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Our article described an experiment that adjudicates between different causal accounts of Bell
inequality violations by a comparison of their predictive power, finding that certain types of models
that are structurally radical but parametrically conservative—of which a class of superdeterministic
models are an example—overfit the data relative to models that are structurally conservative but
parametrically radical in the sense of endorsing an intrinsically quantum generalization of the frame-
work of causal modelling. In their comment (arXiv:2206.10619)), Hance and Hossenfelder argue that
we have misrepresented the purpose of superdeterministic models. We here dispute this claim by re-
calling the different classes of superdeterministic models we defined in our article and our conclusions
regarding which of these are disfavoured by our experimental results. Their confusion on this point
seems to have arisen in part from the fact that we characterized superdeterministic models within
a causal modelling framework and from the fact that we referred to this framework as “classical”
in order to contrast it with an intrinsically quantum alternative. In this reply, therefore, we take
the opportunity to clarify these points. They also claim that if one is adjudicating between a pair
of models, where one model can account for strictly more operational statistics than the other, the
first model will tend to overfit the data relative to the second. Because this model inclusion relation
can arise for pairs of models in a reductionist heirarchy, they conclude that overfitting should not be
taken as evidence against the first model. We point out here that, contrary to this claim, one does
not expect overfitting to arise generically in cases of model inclusion, so that it is indeed sometimes

appropriate to consider overfitting as a criterion for adjudicating between such models.

I. INTRODUCTION

The main criticism of our article [1] in the comment [2]
by Hance and Hossenfelder (hereafter HH) is that we “po-
tentially misrepresent the very purpose of the superdeter-
ministic models present in the literature.” HH provide
two reasons in defence of this assessment: (i) they claim
that we “[selected] classical superdeterministic models as
the ones most worth analysing”, and that this class of su-
perdeterministic models excludes the ones of interest in
the literature; (ii) they claim that our finding that cer-
tain superdeterministic models overfit the data relative
to the class of models that endorse an intrinsically quan-
tum common cause (which we termed the QCC class in
our article) does not imply that one should disfavour the
former relative to the latter because “overfitting, while
better as a measure of finetuning than other measures
given in the literature, does not necessarily indicate a
model is universally bad.”

In our reply, we will dispute each of these points. Along
the way, we respond to some other criticisms of HH and
make further clarifying remarks.
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II. CONFUSION REGARDING THE SCOPE OF
SUPDETERMINISTIC MODELS WE CONSIDER
AND OUR USAGE OF THE TERM “CLASSICAL”

HH assert: “Daley et al state that they analyze classi-
cal superdeterministic models using their method,” and
“Superdeterministic models are in general not classical
in any meaningful sense of the word,” and “the purpose
of superdeterminism is not to return to classical mechan-
ics.” They add: “It is somewhat unclear why Daley et
al would focus their analysis on models with this prop-
erty [returning to classical mechanics], given that it is
ostensibly not fulfilled in most models presented in the
literature.”

What HH mean by the phrase “return to classical me-
chanics” is unclear. Presumably they mean a return to
the operational predictions of classical physics, in which
case they are claiming that we inappropriately confined
our attention to the class of superdeterministic models
that were operationally classical. In support of this in-
terpretation is the fact that when HH contrast the su-
perdeterministic models presented in the literature with
the “classical” class that they impute to us, they high-
light the feature of the superdeterministic models that is
relevant for computing operational predictions, namely,
their use of the standard formalism of operational quan-
tum theory (“wave-functions and density matrices, su-
perpositions and entanglement”), suggesting that they
take the class we endorse to be one that is inconsistent
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with computing predictions from this formalism.

However, this claim—that the class of superdetermin-
istic models we consider fails to reproduce the predic-
tions of operational quantum theory—is mistaken. In
our article, we stated explicitly that we were considering
only causal models that do reproduce all such predictions,
and we even took the trouble to distinguish two ways in
which this can occur: (i) the causal model could real-
ize all and only the data tables predicted by operational
quantum theory, a case which in our appendix we termed
a quantum-on-the-nose causal model (which must neces-
sarily involve a restriction on the parameters of the model
in the conventional framework for causal modelling), and
(ii) the causal model could realize all of the data ta-
bles predicted by operational quantum theory together
with others that are mot, a case which in our appendix
we termed a quantum-extending model. A quantum-
extending model might or might not involve a restric-
tion on the parameters of the model in the conventional
framework for causal modelling; we introduced the terms
parameter-restricted and parameter-unrestricted to dis-
tinguish these two cases. The quantum-extending class
includes precisely the sort of superdeterministic models
that HH favour, as we will argue below.

