--- library_name: transformers base_model: csebuetnlp/banglabert tags: - generated_from_trainer metrics: - accuracy model-index: - name: repo_name results: [] --- # repo_name This model is a fine-tuned version of [csebuetnlp/banglabert](https://huggingface.co/csebuetnlp/banglabert) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4297 - Accuracy: 0.8705 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 645 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.3313 | 0.4735 | 1000 | 0.3475 | 0.8446 | | 0.3384 | 0.9470 | 2000 | 0.3331 | 0.8630 | | 0.2469 | 1.4205 | 3000 | 0.3431 | 0.8615 | | 0.2392 | 1.8939 | 4000 | 0.3347 | 0.8705 | | 0.1737 | 2.3674 | 5000 | 0.4186 | 0.8659 | | 0.1481 | 2.8409 | 6000 | 0.4297 | 0.8705 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.1