DimasikKurd commited on
Commit
fab1de9
·
verified ·
1 Parent(s): 5e65594

Training complete

Browse files
README.md CHANGED
@@ -2,6 +2,11 @@
2
  base_model: ai-forever/sbert_large_nlu_ru
3
  tags:
4
  - generated_from_trainer
 
 
 
 
 
5
  model-index:
6
  - name: sbert_large_nlu_ru_neg
7
  results: []
@@ -14,15 +19,11 @@ should probably proofread and complete it, then remove this comment. -->
14
 
15
  This model is a fine-tuned version of [ai-forever/sbert_large_nlu_ru](https://huggingface.co/ai-forever/sbert_large_nlu_ru) on the None dataset.
16
  It achieves the following results on the evaluation set:
17
- - eval_loss: 1.1116
18
- - eval_precision: 0.0073
19
- - eval_recall: 0.0517
20
- - eval_f1: 0.0128
21
- - eval_accuracy: 0.3623
22
- - eval_runtime: 7.678
23
- - eval_samples_per_second: 8.205
24
- - eval_steps_per_second: 1.042
25
- - step: 0
26
 
27
  ## Model description
28
 
@@ -49,6 +50,73 @@ The following hyperparameters were used during training:
49
  - lr_scheduler_type: linear
50
  - num_epochs: 100
51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
  ### Framework versions
53
 
54
  - Transformers 4.40.1
 
2
  base_model: ai-forever/sbert_large_nlu_ru
3
  tags:
4
  - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
  model-index:
11
  - name: sbert_large_nlu_ru_neg
12
  results: []
 
19
 
20
  This model is a fine-tuned version of [ai-forever/sbert_large_nlu_ru](https://huggingface.co/ai-forever/sbert_large_nlu_ru) on the None dataset.
21
  It achieves the following results on the evaluation set:
22
+ - Loss: 0.7106
23
+ - Precision: 0.5205
24
+ - Recall: 0.57
25
+ - F1: 0.5442
26
+ - Accuracy: 0.8956
 
 
 