HH’s mistake concerning our view seems to have arisen
in part from a misconception regarding our usage of the
term “classical” in certain discussions. We begin, there-
fore, by correcting this misconception.

First, note that different researchers have different
opinions about what principles, concepts, and frame-
works within classical physics must be modified in quan-
tum physics. Some researchers, for example, have ex-
plored the idea that the innovation of quantum physics
relative to classical physics might be best understood as
an innovation to logic. One such proposal is that in or-
der to accommodate quantum physics, the partial order
of propositions under the ordering relation of logical im-
plication is not a Boolean lattice but an orthomodular
lattice, wherein the distributive law fails but a weaker
law termed “orthomodularity” still holds [3]. Researchers
working on this program naturally came to use the term
“classical logic” to refer to conventional logic and “quan-
tum logic” to refer to the exotic alternative being pro-
posed to accommodate quantum physics. Consequently,
when describing an interpretation of quantum theory
that does not endorse a modification of logic (which is
most of them), it is appropriate to say that it is classical
in its logic, i.e., that it is logically classical.

Similarly, our article was framed within the context
of a research program that explores the idea that what
must be modified by virtue of physics being quantum
rather than classical are the principles and concepts of
causal modelling. Rather than representing causal relata
by sets and causal relations by functions, as is convention-
ally done, one contemplates an exotic alternative, such
as representing these by operator algebras and unitaries
respectively [4]. And rather than representing inference
(i.e., what one can infer about one causal relata given an-

other) by conditional probability distributions, one con-
templates doing so with an exotic alternative, such as
conditional density operators [5]. It is then natural for
researchers pursuing this research program to use the
term “classical framework for causal modelling” to refer
to the conventional framework and “quantum framework
for causal modelling” to refer to the exotic alternative
to it. This is precisely the sort of classical-quantum di-
chotomy we were discussing in our article.

In short, stipulating that a given research program as-
sumes the classicality of some particular concept, princi-
ple, or framework—such as classical logic or the classical
framework for causal modelling—is not to stiuplate that
this program implies a ‘return to classical mechanics’.
Rather, it is only to clarify, for that research program,
which concepts, principles, and frameworks are not being
revised in the face of quantum physics, in order to better
highlight which are.

Thus, contrary to HH’s claim that superdeterministic
models are “not classical in any meaningful sense of the
word”, one can identify many parts of the theoretical
framework assumed by superdeterminists where it is the
conventional alternative that is endorsed rather than the
exotic one. Superdeterministic models endorse classical
logic for instance. They also endorse the classical frame-
work for causal modelling. The latter point is what we
emphasized in our article.

Specifically, we noted that in causal modelling one can
choose to be radical (i.e., embrace something exotic) on
one of two fronts: (i) the causal structure, or (ii) the pa-
rameters that one adds to this structure[] Regarding dif-
ferent hypotheses about the causal structure underlying
the Bell experiment, we stipulated that to endorse the
one where the only causal connection between the two
wings is a common cause acting on the outcomes (the
causal structure assumed by Bell) is to be conservative
about the causal structure, while allowing a cause-effect
influence between the wings, or positing that the hid-
den variable might influence one or both of the setting
variables (which is how one describes the superdetermin-
ist’s hypothesis in the causal modelling framework) is to
be radical about the causal structure. Meanwhile, to be
conservative about the parameters is to endorse the con-
ventional framework for causal modelling, i.e., a “clas-
sical causal model”, whereas to be radical is to endorse
an exotic alternative, i.e., a “quantum causal model”.
As we note in our article, because a superdeterministic
model is radical about the causal structure, it can be
conservative about the nature of the parameters, i.e., it
can (and does) endorse the conventional framework for
causal modelling. As such, it is an example of a classical
causal model® The terminology we introduced sought

1 In principle, one could be radical on both fronts, but one front
is sufficient and all existing proposals avail themselves of the
possibility of remaining conservative on one of them.

