | 0.1787 | | 141.7714 | 4680 | 0.2445 | | 142.4 | 4700 | 0.1948 | | 143.0286 | 4720 | 0.2601 | | 143.6 | 4740 | 0.1906 | | 144.2286 | 4760 | 0.35 | | 144.8 | 4780 | 0.1674 | | 145.4286 | 4800 | 0.2339 | | 146.0571 | 4820 | 0.2151 | | 146.6286 | 4840 | 0.1986 | | 147.2571 | 4860 | 0.1608 | | 147.8286 | 4880 | 0.2729 | | 148.4571 | 4900 | 0.1555 | | 149.0857 | 4920 | 0.1536 | | 149.6571 | 4940 | 0.1245 | | 150.2857 | 4960 | 0.2635 | | 150.8571 | 4980 | 0.1628 | | 151.4857 | 5000 | 0.1869 | | 152.1143 | 5020 | 0.2142 | | 152.6857 | 5040 | 0.1867 | | 153.3143 | 5060 | 0.2361 | | 153.8857 | 5080 | 0.1811 | | 154.5143 | 5100 | 0.4071 | | 155.1429 | 5120 | 0.2499 | | 155.7143 | 5140 | 0.2398 | | 156.3429 | 5160 | 0.1486 | | 156.9143 | 5180 | 0.1683 | | 157.5429 | 5200 | 0.1434 | | 158.1714 | 5220 | 0.1731 | | 158.7429 | 5240 | 0.1674 | | 159.3714 | 5260 | 0.1085 | | 159.9429 | 5280 | 0.2573 | | 160.5714 | 5300 | 0.1937 | | 161.2 | 5320 | 0.0806 | | 161.7714 | 5340 | 0.1411 | | 162.4 | 5360 | 0.1603 | | 163.0286 | 5380 | 0.1787 | | 163.6 | 5400 | 0.2099 | | 164.2286 | 5420 | 0.2676 | | 164.8 | 5440 | 0.2658 | | 165.4286 | 5460 | 0.2632 | | 166.0571 | 5480 | 0.1839 | | 166.6286 | 5500 | 0.2524 | | 167.2571 | 5520 | 0.2018 | | 167.8286 | 5540 | 0.2955 | | 168.4571 | 5560 | 0.209 | | 169.0857 | 5580 | 0.1999 | | 169.6571 | 5600 | 0.2836 | | 170.2857 | 5620 | 0.1559 | | 170.8571 | 5640 | 0.2746 | | 171.4857 | 5660 | 0.1939 | | 172.1143 | 5680 | 0.1561 | | 172.6857 | 5700 | 0.0935 | | 173.3143 | 5720 | 0.1927 | | 173.8857 | 5740 | 0.3022 | | 174.5143 | 5760 | 0.2068 | | 175.1429 | 5780 | 0.1384 | | 175.7143 | 5800 | 0.086 | | 176.3429 | 5820 | 0.1181 | | 176.9143 | 5840 | 0.3145 | | 177.5429 | 5860 | 0.0974 | | 178.1714 | 5880 | 0.1891 | | 178.7429 | 5900 | 0.1788 | | 179.3714 | 5920 | 0.1954 | | 179.9429 | 5940 | 0.1342 | | 180.5714 | 5960 | 0.0936 | | 181.2 | 5980 | 0.3109 | | 181.7714 | 6000 | 0.1879 | | 182.4 | 6020 | 0.0798 | | 183.0286 | 6040 | 0.097 | | 183.6 | 6060 | 0.0835 | | 184.2286 | 6080 | 0.0931 | | 184.8 | 6100 | 0.1377 | | 185.4286 | 6120 | 0.1239 | | 186.0571 | 6140 | 0.0307 | | 186.6286 | 6160 | 0.1962 | | 187.2571 | 6180 | 0.242 | | 187.8286 | 6200 | 0.0886 | | 188.4571 | 6220 | 0.2103 | | 189.0857 | 6240 | 0.0746 | | 189.6571 | 6260 | 0.1191 | | 190.2857 | 6280 | 0.2356 | | 190.8571 | 6300 | 0.2015 | | 191.4857 | 6320 | 0.1728 | | 192.1143 | 6340 | 0.1624 | | 192.6857 | 6360 | 0.2528 | | 193.3143 | 6380 | 0.0759 | | 193.8857 | 6400 | 0.2138 | | 194.5143 | 6420 | 0.1544 | | 195.1429 | 6440 | 0.2444 | | 195.7143 | 6460 | 0.1896 | | 196.3429 | 6480 | 0.1646 | | 196.9143 | 6500 | 0.1305 | | 197.5429 | 6520 | 0.1379 | | 198.1714 | 6540 | 0.1845 | | 198.7429 | 6560 | 0.1997 | | 199.3714 | 6580 | 0.2049 | | 199.9429 | 6600 | 0.2891 | | 200.5714 | 6620 | 0.1718 | | 201.2 | 6640 | 0.1449 | | 201.7714 | 6660 | 0.2096 | | 202.4 | 6680 | 0.1056 | | 203.0286 | 6700 | 0.0862 | | 203.6 | 6720 | 0.0914 | | 204.2286 | 6740 | 0.2433 | | 204.8 | 6760 | 0.146 | | 205.4286 | 6780 | 0.2099 | | 206.0571 | 6800 | 0.0877 | | 206.6286 | 6820 | 0.1194 | | 207.2571 | 6840 | 0.069 | | 207.8286 | 6860 | 0.0742 | | 208.4571 | 6880 | 0.2773 | | 209.0857 | 6900 | 0.1762 | | 209.6571 | 6920 | 0.1573 | | 210.2857 | 6940 | 0.0922 | | 210.8571 | 6960 | 0.1366 | | 211.4857 | 6980 | 0.0746 | | 212.1143 | 7000 | 0.2004 | | 212.6857 | 7020 | 0.0922 | | 213.3143 | 7040 | 0.0662 | | 213.8857 | 7060 | 0.1828 | | 214.5143 | 7080 | 0.1202 | | 215.1429 | 7100 | 0.1388 | | 215.7143 | 7120 | 0.0638 | | 216.3429 | 7140 | 0.2259 | | 216.9143 | 7160 | 0.1219 | | 217.5429 | 7180 | 0.1599 | | 218.1714 | 7200 | 0.2424 | | 218.7429 | 7220 | 0.149 | | 219.3714 | 7240 | 0.272 | | 219.9429 | 7260 | 0.1051 | | 220.5714 | 7280 | 0.2117 | | 221.2 | 7300 | 0.1466 | | 221.7714 | 7320 | 0.1155 | | 222.4 | 7340 | 0.2247 | | 223.0286 | 7360 | 0.096 | | 223.6 | 7380 | 0.0566 | | 224.2286 | 7400 | 0.2404 | | 224.8 | 7420 | 0.1684 | | 225.4286 | 7440 | 0.0927 | | 226.0571 | 7460 | 0.1746 | | 226.6286 | 7480 | 0.13 | | 227.2571 | 7500 | 0.1027 | | 227.8286 | 7520 | 0.1359 | | 228.4571 | 7540 | 0.0937 | | 229.0857 | 7560 | 0.1378 | | 229.6571 | 7580 | 0.0458 | | 230.2857 | 7600 | 0.0766 | | 230.8571 | 7620 | 0.0896 | | 231.4857 | 7640 | 0.1541 | | 232.1143 | 7660 | 0.1464 | | 232.6857 | 7680 | 0.1427 | | 233.3143 | 7700 | 0.2471 | | 233.8857 | 7720 | 0.1636 | | 234.5143 | 7740 | 0.1601 | | 235.1429 | 7760 | 0.1583 | | 235.7143 | 7780 | 0.1473 | | 236.3429 | 7800 | 0.1211 | | 236.9143 | 7820 | 0.1582 | | 237.5429 | 7840 | 0.1083 | | 238.1714 | 7860 | 0.2014 | | 238.7429 | 7880 | 0.0981 | | 239.3714 | 7900 | 0.2449 | | 239.9429 | 7920 | 0.1142 | | 240.5714 | 7940 | 0.1177 | | 241.2 | 7960 | 0.1241 | | 241.7714 | 7980 | 0.2778 | | 242.4 | 8000 | 0.1066 | | 243.0286 | 8020 | 0.0867 | | 243.6 | 8040 | 0.156 | | 244.2286 | 8060 | 0.1413 | | 244.8 | 8080 | 0.0598 | | 245.4286 | 8100 | 0.1206 | | 246.0571 | 8120 | 0.1883 | | 246.6286 | 8140 | 0.1245 | | 247.2571 | 8160 | 0.0949 | | 247.8286 | 8180 | 0.1096 | | 248.4571 | 8200 | 0.1567 | | 249.0857 | 8220 | 0.065 | | 249.6571 | 8240 | 0.1075 |
### Framework Versions - Python: 3.11.11 - Sentence Transformers: 3.3.1 - Transformers: 4.48.3 - PyTorch: 2.5.1+cu124 - Accelerate: 1.3.0 - Datasets: 3.3.2 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### BatchAllTripletLoss ```bibtex @misc{hermans2017defense, title={In Defense of the Triplet Loss for Person Re-Identification}, author={Alexander Hermans and Lucas Beyer and Bastian Leibe}, year={2017}, eprint={1703.07737}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```