dtm-hoinv commited on
Commit
8f0d6a1
·
verified ·
1 Parent(s): a1bf9d0

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,449 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:139719
8
+ - loss:CategoricalContrastiveLoss
9
+ widget:
10
+ - source_sentence: 科目:コンクリート。名称:底盤コンクリート打設手間。
11
+ sentences:
12
+ - 科目:コンクリート。名称:基礎部マスコンクリート。摘要:FC36 S15粗骨材20 高性能AE減水剤高炉セメントB種。備考:代価表 0103。
13
+ - 科目:コンクリート。名称:基礎部コンクリート。摘要:FC36N/mm2 スランプ18高性能AE減水剤マスコンクリート中庸熱ポルトランドセメント。備考:代価表 0031S-01厚さ1000mm以上の耐圧スラブ、梁幅800mm以上の基礎梁。
14
+ - 科目:コンクリート。名称:コンクリート打設手間。
15
+ - source_sentence: 科目:コンクリート。名称:立上り壁コンクリート。
16
+ sentences:
17
+ - 科目:コンクリート。名称:機械基礎コンクリート。摘要:FC21N/mm2 スランプ15。備考:代価表 0045。
18
+ - 科目:タイル。名称:ドライエリア床タイル。
19
+ - 科目:コンクリート。名称:オイルタンク基礎コンクリート。摘要:FC24 S18粗骨材20 高性能AE減水剤。備考:代価表 0108。
20
+ - source_sentence: 科目:タイル。名称:昇降口床タイル。
21
+ sentences:
22
+ - 科目:タイル。名称:アプローチテラス立上り床タイルA。
23
+ - 科目:タイル。名称:昇降口床タイル張り。
24
+ - 科目:タイル。名称:ピロティ床床タイルA。
25
+ - source_sentence: 科目:コンクリート。名称:免震BPL下部充填コンクリート打設手間。
26
+ sentences:
27
+ - 科目:コンクリート。名称:充填コンクリート(EXP_J内)。
28
+ - 科目:タイル。名称:地流し壁小口タイル。
29
+ - 科目:タイル。名称:地流し床タイル。
30
+ - source_sentence: 科目:コンクリート。名称:基礎部マスコンクリート。
31
+ sentences:
32
+ - 科目:コンクリート。名称:ポンプ圧送。
33
+ - 科目:コンクリート。名称:基礎部コンクリート。摘要:JIS A5308 呼び強度36 S15粗骨材20。備考:刊-CON K3615。
34
+ - 科目:コンクリート。名称:基礎部普通コンクリート。摘要:FC30 S15AE減水剤。備考:コンクリー 1。
35
+ pipeline_tag: sentence-similarity
36
+ library_name: sentence-transformers
37
+ ---
38
+
39
+ # SentenceTransformer
40
+
41
+ This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
42
+
43
+ ## Model Details
44
+
45
+ ### Model Description
46
+ - **Model Type:** Sentence Transformer
47
+ <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
48
+ - **Maximum Sequence Length:** 512 tokens
49
+ - **Output Dimensionality:** 768 dimensions
50
+ - **Similarity Function:** Cosine Similarity
51
+ <!-- - **Training Dataset:** Unknown -->
52
+ <!-- - **Language:** Unknown -->
53
+ <!-- - **License:** Unknown -->
54
+
55
+ ### Model Sources
56
+
57
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
58
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
59
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
60
+
61
+ ### Full Model Architecture
62
+
63
+ ```
64
+ SentenceTransformer(
65
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
66
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
67
+ )
68
+ ```
69
+
70
+ ## Usage
71
+
72
+ ### Direct Usage (Sentence Transformers)
73
+
74
+ First install the Sentence Transformers library:
75
+
76
+ ```bash
77
+ pip install -U sentence-transformers
78
+ ```
79
+
80
+ Then you can load this model and run inference.
81
+ ```python
82
+ from sentence_transformers import SentenceTransformer
83
+
84
+ # Download from the 🤗 Hub
85
+ model = SentenceTransformer("Detomo/cl-nagoya-sup-simcse-ja-nss-v_1_0_7_1")
86
+ # Run inference
87
+ sentences = [
88
+ '科目:コンクリート。名称:基礎部マスコンクリート。',
89
+ '科目:コンクリート。名称:基礎部普通コンクリート。摘要:FC30 S15AE減水剤。備考:コンクリー 1。',
90
+ '科目:コンクリート。名称:ポンプ圧送。',
91
+ ]
92
+ embeddings = model.encode(sentences)
93
+ print(embeddings.shape)
94
+ # [3, 768]
95
+
96
+ # Get the similarity scores for the embeddings
97
+ similarities = model.similarity(embeddings, embeddings)
98
+ print(similarities.shape)
99
+ # [3, 3]
100
+ ```
101
+
102
+ <!--
103
+ ### Direct Usage (Transformers)
104
+
105
+ <details><summary>Click to see the direct usage in Transformers</summary>
106
+
107
+ </details>
108
+ -->
109
+
110
+ <!--
111
+ ### Downstream Usage (Sentence Transformers)
112
+
113
+ You can finetune this model on your own dataset.