2 One might even say that for researchers unwilling to countenance



to capture these facts: “We refer to such models as para-
metrically classical and structurally superdeterministic,
abbreviated as ¢SD.” HH’s phrase “classical superdeter-
ministic model”, despite also fitting with the acronym
¢SD, appears nowhere in our article and is misleading
insofar as it obscures the fact that we are picking out a
particular aspect of the framework as classical.

In Sec. II of their article. HH articulate what they take
to be the essence of a superdeterministic model as follows:
it is a hidden variable model that preserves Bell’s notion
of locality while abandoning the notion of measurement
independence (the statistical independence of the pair of
setting variables and the hidden variable) and that repro-
duces Born’s rule in certain limits by averaging over the
ensemble of possible values of the hidden variables. But
this is nothing more than an example of a causal model
in the ¢SD class described above. This follows from two
facts that were first highlighted in Ref. [6]: (i) that a
model in the conventional (i.e., classical) framework for
causal modelling is ultimately just another way of speak-
ing about a hidden variable model, with parameters of
the causal model capturing the distributions associated
to each hidden variable, and (ii) that the satisfaction of
Bell’s notion of locality and the possibility of violating
measurement independence can be derived as a conse-
quence of the causal structure being of the type we called
structurally superdeterminist (the structure assumed by
Bell supplemented with a causal influence from the hid-
den variable to one or both of the setting variables).

As an aside, we note that in our view it is more apt
to characterize the assumption of superdeterminism in
terms of causal structure than in terms of a violation of
measurement independence. This is because the causal
structure provides an explanation of the violation of mea-
surement independence: there is a correlation between
the hidden variable and a setting variable because there
is a causal influence of the hidden variable on the setting
variable. Achieving causal explanations of correlations is
a critical part of the superdeterminist research program
because its central motivation is salvaging Bell’s notion
of local causality, and what would be the point of this
salvage operation if one didn’t care about explaining cor-
relations causally?

Allowing models in the ¢SD class to be quantum-
extending means allowing parameter values that can lead
in principle to deviations from the predictions of quan-
tum theory. HH favour models that allow for such de-
viations (outside certain limits wherein the Born rule is
reproduced), and so their view is well-characterized by
the quantum-extending class of ¢SD models. Because
the details of HH’s preferred superdeterminstic model are
not completely worked out (they state “we don’t know

the possibility of superluminal causal influences, it is the commit-
ment to the classical framework for causal modelling (implicit or
explicit) that leads them to entertain such a radical supposition
as superdeterminism.

exactly under which circumstances the new physics ap-
pears”), it is unclear whether it is meant to be parameter-
restricted or parameter-unrestricted.

Our article did the data analysis for parameter-
unrestricted versions of these models and showed that
these overfit the data relative to models in the QCC
class (Bell’s causal structure with an intrinsically quan-
tum framework for causal modelling). As we noted in
the article, our data analysis technique can also be ap-
plied to the case of a parameter-restricted model and the
verdict about overfitting in principle could change since
a parameter-restricted model has fewer opportunities for
overfitting relative to its parameter-unrestricted counter-
part. Consequently, anyone with a concrete such model
who is able to articulate its content as a restriction on
the parameters of a ¢SD model could apply our methods
to see whether or not their model also overfits the data
relative to the QCC model.

It is in this sense that our results leave open the possi-
bility that a parameter-restricted quantum-extending su-
perdeterminstic model could outperform the QCC model
relative to our train-and-test methodology. It remains
only for proponents of superdeterminism to stipulate the
nature of the parameter restriction that one should as-
sume in the analysis. This possibility was made explicit
in our article.

In summary, we can find no basis for HH’s claim that
we have misrepresented the purpose of superdeterminist
models.

IIT. MORE EXPRESSIVE POWER DOES NOT
NECESSARILY IMPLY OVERFITTING

We turn now to considering HH’s claims regarding why
our experiment found overfitting for the superdetermin-
ist model that we considered and why, in their view, such
overfitting “does not necessarily indicate a model is uni-
versally bad.”

