lbourdois commited on
Commit
34f9c07
·
verified ·
1 Parent(s): 992c2d1

Improve language tag

Browse files

Hi! As the model is multilingual, this is a PR to add other languages than English to the language tag to improve the referencing. Note that 29 languages are announced in the README, but only 13 are explicitly listed. I was therefore only able to add these 13 languages.

Files changed (1) hide show
  1. README.md +164 -150
README.md CHANGED
@@ -1,151 +1,165 @@
1
- ---
2
- library_name: peft
3
- license: apache-2.0
4
- base_model: Qwen/Qwen2.5-0.5B
5
- tags:
6
- - axolotl
7
- - generated_from_trainer
8
- model-index:
9
- - name: 0a929cd7-4abe-4be4-bfa0-d7da7d03b9b8
10
- results: []
11
- ---
12
-
13
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
- should probably proofread and complete it, then remove this comment. -->
15
-
16
- [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
- <details><summary>See axolotl config</summary>
18
-
19
- axolotl version: `0.4.1`
20
- ```yaml
21
- adapter: lora
22
- base_model: Qwen/Qwen2.5-0.5B
23
- bf16: true
24
- chat_template: llama3
25
- dataset_prepared_path: null
26
- datasets:
27
- - data_files:
28
- - 827d98d6f834ce6e_train_data.json
29
- ds_type: json
30
- format: custom
31
- path: /workspace/input_data/827d98d6f834ce6e_train_data.json
32
- type:
33
- field_input: question
34
- field_instruction: messages
35
- field_output: model_response
36
- format: '{instruction} {input}'
37
- no_input_format: '{instruction}'
38
- system_format: '{system}'
39
- system_prompt: ''
40
- debug: null
41
- deepspeed: null
42
- early_stopping_patience: null
43
- eval_max_new_tokens: 256
44
- eval_table_size: null
45
- evals_per_epoch: 4
46
- flash_attention: false
47
- fp16: false
48
- fsdp: null
49
- fsdp_config: null
50
- gradient_accumulation_steps: 4
51
- gradient_checkpointing: true
52
- group_by_length: true
53
- hub_model_id: Dolboebina/0a929cd7-4abe-4be4-bfa0-d7da7d03b9b8
54
- hub_repo: null
55
- hub_strategy: checkpoint
56
- hub_token: null
57
- learning_rate: 0.0002
58
- load_in_4bit: true
59
- load_in_8bit: false
60
- local_rank: null
61
- logging_steps: 1
62
- lora_alpha: 64
63
- lora_dropout: 0.05
64
- lora_fan_in_fan_out: null
65
- lora_model_dir: null
66
- lora_r: 16
67
- lora_target_linear: true
68
- lr_scheduler: cosine
69
- max_steps: 10
70
- micro_batch_size: 2
71
- mlflow_experiment_name: /tmp/827d98d6f834ce6e_train_data.json
72
- model_type: AutoModelForCausalLM
73
- num_epochs: 1
74
- optimizer: adamw_bnb_8bit
75
- output_dir: miner_id_24
76
- pad_to_sequence_len: true
77
- resume_from_checkpoint: null
78
- sample_packing: true
79
- saves_per_epoch: 4
80
- sequence_len: 4096
81
- strict: false
82
- tf32: true
83
- tokenizer_type: AutoTokenizer
84
- train_on_inputs: false
85
- trust_remote_code: true
86
- val_set_size: 0.05
87
- wandb_entity: null
88
- wandb_mode: online
89
- wandb_name: 0a929cd7-4abe-4be4-bfa0-d7da7d03b9b8
90
- wandb_project: Gradients-On-Demand
91
- wandb_run: your_name
92
- wandb_runid: 0a929cd7-4abe-4be4-bfa0-d7da7d03b9b8
93
- warmup_steps: 10
94
- weight_decay: 0.01
95
- xformers_attention: false
96
-
97
- ```
98
-
99
- </details><br>
100
-
101
- # 0a929cd7-4abe-4be4-bfa0-d7da7d03b9b8
102
-
103
- This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B](https://huggingface.co/Qwen/Qwen2.5-0.5B) on the None dataset.
104
- It achieves the following results on the evaluation set:
105
- - Loss: 0.5901
106
-
107
- ## Model description
108
-
109
- More information needed
110
-
111
- ## Intended uses & limitations
112
-
113
- More information needed
114
-
115
- ## Training and evaluation data
116
-
117
- More information needed
118
-
119
- ## Training procedure
120
-
121
- ### Training hyperparameters
122
-
123
- The following hyperparameters were used during training:
124
- - learning_rate: 0.0002
125
- - train_batch_size: 2
126
- - eval_batch_size: 2
127
- - seed: 42
128
- - gradient_accumulation_steps: 4
129
- - total_train_batch_size: 8
130
- - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
131
- - lr_scheduler_type: cosine
132
- - lr_scheduler_warmup_steps: 10
133
- - training_steps: 10
134
-
135
- ### Training results
136
-
137
- | Training Loss | Epoch | Step | Validation Loss |
138
- |:-------------:|:------:|:----:|:---------------:|
139
- | 1.7006 | 0.0015 | 1 | 1.4715 |
140
- | 1.3025 | 0.0044 | 3 | 1.3203 |
141
- | 1.1745 | 0.0089 | 6 | 0.8342 |
142
- | 0.5756 | 0.0133 | 9 | 0.5901 |
143
-
144
-
145
- ### Framework versions
146
-
147
- - PEFT 0.13.2
148
- - Transformers 4.46.0
149
- - Pytorch 2.5.0+cu124
150
- - Datasets 3.0.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
151
  - Tokenizers 0.20.1
 