114
+
115
+ <details><summary>Click to expand</summary>
116
+
117
+ </details>
118
+ -->
119
+
120
+ <!--
121
+ ### Out-of-Scope Use
122
+
123
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
124
+ -->
125
+
126
+ <!--
127
+ ## Bias, Risks and Limitations
128
+
129
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
130
+ -->
131
+
132
+ <!--
133
+ ### Recommendations
134
+
135
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
136
+ -->
137
+
138
+ ## Training Details
139
+
140
+ ### Training Dataset
141
+
142
+ #### Unnamed Dataset
143
+
144
+ * Size: 139,719 training samples
145
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
146
+ * Approximate statistics based on the first 1000 samples:
147
+ | | sentence1 | sentence2 | label |
148
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------|
149
+ | type | string | string | int |
150
+ | details | <ul><li>min: 11 tokens</li><li>mean: 14.03 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 22.75 tokens</li><li>max: 72 tokens</li></ul> | <ul><li>0: ~12.60%</li><li>1: ~8.60%</li><li>2: ~78.80%</li></ul> |
151
+ * Samples:
152
+ | sentence1 | sentence2 | label |
153
+ |:-----------------------------------------|:----------------------------------------------------------------------------------------|:---------------|
154
+ | <code>科目:コンクリート。名称:コンクリートポンプ圧送。</code> | <code>科目:コンクリート。名称:ポンプ圧送。</code> | <code>1</code> |
155
+ | <code>科目:コンクリート。名称:コンクリートポンプ圧送。</code> | <code>科目:コンクリート。名称:充填コンクリート(EXP_J内)。摘要:Fc18N/mm2 S18。備考:刊-コンクリート 1818物P100×100%。</code> | <code>0</code> |
156
+ | <code>科目:コンクリート。名称:コンクリートポンプ圧送。</code> | <code>科目:コンクリート。名称:EXP_J充填コンクリート。</code> | <code>0</code> |
157
+ * Loss: <code>sentence_transformer_lib.categorical_constrastive_loss.CategoricalContrastiveLoss</code>
158
+
159
+ ### Training Hyperparameters
160
+ #### Non-Default Hyperparameters
161
+
162
+ - `per_device_train_batch_size`: 512
163
+ - `per_device_eval_batch_size`: 512
164
+ - `learning_rate`: 1e-05
165
+ - `weight_decay`: 0.01
166
+ - `num_train_epochs`: 20
167
+ - `warmup_ratio`: 0.2
168
+ - `fp16`: True
169
+
170
+ #### All Hyperparameters
171
+ <details><summary>Click to expand</summary>
172
+
173
+ - `overwrite_output_dir`: False
174
+ - `do_predict`: False
175
+ - `eval_strategy`: no
176
+ - `prediction_loss_only`: True
177
+ - `per_device_train_batch_size`: 512
178
+ - `per_device_eval_batch_size`: 512
179
+ - `per_gpu_train_batch_size`: None
180
+ - `per_gpu_eval_batch_size`: None
181
+ - `gradient_accumulation_steps`: 1
182
+ - `eval_accumulation_steps`: None
183
+ - `torch_empty_cache_steps`: None
184
+ - `learning_rate`: 1e-05
185
+ - `weight_decay`: 0.01
186
+ - `adam_beta1`: 0.9
187
+ - `adam_beta2`: 0.999
188
+ - `adam_epsilon`: 1e-08
189
+ - `max_grad_norm`: 1.0
190
+ - `num_train_epochs`: 20
191
+ - `max_steps`: -1
192
+ - `lr_scheduler_type`: linear
193
+ - `lr_scheduler_kwargs`: {}
194
+ - `warmup_ratio`: 0.2
195
+ - `warmup_steps`: 0
196
+ - `log_level`: passive
197
+ - `log_level_replica`: warning
198
+ - `log_on_each_node`: True
199