HH imply that one should expect to find that a model
M overfits the data relative to a model M’ whenever M
and M’ are both part of a reductionist heirarchy, with
M proving a more fine-grained description than M’, as in
the case where M is statistical mechanics and M’ is ther-
modynamics. After describing Richmann’s law of mix-
tures, an equation that gives the final temperature that
results when two bodies with different initial tempera-
tures are brought into contact and allowed to equilibrate
(their Eq. (1)), they say of it:

If all you want to do is fit [the equation], then
having multiple free parameters for each sin-
gle atom in the fluid is clearly unnecessary.
If you have that many parameters, they will
fit every single fluctuation, however minor —
you can make it fit everything. [...] it’s over-
fitting [...]

They then draw out what lesson they think this holds for



our analysis:

[...] overfitting for a given scenario is not nec-
essarily bad in all situations, and given su-
perdeterministic models are often used to try
to consider physics beyond quantum mechan-
ics, we should expect them to overfit a test
such as the one Daley et al perform.

While it is true that positing microscopic degrees of
freedom that underlie thermodynamic degrees of freedom
is not required to provide a fit to data describing a few
of the thermodynamic variables, it is not the case that
positing such microscopic degrees of freedom necessarily
leads to overfitting. More precisely, If M and M’ are two
models that can fit the data, and M has strictly more ex-
pressive power than M’—so that M and M’ stand in a
relationship of model inclusion— this does not imply that
M will necessarily overfit the data relative to M’ in the
sense of having a lower training error and a higher test
error in a train-and-test methodology. Overfitting gen-
erally occurs as a result of a model mistaking statistical
fluctuations for real features, and having more expres-
sive power does not guarantee that such mistakes will be
made.

An example of this phenomenon (model inclusion with-
out overfitting) is actually provided in Appendix C.3 of
our article, where we describe a dephased version of our
experiment wherein the QCC model does not overfit the
data relative to the cCC model (the model that is struc-
turally common-cause and parametrically classical) even
though they stand in a relationship of model inclusion.
In Appendix [Al we describe this example in detail and
make some further observations about the relationship
between model inclusion and overfitting.

IV. EXPERIMENTAL REQUIREMENTS FOR
SEEING DEVIATIONS FROM OPERATIONAL
QUANTUM THEORY

We also disagree with HH regarding the experimen-
tal requirements for seeing deviations from operational
quantum theory. As noted above, HH seem to endorse
a quantum-extending model. Conventional experiments,
such as the one reported in our article, take place in a
limit where deviations from the predictions of operational
quantum theory are expected by HH to become small in
their model. They assert that, as a consequence, in order

to see a deviation from Born’s rule in a superdeterminis-
tic theory “you have to look at a system which is outside
that limit.” Being outside this limit, however, is only a
sufficient and not a necessary condition for seeing such a
deviation.

This point was argued in the introduction of Ref. [7].
Probing new regimes, which we termed the “terra-nova”
strategy, is just one way to discover new physics; probing
the precision frontier is another.Our experiment provides
an opportunity to see deviations from operational quan-
tum theory even if these are small because there is always
some level of precision at which a small deviation can be
detected. The fact that our experiment did not provide
evidence in favour of such deviations implies that either
(i) they are not there, or (ii) they are there, but can
only be detected in an experiment that achieves higher
precision.

Finally, we would like to take this opportunity to cor-
rect something that HH state regarding the connection
between overfitting and the notion of fine-tuning:

The only scientifically relevant notion of fine-
tuning is overfitting. All other notions of fine-
tuning are properties that a model may or
may not have, but which do not a priori im-
ply the model has a problem.

In the category of “all other notions of fine-tuning, ” they
include the failure of faithfulness described in Ref. [6].
HH here endorse two theses: (i) if a model fails to satisfy
the assumption of faithfulness from Ref. [6], this does not
imply that the model has a problem, and (ii) if a model
overfits the data, then it does have a problem. However,
failing to satisfy the assumption of faithfulness generally
implies overfitting, and so it is inconsistent to consider
the latter problematic and the former not. This is ex-
plained in Appendix B.1 of our article. Models that are
structurally radical (such as quantum-extending versions
of ¢SD models) can overfit the data relative to mod-
els that are structurally conservative (such as the QCC
model) because finite-run data always exhibits statistical
fluctuations away from the no-signalling condition and
only in the structurally radical models can these fluctu-
ations be mistaken for real features. The fact that struc-
turally radical models fail to be faithful is what opens up
the possibility for them to interpret a violation of the no-
signalling condition as a real feature and thereby overfit
the data.