1
+ ---
2
+ library_name: peft
3
+ license: apache-2.0
4
+ base_model: Qwen/Qwen2.5-0.5B
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ language:
9
+ - zho
10
+ - eng
11
+ - fra
12
+ - spa
13
+ - por
14
+ - deu
15
+ - ita
16
+ - rus
17
+ - jpn
18
+ - kor
19
+ - vie
20
+ - tha
21
+ - ara
22
+ model-index:
23
+ - name: 0a929cd7-4abe-4be4-bfa0-d7da7d03b9b8
24
+ results: []
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
31
+ <details><summary>See axolotl config</summary>
32
+
33
+ axolotl version: `0.4.1`
34
+ ```yaml
35
+ adapter: lora
36
+ base_model: Qwen/Qwen2.5-0.5B
37
+ bf16: true
38
+ chat_template: llama3
39
+ dataset_prepared_path: null
40
+ datasets:
41
+ - data_files:
42
+ - 827d98d6f834ce6e_train_data.json
43
+ ds_type: json
44
+ format: custom
45
+ path: /workspace/input_data/827d98d6f834ce6e_train_data.json
46
+ type:
47
+ field_input: question
48
+ field_instruction: messages
49
+ field_output: model_response
50
+ format: '{instruction} {input}'
51
+ no_input_format: '{instruction}'
52
+ system_format: '{system}'
53
+ system_prompt: ''
54
+ debug: null
55
+ deepspeed: null
56
+ early_stopping_patience: null
57
+ eval_max_new_tokens: 256
58
+ eval_table_size: null
59
+ evals_per_epoch: 4
60
+ flash_attention: false
61
+ fp16: false
62
+ fsdp: null
63
+ fsdp_config: null
64
+ gradient_accumulation_steps: 4
65
+ gradient_checkpointing: true
66
+ group_by_length: true
67
+ hub_model_id: Dolboebina/0a929cd7-4abe-4be4-bfa0-d7da7d03b9b8
68
+ hub_repo: null
69
+ hub_strategy: checkpoint
70
+ hub_token: null
71
+ learning_rate: 0.0002
72
+ load_in_4bit: true
73
+ load_in_8bit: false
74
+ local_rank: null
75
+ logging_steps: 1
76
+ lora_alpha: 64
77
+ lora_dropout: 0.05
78
+ lora_fan_in_fan_out: null
79
+ lora_model_dir: null
80
+ lora_r: 16
81
+ lora_target_linear: true
82
+ lr_scheduler: cosine
83
+ max_steps: 10
84
+ micro_batch_size: 2
85
+ mlflow_experiment_name: /tmp/827d98d6f834ce6e_train_data.json
86
+ model_type: AutoModelForCausalLM
87
+ num_epochs: 1
88
+ optimizer: adamw_bnb_8bit
89
+ output_dir: miner_id_24
90
+ pad_to_sequence_len: true
91
+ resume_from_checkpoint: null
92
+ sample_packing: true
93
+ saves_per_epoch: 4
94
+ sequence_len: 4096
95
+ strict: false
96
+ tf32: true
97
+ tokenizer_type: AutoTokenizer
98
+ train_on_inputs: false
99
+ trust_remote_code: true
100
+ val_set_size: 0.05
101
+ wandb_entity: null
102
+ wandb_mode: online
103
+ wandb_name: 0a929cd7-4abe-4be4-bfa0-d7da7d03b9b8
104
+ wandb_project: Gradients-On-Demand
105
+ wandb_run: your_name
106
+ wandb_runid: 0a929cd7-4abe-4be4-bfa0-d7da7d03b9b8
107
+ warmup_steps: 10
108
+ weight_decay: 0.01
109
+ xformers_attention: false
110
+
111
+ ```
112
+
113
+ </details><br>
114
+
115
+ # 0a929cd7-4abe-4be4-bfa0-d7da7d03b9b8
116
+
117
+ This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B](https://huggingface.co/Qwen/Qwen2.5-0.5B) on the None dataset.
118
+ It achieves the following results on the evaluation set:
119
+ - Loss: 0.5901
120
+
121
+ ## Model description
122
+
123
+ More information needed
124
+
125
+ ## Intended uses & limitations
126
+
127
+ More information needed
128
+
129
+ ## Training and evaluation data
130
+
131
+ More information needed
132
+
133
+ ## Training procedure
134
+
135
+ ### Training hyperparameters
136
+
137
+ The following hyperparameters were used during training:
138
+ - learning_rate: 0.0002
139
+ - train_batch_size: 2
140
+ - eval_batch_size: 2
141
+ - seed: 42
142
+ - gradient_accumulation_steps: 4
143
+ - total_train_batch_size: 8
144
+ - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
145
+ - lr_scheduler_type: cosine
146
+ - lr_scheduler_warmup_steps: 10
147
+ - training_steps: 10
148
+
149
+ ### Training results
150
+
151
+ | Training Loss | Epoch | Step | Validation Loss |
152
+ |:-------------:|:------:|:----:|:---------------:|
153
+ | 1.7006 | 0.0015 | 1 | 1.4715 |
154
+ | 1.3025 | 0.0044 | 3 | 1.3203 |
155
+ | 1.1745 | 0.0089 | 6 | 0.8342 |
156
+ | 0.5756 | 0.0133 | 9 | 0.5901 |
157
+
158
+
159
+ ### Framework versions
160
+
161
+ - PEFT 0.13.2
162
+ - Transformers 4.46.0
163
+ - Pytorch 2.5.0+cu124
164
+ - Datasets 3.0.1
165
  - Tokenizers 0.20.1