 
27
 
28
  ## Model description
29
 
 
50
  - lr_scheduler_type: linear
51
  - num_epochs: 100
52
 
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | No log | 1.0870 | 50 | 0.6440 | 0.0 | 0.0 | 0.0 | 0.7571 |
58
+ | No log | 2.1739 | 100 | 0.5237 | 0.0317 | 0.0579 | 0.0410 | 0.8069 |
59
+ | No log | 3.2609 | 150 | 0.3775 | 0.1163 | 0.1544 | 0.1327 | 0.8514 |
60
+ | No log | 4.3478 | 200 | 0.3368 | 0.2292 | 0.3031 | 0.2610 | 0.8769 |
61
+ | No log | 5.4348 | 250 | 0.3055 | 0.3066 | 0.3475 | 0.3258 | 0.8929 |
62
+ | No log | 6.5217 | 300 | 0.2919 | 0.3814 | 0.5463 | 0.4492 | 0.8989 |
63
+ | No log | 7.6087 | 350 | 0.2798 | 0.4372 | 0.5039 | 0.4682 | 0.9055 |
64
+ | No log | 8.6957 | 400 | 0.2730 | 0.3934 | 0.5560 | 0.4608 | 0.9071 |
65
+ | No log | 9.7826 | 450 | 0.3021 | 0.4666 | 0.5656 | 0.5113 | 0.9101 |
66
+ | 0.3321 | 10.8696 | 500 | 0.3249 | 0.4664 | 0.6023 | 0.5257 | 0.9110 |
67
+ | 0.3321 | 11.9565 | 550 | 0.3317 | 0.5316 | 0.5849 | 0.5570 | 0.9113 |
68
+ | 0.3321 | 13.0435 | 600 | 0.3352 | 0.4984 | 0.5946 | 0.5423 | 0.9127 |
69
+ | 0.3321 | 14.1304 | 650 | 0.3651 | 0.5079 | 0.5579 | 0.5317 | 0.9157 |
70
+ | 0.3321 | 15.2174 | 700 | 0.3856 | 0.4670 | 0.6004 | 0.5253 | 0.9083 |
71
+ | 0.3321 | 16.3043 | 750 | 0.4087 | 0.4905 | 0.5985 | 0.5391 | 0.9139 |
72
+ | 0.3321 | 17.3913 | 800 | 0.4108 | 0.5058 | 0.5869 | 0.5433 | 0.9113 |
73
+ | 0.3321 | 18.4783 | 850 | 0.3900 | 0.5597 | 0.6429 | 0.5984 | 0.9172 |
74
+ | 0.3321 | 19.5652 | 900 | 0.4572 | 0.5567 | 0.6158 | 0.5848 | 0.9168 |
75
+ | 0.3321 | 20.6522 | 950 | 0.4945 | 0.5952 | 0.5734 | 0.5841 | 0.9121 |
76
+ | 0.0516 | 21.7391 | 1000 | 0.5660 | 0.5835 | 0.5463 | 0.5643 | 0.9066 |
77
+ | 0.0516 | 22.8261 | 1050 | 0.4464 | 0.5307 | 0.6178 | 0.5709 | 0.9160 |
78
+ | 0.0516 | 23.9130 | 1100 | 0.5044 | 0.5696 | 0.6081 | 0.5882 | 0.9130 |
79
+ | 0.0516 | 25.0 | 1150 | 0.4807 | 0.5682 | 0.6274 | 0.5963 | 0.9151 |
80
+ | 0.0516 | 26.0870 | 1200 | 0.5006 | 0.5615 | 0.6525 | 0.6036 | 0.9157 |
81
+ | 0.0516 | 27.1739 | 1250 | 0.5228 | 0.6008 | 0.5985 | 0.5996 | 0.9127 |
82
+ | 0.0516 | 28.2609 | 1300 | 0.5091 | 0.5193 | 0.5965 | 0.5553 | 0.9117 |
83
+ | 0.0516 | 29.3478 | 1350 | 0.5135 | 0.6036 | 0.6409 | 0.6217 | 0.9177 |
84
+ | 0.0516 | 30.4348 | 1400 | 0.5183 | 0.5742 | 0.6351 | 0.6031 | 0.9157 |
85
+ | 0.0516 | 31.5217 | 1450 | 0.5202 | 0.5722 | 0.6506 | 0.6089 | 0.9106 |
86
+ | 0.0256 | 32.6087 | 1500 | 0.5170 | 0.5836 | 0.6602 | 0.6196 | 0.9174 |
87
+ | 0.0256 | 33.6957 | 1550 | 0.4348 | 0.6067 | 0.6313 | 0.6187 | 0.9215 |
88
+ | 0.0256 | 34.7826 | 1600 | 0.5070 | 0.6143 | 0.6120 | 0.6132 | 0.9156 |
89
+ | 0.0256 | 35.8696 | 1650 | 0.5840 | 0.6525 | 0.5907 | 0.6201 | 0.9121 |
90
+ | 0.0256 | 36.9565 | 1700 | 0.5587 | 0.5941 | 0.6274 | 0.6103 | 0.9124 |
91
+ | 0.0256 | 38.0435 | 1750 | 0.4073 | 0.5159 | 0.6564 | 0.5777 | 0.9117 |
92
+ | 0.0256 | 39.1304 | 1800 | 0.4428 | 0.6180 | 0.6371 | 0.6274 | 0.9166 |
93
+ | 0.0256 | 40.2174 | 1850 | 0.4775 | 0.5797 | 0.6390 | 0.6079 | 0.9199 |
94
