--- base_model: unknown library_name: model2vec license: mit model_name: my_classifier_pipeline tags: - embeddings - static-embeddings - sentence-transformers --- # my_classifier_pipeline Model Card This [Model2Vec](https://github.com/MinishLab/model2vec) model is a fine-tuned version of the [unknown](https://huggingface.co/unknown) Model2Vec model. It also includes a classifier head on top. ## Installation Install model2vec using pip: ``` pip install model2vec[inference] ``` ## Usage Load this model using the `from_pretrained` method: ```python from model2vec.inference import StaticModelPipeline # Load a pretrained Model2Vec model model = StaticModelPipeline.from_pretrained("my_classifier_pipeline") # Predict labels predicted = model.predict(["Example sentence"]) ``` ## Additional Resources - [Model2Vec Repo](https://github.com/MinishLab/model2vec) - [Model2Vec Base Models](https://huggingface.co/collections/minishlab/model2vec-base-models-66fd9dd9b7c3b3c0f25ca90e) - [Model2Vec Results](https://github.com/MinishLab/model2vec/tree/main/results) - [Model2Vec Tutorials](https://github.com/MinishLab/model2vec/tree/main/tutorials) - [Website](https://minishlab.github.io/) ## Library Authors Model2Vec was developed by the [Minish Lab](https://github.com/MinishLab) team consisting of [Stephan Tulkens](https://github.com/stephantul) and [Thomas van Dongen](https://github.com/Pringled). ## Citation Please cite the [Model2Vec repository](https://github.com/MinishLab/model2vec) if you use this model in your work. ``` @article{minishlab2024model2vec, author = {Tulkens, Stephan and {van Dongen}, Thomas}, title = {Model2Vec: Fast State-of-the-Art Static Embeddings}, year = {2024}, url = {https://github.com/MinishLab/model2vec} } ```