+ - `logging_nan_inf_filter`: True
200
+ - `save_safetensors`: True
201
+ - `save_on_each_node`: False
202
+ - `save_only_model`: False
203
+ - `restore_callback_states_from_checkpoint`: False
204
+ - `no_cuda`: False
205
+ - `use_cpu`: False
206
+ - `use_mps_device`: False
207
+ - `seed`: 42
208
+ - `data_seed`: None
209
+ - `jit_mode_eval`: False
210
+ - `use_ipex`: False
211
+ - `bf16`: False
212
+ - `fp16`: True
213
+ - `fp16_opt_level`: O1
214
+ - `half_precision_backend`: auto
215
+ - `bf16_full_eval`: False
216
+ - `fp16_full_eval`: False
217
+ - `tf32`: None
218
+ - `local_rank`: 0
219
+ - `ddp_backend`: None
220
+ - `tpu_num_cores`: None
221
+ - `tpu_metrics_debug`: False
222
+ - `debug`: []
223
+ - `dataloader_drop_last`: False
224
+ - `dataloader_num_workers`: 0
225
+ - `dataloader_prefetch_factor`: None
226
+ - `past_index`: -1
227
+ - `disable_tqdm`: False
228
+ - `remove_unused_columns`: True
229
+ - `label_names`: None
230
+ - `load_best_model_at_end`: False
231
+ - `ignore_data_skip`: False
232
+ - `fsdp`: []
233
+ - `fsdp_min_num_params`: 0
234
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
235
+ - `tp_size`: 0
236
+ - `fsdp_transformer_layer_cls_to_wrap`: None
237
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
238
+ - `deepspeed`: None
239
+ - `label_smoothing_factor`: 0.0
240
+ - `optim`: adamw_torch
241
+ - `optim_args`: None
242
+ - `adafactor`: False
243
+ - `group_by_length`: False
244
+ - `length_column_name`: length
245
+ - `ddp_find_unused_parameters`: None
246
+ - `ddp_bucket_cap_mb`: None
247
+ - `ddp_broadcast_buffers`: False
248
+ - `dataloader_pin_memory`: True
249
+ - `dataloader_persistent_workers`: False
250
+ - `skip_memory_metrics`: True
251
+ - `use_legacy_prediction_loop`: False
252
+ - `push_to_hub`: False
253
+ - `resume_from_checkpoint`: None
254
+ - `hub_model_id`: None
255
+ - `hub_strategy`: every_save
256
+ - `hub_private_repo`: None
257
+ - `hub_always_push`: False
258
+ - `gradient_checkpointing`: False
259
+ - `gradient_checkpointing_kwargs`: None
260
+ - `include_inputs_for_metrics`: False
261
+ - `include_for_metrics`: []
262
+ - `eval_do_concat_batches`: True
263
+ - `fp16_backend`: auto
264
+ - `push_to_hub_model_id`: None
265
+ - `push_to_hub_organization`: None
266
+ - `mp_parameters`:
267
+ - `auto_find_batch_size`: False
268
+ - `full_determinism`: False
269
+ - `torchdynamo`: None
270
+ - `ray_scope`: last
271
+ - `ddp_timeout`: 1800
272
+ - `torch_compile`: False
273
+ - `torch_compile_backend`: None
274
+ - `torch_compile_mode`: None
275
+ - `include_tokens_per_second`: False
276
+ - `include_num_input_tokens_seen`: False
277
+ - `neftune_noise_alpha`: None
278
+ - `optim_target_modules`: None
279
+ - `batch_eval_metrics`: False
280
+ - `eval_on_start`: False
281
+ - `use_liger_kernel`: False
282
+ - `eval_use_gather_object`: False
283
+ - `average_tokens_across_devices`: False
284
+ - `prompts`: None
285
+ - `batch_sampler`: batch_sampler
286
+ - `multi_dataset_batch_sampler`: proportional
287
+
288
+ </details>
289
+
290