[1] P. J. Daley, K. J. Resch, and R. W. Spekkens, Physical
Review A 105, 042220 (2022).

[2] J. R. Hance and S. Hossenfelder, to be published in Phys-
ical Review A (2024).

[3] C. A. Hooker, The Logico-Algebraic Approach to Quan-
tum Mechanics: Volume I: Historical Evolution, vol. 5

(Springer Science & Business Media, 2012).

[4] D. Schmid, J. H. Selby, and R. W. Spekkens, arXiv
preprint arXiv:2009.03297 (2020).

[5] M. S. Leifer and R. W. Spekkens, Physical Review A 88,
052130 (2013).

[6] C.J. Wood and R. W. Spekkens, New Journal of Physics



17, 033002 (2015).
[7] M. D. Mazurek, M. F. Pusey, K. J. Resch, and R. W.
Spekkens, PRX Quantum 2, 020302 (2021).
[8] E. Wolfe, R. W. Spekkens, and T. Fritz, Journal of
Causal Inference 7, 20170020 (2019).
| A. Valentini, Physics Letters A 156, 5 (1991).
| A. Valentini, Physics Letters A 158, 1 (1991).
| A. Valentini, arXiv preprint astro-ph/0412503 (2004).
] M. Navascués, Y. Guryanova, M. J. Hoban, and A. Acin,
Nature communications 6, 6288 (2015).

[
il
[

1

9
0
1
[12

Appendix A: Further comments on the relationship
between model inclusion and overfitting

1. An example of model inclusion without
overfitting

In Appendix C.3 of our article [1], we described a de-
phased version of our experiment, that is, a Bell exper-
iment where the entangled state is subject to dephasing
and thus becomes a separable state, so that no Bell in-
equality violation is possible. We then fit the data from
this experiment to four distinct causal models and ana-
lyzed how they each performed relative to the train-and-
test methodology.

We considered two causal models that are structurally
conservative in the sense that they posit Bell’s causal
structure (a common cause acting on the pair of out-
comes). The distinction between the two is in the nature
of the parameters that they add to this causal structure.
One is a model that is parametrically quantum, denoted
QCCQC). The other is a model that is parametrically clas-
sical, denoted cCC. In other words, the first is an in-
trinsically quantum causal model, while the second is a
classical causal model. Because the dephased version of
the experiment does not yield any Bell inequality vio-
lations, we expect that both the QCC and cCC models
should be able to fit the data with a small training er-
rorfl Furthermore, given that one can simulate a classi-
cal causal model using a quantum causal model, but not
vice-versa, the QCC and cCC models stand in a rela-
tionship of model inclusion. It is for this reason that the
results reported in Appendix C.3 of our article are perti-
nent to the question of whether a more expressive model
will generically be found to overfit the data relative to
the other.

In our analysis, we also considered two classical causal
models that are structurally radical. One model allows
for a causal influence from a setting variable on one side
of the experiment to the outcome variable on the other
side. This model was termed structurally cause-effect and
was denoted CCEgy. The other model allowed for the

3 This is the main difference between the dephased and nonde-
phased versions of our experiment. In the nondephased ver-
sion, the source is entangled, leading to Bell inequality violations
which the cCC model cannot fit well.

common cause to influence a setting variable in addition
to influencing both outcome variables. It was termed
structurally superdeterministic and was denoted cSDy.

It turns out that there is a particular overfitting pitfall
(i.e., a vulnerability to mistaking statistical fluctuations
for real features) that arises only in the pair of struc-
turally radical models.

