Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,63 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
language: en
|
4 |
+
tags:
|
5 |
+
- reranker
|
6 |
+
- RAG
|
7 |
+
- multimodal
|
8 |
+
- vision-language
|
9 |
+
- Qwen
|
10 |
+
license: cc-by-4.0
|
11 |
+
pipeline_tag: visual-document-retrieval
|
12 |
+
---
|
13 |
+
|
14 |
+
# DocReRank: Multi-Modal Reranker
|
15 |
+
|
16 |
+
This is the official model from the paper:
|
17 |
+
|
18 |
+
📄 **[DocReRank: Single-Page Hard Negative Query Generation for Training Multi-Modal RAG Rerankers](https://arxiv.org/abs/2505.22584)**
|
19 |
+
|
20 |
+
---
|
21 |
+
|
22 |
+
## ✅ Model Overview
|
23 |
+
- **Base model:** [Qwen/Qwen2-VL-2B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct)
|
24 |
+
- **Architecture:** Vision-Language reranker
|
25 |
+
- **Fine-tuning method:** PEFT (LoRA)
|
26 |
+
- **Training data:** Generated by **Single-Page Hard Negative Query Generation** Pipeline.
|
27 |
+
- **Purpose:** Improves second-stage reranking for Retrieval-Augmented Generation (RAG) in multimodal scenarios.
|
28 |
+
|
29 |
+
---
|
30 |
+
|
31 |
+
## ✅ How to Use
|
32 |
+
|
33 |
+
This adapter requires the base Qwen2-VL model.
|
34 |
+
|
35 |
+
```python
|
36 |
+
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
|
37 |
+
from peft import PeftModel
|
38 |
+
import torch
|
39 |
+
from PIL import Image
|
40 |
+
|
41 |
+
# Load base model
|
42 |
+
base_model = Qwen2VLForConditionalGeneration.from_pretrained(
|
43 |
+
"Qwen/Qwen2-VL-2B-Instruct",
|
44 |
+
torch_dtype=torch.bfloat16,
|
45 |
+
device_map="cuda"
|
46 |
+
)
|
47 |
+
|
48 |
+
# Load DocReRank adapter
|
49 |
+
model = PeftModel.from_pretrained(base_model, "DocReRank/DocReRank-Reranker").eval()
|
50 |
+
|
51 |
+
# Load processor
|
52 |
+
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
|
53 |
+
|
54 |
+
# Example query and image
|
55 |
+
query = "What is the total revenue in the table?"
|
56 |
+
image = Image.open("sample_page.png")
|
57 |
+
|
58 |
+
inputs = processor(text=query, images=image, return_tensors="pt").to("cuda", torch.bfloat16)
|
59 |
+
|
60 |
+
with torch.no_grad():
|
61 |
+
outputs = model.generate(**inputs, max_new_tokens=16)
|
62 |
+
|
63 |
+
print(processor.tokenizer.decode(outputs[0], skip_special_tokens=True))
|