+ ### Training Logs
291
+ <details><summary>Click to expand</summary>
292
+
293
+ | Epoch | Step | Training Loss |
294
+ |:-------:|:----:|:-------------:|
295
+ | 0.1832 | 50 | 0.6905 |
296
+ | 0.3663 | 100 | 0.2528 |
297
+ | 0.5495 | 150 | 0.1824 |
298
+ | 0.7326 | 200 | 0.1544 |
299
+ | 0.9158 | 250 | 0.14 |
300
+ | 1.0989 | 300 | 0.1272 |
301
+ | 1.2821 | 350 | 0.1135 |
302
+ | 1.4652 | 400 | 0.1001 |
303
+ | 1.6484 | 450 | 0.0987 |
304
+ | 1.8315 | 500 | 0.0887 |
305
+ | 2.0147 | 550 | 0.0804 |
306
+ | 2.1978 | 600 | 0.074 |
307
+ | 2.3810 | 650 | 0.0713 |
308
+ | 2.5641 | 700 | 0.0666 |
309
+ | 2.7473 | 750 | 0.06 |
310
+ | 2.9304 | 800 | 0.0601 |
311
+ | 3.1136 | 850 | 0.0494 |
312
+ | 3.2967 | 900 | 0.0472 |
313
+ | 3.4799 | 950 | 0.046 |
314
+ | 3.6630 | 1000 | 0.0441 |
315
+ | 3.8462 | 1050 | 0.0416 |
316
+ | 4.0293 | 1100 | 0.0373 |
317
+ | 4.2125 | 1150 | 0.034 |
318
+ | 4.3956 | 1200 | 0.0308 |
319
+ | 4.5788 | 1250 | 0.0308 |
320
+ | 4.7619 | 1300 | 0.0311 |
321
+ | 4.9451 | 1350 | 0.0273 |
322
+ | 5.1282 | 1400 | 0.0225 |
323
+ | 5.3114 | 1450 | 0.0231 |
324
+ | 5.4945 | 1500 | 0.0218 |
325
+ | 5.6777 | 1550 | 0.0209 |
326
+ | 5.8608 | 1600 | 0.0193 |
327
+ | 6.0440 | 1650 | 0.0182 |
328
+ | 6.2271 | 1700 | 0.0161 |
329
+ | 6.4103 | 1750 | 0.0161 |
330
+ | 6.5934 | 1800 | 0.0162 |
331
+ | 6.7766 | 1850 | 0.0146 |
332
+ | 6.9597 | 1900 | 0.0146 |
333
+ | 7.1429 | 1950 | 0.0126 |
334
+ | 7.3260 | 2000 | 0.0118 |
335
+ | 7.5092 | 2050 | 0.012 |
336
+ | 7.6923 | 2100 | 0.0118 |
337
+ | 7.8755 | 2150 | 0.0116 |
338
+ | 8.0586 | 2200 | 0.0121 |
339
+ | 8.2418 | 2250 | 0.0098 |
340
+ | 8.4249 | 2300 | 0.0099 |
341
+ | 8.6081 | 2350 | 0.0094 |
342
+ | 8.7912 | 2400 | 0.0089 |
343
+ | 8.9744 | 2450 | 0.009 |
344
+ | 9.1575 | 2500 | 0.0079 |
345
+ | 9.3407 | 2550 | 0.0082 |
346
+ | 9.5238 | 2600 | 0.0077 |
347
+ | 9.7070 | 2650 | 0.0074 |
348
+ | 9.8901 | 2700 | 0.008 |
349
+ | 10.0733 | 2750 | 0.0074 |
350
+ | 10.2564 | 2800 | 0.0065 |
351
+ | 10.4396 | 2850 | 0.0069 |
352
+ | 10.6227 | 2900 | 0.0067 |
353
+ | 10.8059 | 2950 | 0.0063 |
354
+ | 10.9890 | 3000 | 0.0064 |
355
+ | 11.1722 | 3050 | 0.0057 |
356
+ | 11.3553 | 3100 | 0.0058 |
357
+ | 11.5385 | 3150 | 0.0055 |
358
+ | 11.7216 | 3200 | 0.005 |
359
+ | 11.9048 | 3250 | 0.0055 |
360
+ | 12.0879 | 3300 | 0.0049 |
361
+ | 12.2711 | 3350 | 0.0041 |
362
+ | 12.4542 | 3400 | 0.0045 |
363
+ | 12.6374 | 3450 | 0.0045 |
364
+ | 12.8205 | 3500 | 0.0052 |
365
+ | 13.0037 | 3550 | 0.0054 |
366
+ | 13.1868 | 3600 | 0.005 |
367
+ | 13.3700 | 3650 | 0.0041 |
368
+ | 13.5531 | 3700 | 0.0039 |
369
+ | 13.7363 | 3750 | 0.004 |
370
+ | 13.9194 | 3800 | 0.0043 |
371
+ | 14.1026 | 3850 | 0.0037 |
372
+ | 14.2857 | 3900 | 0.0036 |
373
+ | 14.4689 | 3950 | 0.0038 |
374
+ | 14.6520 | 4000 | 0.0037 |
375
+ | 14.8352 | 4050 | 0.0042 |
376
+ | 15.0183 | 4100 | 0.004 |
377
+ | 15.2015 | 4150 | 0.0036 |
378
+ | 15.3846 | 4200 | 0.0036 |
379
+ | 15.5678 | 4250 | 0.0032 |
380
+ | 15.7509 | 4300 | 0.0032 |
381
+ | 15.9341 | 4350 | 0.0028 |
382
+ | 16.1172 | 4400 | 0.0032 |
383