+ | 0.0256 | 41.3043 | 1900 | 0.4121 | 0.5920 | 0.6274 | 0.6092 | 0.9171 |
95
+ | 0.0256 | 42.3913 | 1950 | 0.4683 | 0.6136 | 0.6467 | 0.6297 | 0.9179 |
96
+ | 0.0231 | 43.4783 | 2000 | 0.4961 | 0.6390 | 0.5946 | 0.6160 | 0.9137 |
97
+ | 0.0231 | 44.5652 | 2050 | 0.6040 | 0.6242 | 0.5483 | 0.5838 | 0.9031 |
98
+ | 0.0231 | 45.6522 | 2100 | 0.5498 | 0.6458 | 0.5985 | 0.6212 | 0.9121 |
99
+ | 0.0231 | 46.7391 | 2150 | 0.4636 | 0.6049 | 0.6236 | 0.6141 | 0.9212 |
100
+ | 0.0231 | 47.8261 | 2200 | 0.4797 | 0.634 | 0.6120 | 0.6228 | 0.9142 |
101
+ | 0.0231 | 48.9130 | 2250 | 0.5335 | 0.5134 | 0.6680 | 0.5805 | 0.9061 |
102
+ | 0.0231 | 50.0 | 2300 | 0.5348 | 0.6167 | 0.6120 | 0.6143 | 0.9075 |
103
+ | 0.0231 | 51.0870 | 2350 | 0.4871 | 0.6144 | 0.6429 | 0.6283 | 0.9085 |
104
+ | 0.0231 | 52.1739 | 2400 | 0.4767 | 0.5335 | 0.6757 | 0.5963 | 0.9082 |
105
+ | 0.0231 | 53.2609 | 2450 | 0.4494 | 0.5895 | 0.6486 | 0.6176 | 0.9109 |
106
+ | 0.0225 | 54.3478 | 2500 | 0.5282 | 0.5310 | 0.6448 | 0.5824 | 0.9088 |
107
+ | 0.0225 | 55.4348 | 2550 | 0.4321 | 0.5714 | 0.6332 | 0.6007 | 0.9148 |
108
+ | 0.0225 | 56.5217 | 2600 | 0.4822 | 0.6179 | 0.6274 | 0.6226 | 0.9105 |
109
+ | 0.0225 | 57.6087 | 2650 | 0.4360 | 0.5578 | 0.6429 | 0.5973 | 0.9150 |
110
+ | 0.0225 | 58.6957 | 2700 | 0.5101 | 0.6215 | 0.5927 | 0.6067 | 0.9083 |
111
+ | 0.0225 | 59.7826 | 2750 | 0.4751 | 0.5327 | 0.6602 | 0.5897 | 0.9069 |
112
+ | 0.0225 | 60.8696 | 2800 | 0.4942 | 0.6471 | 0.5946 | 0.6197 | 0.9065 |
113
+ | 0.0225 | 61.9565 | 2850 | 0.3628 | 0.4646 | 0.6332 | 0.5359 | 0.8957 |
114
+ | 0.0225 | 63.0435 | 2900 | 0.4447 | 0.6152 | 0.6236 | 0.6194 | 0.9098 |
115
+ | 0.0225 | 64.1304 | 2950 | 0.4965 | 0.5624 | 0.6525 | 0.6041 | 0.9130 |
116
+ | 0.0285 | 65.2174 | 3000 | 0.5616 | 0.5649 | 0.6216 | 0.5919 | 0.9082 |
117
+ | 0.0285 | 66.3043 | 3050 | 0.7228 | 0.65 | 0.5019 | 0.5664 | 0.8881 |
118
+
119
+
120
  ### Framework versions
121
 
122
  - Transformers 4.40.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ef3ba3b56b3ce81c522f03962f77db4e9ac644c5096af94e46dbeb8a7955a5af
3
  size 1703495636
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95716b700981bb244ab2a098682f1b778d98ebd59595050e2c4a1d02747a2432
3
  size 1703495636
runs/May07_07-25-02_b768b5ebe84d/events.out.tfevents.1715066711.b768b5ebe84d.354.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:494dff95c83c098336ebb0edffd832809452edb0f9e45f58346432e62ba8c1c1
3
- size 486
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e898ee2af5abab34fc4456be6e21f500dee9ffc93f79177c30dbd004846c0e5
3
+ size 884
runs/May07_07-25-02_b768b5ebe84d/events.out.tfevents.1715067055.b768b5ebe84d.354.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:963a628cfd913aad1f9d30510182488259cb8f46e9151eb80b4b4bb4be15a513
3
+ size 35458
runs/May07_07-25-02_b768b5ebe84d/events.out.tfevents.1715071903.b768b5ebe84d.354.2 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49696ff07c7ba1b63bfb86f88c418c850d40b829f74ea0406984abc658a33a5f
3
+ size 560