Note, first of all, that any finite-run sample of train-
ing data from the dephased version of the experiment
will generally yield relative frequencies that exhibit sta-
tistical fluctuations away from the exact satisfaction of
the no-signalling condition. (The dephased version of
the experiment is like the original experiment in this re-
gard.) Both of the structurally radical causal models can
mistake these fluctuations for real features because they
both allow for choices of parameter values that imply a
violation of the no-signalling condition. Consequently,
the best-fit values of the parameters for these models
(obtained from the training data) can lead to a predic-
tion of a small violation of the no-signalling condition
in the test data. The structurally conservative causal
models, on the other hand, cannot mistake these fluctu-
ations for real features because all choices of parameter
values in these models lead to correlations that strictly
satisfy the no-signalling condition. As such, the best-
fit values of the parameters for these models (obtained
from the training data) always predict no violation of
the no-signalling condition in the test data. The relative
frequencies computed from the test data will also exhibit
statistical fluctuations away from the no-signalling condi-
tion, but these fluctuations are unlikely to be of the same
type as those exhibited in the training data. As such, one
expects the structurally radical models to have a higher
test error than the structurally conservative models.

This expectation was born out by the analysis pre-
sented in Appendix C.3 of our article [1], summarized
in Fig. 6. Specifically, we found that both of the struc-
turally radical models, CCEq and ¢SDg, had a larger test
error and a smaller training error than the structurally
conservative models, cCC and QCC, hence the former
two exhibited overfitting relative to the latter two.

But for the question of the relationship between model
inclusion and overfitting, it is a different comparison
among the models that we wish to focus on here, namely,
the comparison between the CCC and QCC models. This
is because the QCC model is strictly more expressive than
than the cCC model, and yet does not overfit the data
relative to the latter.

More precisely, under the condition that the cardinal-
ity of the latent variable acting as common cause in cCC
is equal to the dimension of the latent quantum system
acting as common cause in QCC, all data tables realiz-
able by the cCC causal model can also be realized by the
QCC causal model. The results depicted in Fig. 6 of the
appendix of our article were for a 2-bit common cause in
the case of cCC and a 2-qubit common cause in the case
of QCC. Consequently, the QCC and cCC models being
compared in this figure stand in a relationship of model



inclusion.

Recall from the discussion above that neither of these
models are able to mistake statistical fluctuations away
from the no-signalling condition for real features, i.e., nei-
ther can exhibit the type of overfitting that the cCEy and
cSDg models are vulnerable to. Furthermore, we do not
see any other avenues for mistaking statistical fluctua-
tions for real features in the dephased experiment that
we realized, in particular, none to which a QCC model
would be susceptible but not a cCC model[l Conse-
quently, in the analysis of the experimental data, we do
not expect the QCC model to overfit the data relative to
the cCC model in spite of the model inclusion relation
holding between them.

This expectation was also born out by the data analy-
sis, which was summarized in our Fig. 6: the QCC model
had training and test errors that are essentially the same
as those of the cCC model. This, therefore, constitutes
an example of model inclusion without overfitting.

The incorrect presumption made by HH is that when-
ever a model M stands in a relationship of strict inclu-
sion to a model M’ in the sense that it can reproduce
predictions of M’ and more besides, then M will overfit
the data relative to M’. But in fact the extra expressive
power is sometimes innocuous, as is exemplified by the
comparison of QCC and cCC for our dephased experi-
ment. It is innocuous when it does not lead to statistical
fluctuations being mistaken for real features. The QCC
model used in our data analysis certainly has additional
expressive power relative to the cCC model we used, but
our results demonstrate that, for the case of our experi-
ment, it is of the innocuous variety.

In summary, HH’s notion that model inclusion neces-
sarily implies overfitting is not right. This undermines
their argument against our analysis technique.

2. A novel opportunity for overfitting in a model
inclusion setting

Nonetheless, it is worth considering the question that
this raises: what sorts of circumstances could lead to the
situation that a more expressive model overfits the data
relative to a less expressive model?

To answer this question, we return to the example of a
dephased version of a Bell experiment and describe novel
circumstances (distinct from the one realized in the ex-
periment we conducted) in which one could find that the
QCC model overfits the data relative to the cCC model
using the data analysis technique we used for our exper-
iment. Recall that both models satisfy the no-signalling
condition for all parameter values and that the only dif-
ference between them is that the QCC model can violate

4 See, however, comments below regarding such a possibility for
an experiment different from the one we conducted.

Bell inequalities while the cCC model cannot. Now sup-
pose that one does a dephased version of the experiment
wherein one targets a separable state and measurements
that precisely saturate the bound in a Bell inequality.
This ideal is never quite achieved by the separable state
and measurements that one actually realizes in the ex-
periment, because of unavoidable noise and imprecision.
Suppose the noise and precision are such one expects that
the correlations achieved fall short of saturating the Bell
bound by e. Suppose further that the amount of data
collected in the experiment is such that the variance of
the statistical fluctuations is expected to be larger than
€. In this case, there could be a statistical fluctuation
that leads to a violation of the Bell inequality for the
finite-run relative frequencies of the training data. Such
a violation could be mistaken for a real feature by the
QCC model, such that the best-fit set of parameter val-
ues for this model might describe a small amount of en-
tanglement in the prepared state rather than one that is
separable. In its predictions about the test data, such
a best-fit model would then assign a larger probability
to a particular type of the Bell inequality violation. On
the other hand, because the cCC model cannot violate
a Bell inequality for any choice of parameter values, it
cannot mistake such a fluctuation for a real feature and
hence will not predict any such violation in the test data.
The conclusion is that the QCC model could be found to
have worse predictive power than the cCCC model in these
circumstances.

It is worth contrasting this example of decreased pre-
dictive power to the example that was realized in our
experiment. For this purpose, consider the comparison
of two causal models that stand in a relationship of model
inclusion, where one is structurally radical and the other
is structurally conservative, such as the ¢SDy and the
CcCC models. In this case, some of the extra expres-
sive power of the former compared to the latter comes
in the form of the possibility of a violation of an equal-
ity constraint, namely, the no-signalling condition. This
sort of difference does not arise between the QCC and
cCC models, because these satisfy the same equality con-
straints. Rather, the difference in the set of correlations
that can be realized in QCC and c¢CC models is only
relative to inequality constraints. Specifically, the Bell
inequalities are satisfied by the cCC model but can be
violated by the QCC model.

For generic causal structures (in either classical or
quantum causal models), one can have both equality and
inequality constraints |8]. What the discussion above
demonstrates is that differences in the inequality con-
straints satisfied by a pair of models M and M’ that
stand in a relationship of model inclusion may constitute
another avenue by which a statistical fluctuation can be
mistaken for a real feature in M but not in M’. Hence, it
is another avenue by which M might lead to overfitting
of the data relative to M’. Note, however, that this is
only expected to occur when the data is exceptional, ly-
ing within statistical error of the boundary between the



set of observational data realizable by M’ and the set of
observational data that is only realizable by M.

The dephased experiment that we performed had a suf-
ficiently small statistical error (relative to the imprecision
in the state preparation and measurements) that fluctu-
ations leading to a violation of the Bell bound were very
unlikely. We consequently did not expect to see any evi-
dence of the QCC model overfitting relative to the cCC
model, and indeed we saw none.

Nonetheless, it is worth addressing the question of
what we ought to conclude from the possibility of an al-
ternative experimental circumstance that would allow for
such overfitting. Do such considerations constitute a re-
ductio ad absurdum argument against the train-and-test
methodology for model selection?

They do not. This is because it is always possible to in-
clude more information about the experiment when find-
ing the best-fit model, and doing so generally prevents
the more expressive model from falling into the trap of
mistaking statistical fluctuations for real features.

Consider the case of the dephased version of our ex-
periment. In our data analysis, we conceptualized the
initial preparation procedure for the bipartite state, call
it P, as a black box even though it was implemented
as the composition of two procedures: (i) the procedure
that prepared an entangled state of the bipartite system,
which was achieved using parameteric downconversion,
call it Py, and (ii) the transformation on the bipartite
system that realized the dephasing, which was achieved
by implementing a uniform mixture of identity and Pauli
X operations, call it T. Our fitting procedure looked for
the bipartite quantum state that provided the best fit to
the procedure P, the black-box conceptualization of the
preparation. However, one could opt for a fitting proce-
dure that models the two components of the preparation
procedure separately, that is, a fit to Py and a fit to T.
One could furthermore appeal to additional experimen-
tal data in achieving this fit. For instance, by preparing
each of a tomographically complete set of states on the
pair of systems (rather than confining the procedure Py
to the preparation of a single entangled state), one could
achieve a tomographic characterization of the dephasing
operation itself. Doing so would yield experimental data
that provided strong evidence in favour of modelling T’
as an entanglement-breaking channel, such that the bi-
partite state representing P, i.e., the composition of the
entangled state P and the channel 7T,would in turn be
modelled by a separable state rather than one that is
entangled.

In this revised version of the dephased experiment, the
QCC model would be more likely to interpret a slight
violation of Bell inequalities in the finite-run relative
frequencies as a statistical fluctuation consistent with a
state that is separable rather than a real feature necessi-
tating a state that is entangled. In this way, such fluctu-
ations would not be mistaken for real features and conse-
quently the QCC model would not be found to have worse
predictive power than the corresponding cCC model.

This exemplifies how, in general, one avoids the reduc-
tio argument against the train-and-test methodology for
comparing models that stand in a relationship of model
inclusion to one another: by incorporating additional
details of the experimental set-up, the more expressive
model can be prevented from mistaking statistical fluc-
tuations for real features.

In principle, one could take this approach towards tests
of theories that make predictions distinct from opera-
tional quantum theory.

Consider, for example, Valentini’s quantum nonequi-
librium variant of Bohmian mechanics |9, 110]. It predicts
the possibility of violations of the no-signalling condi-
tion. Imagine an experiment has been done that sees
such a violation in the finite-run relative frequencies, but
where it is unclear whether it should be considered to
be a real feature, hence evidence in favour of Valentini’s
hypothesis, or merely a statistical fluctuation. Includ-
ing certain details of the realized experimental procedure
may constrain the fit in a way that reduces the chances
that the model mistakes statistical fluctuations for real
features. For instance, suppose the experiment is not
probing the sort of exotic matter that Valentini argues
is most likely to exhibit deviations from quantum equi-
librium [11]. In this case, taking into account additional
details of the experimental set-up might be sufficient to
render unlikely any deviation from quantum equilibrium
in the fit, such that the best-fit model interprets a viola-
tion of no-signalling in the finite-run data as a statistical
fluctuation rather than a real feature.

As another example, it has been proposed that we
might some day find experimental evidence in favour of
an alternative to quantum theory that allows for viola-
tions of Bell inequalities that are larger than the maxi-
mal violations realizable in quantum theory, i.e., one that
allows for violations of the Tsirelson bound [12]. The
framework of causal models can be adapted to these al-
ternative theories (see the discussion of GPT causal mod-
els in Ref. [§] for instance), and consequently one could
apply the train-and-test methodology described here to
try and adjudicate between two causal models that have
the Bell causal structure: the quantum model and a post-
quantum alternative to it. Suppose that the experiment
was such that the quantum predictions are within statis-
tical error of the Tsirelson bound. Assuming quantum
theory is the correct model, there could nonetheless be a
statistical fluctuation such that the relative frequencies
computed from the finite-run training data violated the
Tsirelson bound. In this case, the post-quantum causal
model, which allows for choices of parameter values that
violate the Tsirelson bound, might mistake such a fluctu-
ation for a real feature, and predict that the test data will
exhibit a similar violation of the Tsirelson bound. Mean-
while, the quantum causal model satisfies the Tsirelson
bound for all choices of parameters and hence necessar-
ily predicts that the test data will satisfy the Tsirelson
bound. In this way, the post-quantum model might be
found to overfit the data relative to the quantum model.



But if a proponent of a Tsirelson-violating alternative
to quantum theory had a hypothesis about the partic-
ular experimental circumstances in which the violation
was likely to occur, and the experiment in question was
not of the right type, that additional information might
be incorporated into the prior over the parameter values
for the post-quantum model within the fitting procedure
and it might ensure that the best-fit parameters obtained
from the training data did not fall prey to the overfitting
trap. In this way, such a proponent could show that the
particular experiment in question did not provide evi-

dence against their hypothesis.

To summarize, a given theory provides different para-
metric models of an experiment—in particular, different
prior probability distributions over the space of parame-
ter values—depending on the amount of detail in the ex-
perimental set-up one takes into account in the modelling
procedure. Consequently, even if a theory is diagnosed as
overfitting the data when the experiment is treated at one
level of detail, this diagnosis might be overturned when
additional information about the experimental procedure
is taken into account.