+ | 16.3004 | 4450 | 0.0027 |
384
+ | 16.4835 | 4500 | 0.0034 |
385
+ | 16.6667 | 4550 | 0.0035 |
386
+ | 16.8498 | 4600 | 0.0032 |
387
+ | 17.0330 | 4650 | 0.0035 |
388
+ | 17.2161 | 4700 | 0.0031 |
389
+ | 17.3993 | 4750 | 0.003 |
390
+ | 17.5824 | 4800 | 0.003 |
391
+ | 17.7656 | 4850 | 0.0029 |
392
+ | 17.9487 | 4900 | 0.0029 |
393
+ | 18.1319 | 4950 | 0.0022 |
394
+ | 18.3150 | 5000 | 0.0034 |
395
+ | 18.4982 | 5050 | 0.0028 |
396
+ | 18.6813 | 5100 | 0.0026 |
397
+ | 18.8645 | 5150 | 0.0028 |
398
+ | 19.0476 | 5200 | 0.0025 |
399
+ | 19.2308 | 5250 | 0.0027 |
400
+ | 19.4139 | 5300 | 0.0029 |
401
+ | 19.5971 | 5350 | 0.0026 |
402
+ | 19.7802 | 5400 | 0.0027 |
403
+ | 19.9634 | 5450 | 0.0029 |
404
+
405
+ </details>
406
+
407
+ ### Framework Versions
408
+ - Python: 3.11.12
409
+ - Sentence Transformers: 4.1.0
410
+ - Transformers: 4.51.3
411
+ - PyTorch: 2.6.0+cu124
412
+ - Accelerate: 1.6.0
413
+ - Datasets: 2.14.4
414
+ - Tokenizers: 0.21.1
415
+
416
+ ## Citation
417
+
418
+ ### BibTeX
419
+
420
+ #### Sentence Transformers
421
+ ```bibtex
422
+ @inproceedings{reimers-2019-sentence-bert,
423
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
424
+ author = "Reimers, Nils and Gurevych, Iryna",
425
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
426
+ month = "11",
427
+ year = "2019",
428
+ publisher = "Association for Computational Linguistics",
429
+ url = "https://arxiv.org/abs/1908.10084",
430
+ }
431
+ ```
432
+
433
+ <!--
434
+ ## Glossary
435
+
436
+ *Clearly define terms in order to be accessible across audiences.*
437
+ -->
438
+
439
+ <!--
440
+ ## Model Card Authors
441
+
442
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
443
+ -->
444
+
445
+ <!--
446
+ ## Model Card Contact
447
+
448
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
449
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 3072,
12
+ "layer_norm_eps": 1e-12,
13
+ "max_position_embeddings": 512,
14
+ "model_type": "bert",
15
+ "num_attention_heads": 12,
16
+ "num_hidden_layers": 12,
17
+ "pad_token_id": 0,
18
+ "position_embedding_type": "absolute",
19
+ "torch_dtype": "float32",
20
+ "transformers_version": "4.51.3",
21
+ "type_vocab_size": 2,
22
+ "use_cache": true,
23
+ "vocab_size": 32768
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.51.3",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02c55c3f88a6c6e34bdd97ddf504594dcbe1a3aff1d4ea051d0809a902a920d6
3
+ size 444851048
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": false,
47
+ "do_subword_tokenize": true,
48
+ "do_word_tokenize": true,
49
+ "extra_special_tokens": {},
50
+ "jumanpp_kwargs": null,
51
+ "mask_token": "[MASK]",
52
+ "mecab_kwargs": {
53
+ "mecab_dic": "unidic_lite"
54
+ },
55
+ "model_max_length": 512,
56
+ "never_split": null,
57
+ "pad_token": "[PAD]",
58
+ "sep_token": "[SEP]",
59
+ "subword_tokenizer_type": "wordpiece",
60
+ "sudachi_kwargs": null,
61
+ "tokenizer_class": "BertJapaneseTokenizer",
62
+ "unk_token": "[UNK]",
63
+ "word_tokenizer_type": "mecab"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff