Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-PandaReachDense-v3.zip +3 -0
- a2c-PandaReachDense-v3/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v3/data +97 -0
- a2c-PandaReachDense-v3/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v3/policy.pth +3 -0
- a2c-PandaReachDense-v3/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v3
|
16 |
+
type: PandaReachDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.22 +/- 0.08
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b71a012fa3ae964880e903ac55f851fb47bbcfe2077b60b5c3f7185b8f331b91
|
3 |
+
size 111426
|
a2c-PandaReachDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
a2c-PandaReachDense-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x792807ea6b90>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x792807eb1300>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1741328955620030249,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAZFqlvfh9zz6G9HO+WweDP0+omj+82I6/qcV2PiUpujk9Vds+e+X4v18O+78oXwXAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAAWo0vyjBcj90AoC/eKWGP/CFhD+hQIW/XEhtP+TiUj9ADvg+NMitvy1Spr+5Slu/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABkWqW9+H3PPob0c764jfC/5GPQP2+Hrb9bB4M/T6iaP7zYjr+2jrU+Ce5BP2/R1L+pxXY+JSm6OT1V2z6CJ/s+Qyx5u6PWxD575fi/Xw77vyhfBcCXKtO/gLGBv/YYIb6UaA5LBEsGhpRoEnSUUpR1Lg==",
|
33 |
+
"achieved_goal": "[[-8.0738813e-02 4.0525794e-01 -2.3823747e-01]\n [ 1.0236620e+00 1.2082614e+00 -1.1159892e+00]\n [ 2.4098839e-01 3.5507340e-04 4.2838469e-01]\n [-1.9445032e+00 -1.9613761e+00 -2.0839329e+00]]",
|
34 |
+
"desired_goal": "[[-0.7047425 0.94825983 -1.0000749 ]\n [ 1.0519247 1.0353374 -1.0410348 ]\n [ 0.92688537 0.8237746 0.48448372]\n [-1.3576722 -1.2993828 -0.8566089 ]]",
|
35 |
+
"observation": "[[-8.0738813e-02 4.0525794e-01 -2.3823747e-01 -1.8793249e+00\n 1.6280484e+00 -1.3556956e+00]\n [ 1.0236620e+00 1.2082614e+00 -1.1159892e+00 3.5460442e-01\n 7.5753838e-01 -1.6626414e+00]\n [ 2.4098839e-01 3.5507340e-04 4.2838469e-01 4.9053580e-01\n -3.8020767e-03 3.8445005e-01]\n [-1.9445032e+00 -1.9613761e+00 -2.0839329e+00 -1.6497372e+00\n -1.0132294e+00 -1.5732178e-01]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAB8ENvdgkoTzl7SY+NWZ5PZmF8r13Wsw9FUfcvQf1BD6k+HM9HfGFvYeizL1GjoU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
44 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
45 |
+
"desired_goal": "[[-0.03460791 0.01967089 0.16301687]\n [ 0.06088849 -0.11841888 0.09978192]\n [-0.10755745 0.12984096 0.05956329]\n [-0.06540129 -0.09991937 0.2608511 ]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9f+ERJ2+wmMAWyUSwSMAXSUR0CgfzJaRp1zdX2UKGgGR7+/I3irDIikaAdLAmgIR0Cgfut2s7uEdX2UKGgGR7+zphWo3rD7aAdLAmgIR0CgfvK3/givdX2UKGgGR7/HTw2ETQE7aAdLA2gIR0Cgf8zhP0qZdX2UKGgGR7/LO58Sf16FaAdLA2gIR0Cgf4WMCLdfdX2UKGgGR7/TB6KLsKLLaAdLA2gIR0Cgfz3BYV7AdX2UKGgGR7/B4wAU+LWJaAdLAmgIR0Cgf49n003wdX2UKGgGR7/IjD8+A3DOaAdLA2gIR0CgfwCEHt4SdX2UKGgGR7/QEU0vXbudaAdLA2gIR0Cgf9qubI91dX2UKGgGR7/SU+9rXUYsaAdLA2gIR0Cgf0tpmEoOdX2UKGgGR7/IyqMm4RVZaAdLA2gIR0Cgf5o7FKkEdX2UKGgGR7+49bHIZIhAaAdLAmgIR0Cgf1KSowVTdX2UKGgGR7/NYbKifxtpaAdLA2gIR0CgfwuearmydX2UKGgGR7/HdpItlI3BaAdLA2gIR0Cgf+h8YyfudX2UKGgGR7++717IDHOsaAdLAmgIR0Cgf6SMkyDadX2UKGgGR7/ApNsWO6uoaAdLAmgIR0Cgf1zEzfrKdX2UKGgGR7/BadMCcPOIaAdLAmgIR0Cgf+/z8P4EdX2UKGgGR7/M8QqZtvXLaAdLA2gIR0CgfxmwJPZadX2UKGgGR7/SO1OTJQtSaAdLA2gIR0Cgf7A75mAcdX2UKGgGR7/N6eGwiaAnaAdLA2gIR0Cgf2hzmwJPdX2UKGgGR7+6HTI/7iyZaAdLAmgIR0CgfyGbCrLhdX2UKGgGR7/LT9bX6InCaAdLA2gIR0Cgf/5s9B8hdX2UKGgGR7/NU+9rXUYsaAdLA2gIR0Cgf740EX+EdX2UKGgGR7/Q2nbZezD5aAdLA2gIR0Cgf3aFmFrVdX2UKGgGR7/hICuEEkjYaAdLBGgIR0CgfzMc6vJSdX2UKGgGR7/dTKT0QK8daAdLBGgIR0CggA08mrsCdX2UKGgGR7/IsunMt9QXaAdLA2gIR0Cgf8vJRwZPdX2UKGgGR7/Dqi48U21laAdLAmgIR0CgfzzdtVJddX2UKGgGR7/dkN4JNTLoaAdLBGgIR0Cgf4eMqBmPdX2UKGgGR7/I925hBqsVaAdLA2gIR0CggBqIJqqPdX2UKGgGR7/EstCiRGMGaAdLAmgIR0Cgf0QTEit8dX2UKGgGR7/I3AmAskIHaAdLA2gIR0Cgf9c1XNkfdX2UKGgGR7/BFYuCf6GhaAdLAmgIR0Cgf49sJpnIdX2UKGgGR7/JKe05U96kaAdLA2gIR0CggCjsD4gzdX2UKGgGR7+4HKOktVaPaAdLAmgIR0Cgf+GcOLBLdX2UKGgGR7/KWFev6j33aAdLA2gIR0Cgf1KxcE/0dX2UKGgGR7+za37UG3WnaAdLAmgIR0Cgf+jc/MW5dX2UKGgGR7/adGy5Zr57aAdLBGgIR0Cgf6FHz6JqdX2UKGgGR7/HIbwSamXPaAdLA2gIR0CggDRtpEhJdX2UKGgGR7/RZQHiWE9MaAdLA2gIR0Cgf13zlLezdX2UKGgGR7+i2+fywwCbaAdLAWgIR0CggDhNdqtYdX2UKGgGR7+9gmZ3LV4HaAdLAmgIR0Cgf/Dopx3ndX2UKGgGR7/V876pHZsbaAdLA2gIR0Cgf68rRSgodX2UKGgGR7/RcwxnFo+OaAdLA2gIR0Cgf2u0LMLXdX2UKGgGR7/RAzYVZcLSaAdLA2gIR0CggEXUpd8idX2UKGgGR7/RRISUTtb+aAdLA2gIR0Cgf/6SLZSOdX2UKGgGR7+9TZQHiWE9aAdLAmgIR0CggE2K/EfldX2UKGgGR7/gX7tRekYXaAdLBGgIR0Cgf75B9kSVdX2UKGgGR7/GDbrTpgTiaAdLA2gIR0Cgf3dTYNAkdX2UKGgGR7/OC04R28qXaAdLA2gIR0CggAzSLIgedX2UKGgGR7+0/SpiqhlEaAdLAmgIR0CggFgEEC/5dX2UKGgGR7/Ijt5UtI07aAdLA2gIR0Cgf8xAbADadX2UKGgGR7/QS9ugpSaWaAdLA2gIR0Cgf4VdHDrJdX2UKGgGR7/Pg4OtnwocaAdLA2gIR0CggBgm7aqTdX2UKGgGR7/EiTt9hJAdaAdLAmgIR0Cgf4zuWrwOdX2UKGgGR7/XXnQpnYg8aAdLBGgIR0CggGoClrM1dX2UKGgGR7/AGjbi6xxDaAdLAmgIR0CggCKveP7vdX2UKGgGR7/QCjUNKAavaAdLA2gIR0Cgf9sNDtw8dX2UKGgGR7+eHJtBOYY0aAdLAWgIR0Cgf960Y0l7dX2UKGgGR7/AZtNzr/sFaAdLAmgIR0CggCpiy6czdX2UKGgGR7/UJ8OTaCcxaAdLA2gIR0CggHWFN+LFdX2UKGgGR7/aUmD15B1LaAdLBGgIR0Cgf58ifQKKdX2UKGgGR7+yIhyKekHlaAdLAmgIR0CggH+23KB/dX2UKGgGR7/QVFQVKwpwaAdLBGgIR0Cgf/Bp5/smdX2UKGgGR7/cXyRSxZ+yaAdLBGgIR0CggDwFC9h7dX2UKGgGR7/EHt4RmK64aAdLA2gIR0Cgf6003wTedX2UKGgGR7/AIGhVU+9raAdLAmgIR0CggIdWhh6TdX2UKGgGR7/Mt5D7ZWaMaAdLA2gIR0Cgf/vPcBU8dX2UKGgGR7+xOxjawljWaAdLAmgIR0CggI7/n4fwdX2UKGgGR7/SRoRIz3yqaAdLA2gIR0CggEfJV81GdX2UKGgGR7/MzQeFL39KaAdLA2gIR0Cgf7kTg2qDdX2UKGgGR7+nixVyWAwxaAdLAWgIR0CggJXbM5fddX2UKGgGR7+3z4DcM3IdaAdLAmgIR0CggFIK+i8GdX2UKGgGR7/N0IToMa0haAdLA2gIR0CggApDE3sHdX2UKGgGR7+4bbUPQOWjaAdLAmgIR0Cgf8OlGgBcdX2UKGgGR7/R+36Q/5ckaAdLA2gIR0CggKEOiFj/dX2UKGgGR7/Iojv/io87aAdLA2gIR0CggF1eBxxUdX2UKGgGR7+7fDUExIrfaAdLAmgIR0CggKssQNCrdX2UKGgGR7/ak7wKBun/aAdLBGgIR0CggBvU8V59dX2UKGgGR7/gKrJbMX7+aAdLBGgIR0Cgf9UEHMUzdX2UKGgGR7/E76Hj6vaDaAdLAmgIR0CggGeeWfK7dX2UKGgGR7+1eRgZ0jkdaAdLAmgIR0CggCRmseXBdX2UKGgGR7/SSJj2Bas7aAdLA2gIR0CggLd1MdtEdX2UKGgGR7/LkPMB6rvLaAdLA2gIR0Cgf+FvAGjcdX2UKGgGR7/HhYNiH6/JaAdLA2gIR0CggHRb0OEvdX2UKGgGR7/OrT6SDAaeaAdLA2gIR0CggMW4Vh1DdX2UKGgGR7+4PSUkfLcLaAdLAmgIR0CggH5owmE5dX2UKGgGR7/co7FKkEcLaAdLBGgIR0CggDatT1kEdX2UKGgGR7/U3KSxJNCaaAdLA2gIR0Cgf+/JeVs2dX2UKGgGR7+XZ5AyEcsEaAdLAWgIR0CggDphWo3rdX2UKGgGR7+/FDOTq0MPaAdLAmgIR0CggM2LYPGydX2UKGgGR7+8i9qUNayKaAdLAmgIR0CggIYzrNW3dX2UKGgGR7+6OktVaOghaAdLAmgIR0CggEHrhR64dX2UKGgGR7/FHz6JqIrOaAdLA2gIR0Cgf/ry1/lRdX2UKGgGR7/ICU5dWyTqaAdLA2gIR0CggNtSAH3UdX2UKGgGR7/AnfEXLvCuaAdLAmgIR0CggAUngHeKdX2UKGgGR7/Y/wy6+WWyaAdLBGgIR0CggJfCqIacdX2UKGgGR7+76tT1kDp1aAdLAmgIR0CggOLO7g89dX2UKGgGR7/a96C17Y03aAdLBGgIR0CggFN/FzdUdX2UKGgGR7+oQHzH0btJaAdLAWgIR0CggFc5CF9KdWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 50000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True]",
|
82 |
+
"bounded_above": "[ True True True]",
|
83 |
+
"_shape": [
|
84 |
+
3
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVYwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBaMBGZ1bmOUjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
96 |
+
}
|
97 |
+
}
|
a2c-PandaReachDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3977893ca83a8c7640d8f37378f6c2e85d0e21cefe2d0c8522130f055c4c5f61
|
3 |
+
size 48456
|
a2c-PandaReachDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af3d96db40552863bc2d2ef6ad2e79d230730f38b3195e9b69acaa9eccf08468
|
3 |
+
size 46447
|
a2c-PandaReachDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
a2c-PandaReachDense-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.6.56+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Nov 10 10:07:59 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.5.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 3.1.0
|
8 |
+
- Gymnasium: 0.29.0
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x792807ea6b90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x792807eb1300>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1741328955620030249, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAZFqlvfh9zz6G9HO+WweDP0+omj+82I6/qcV2PiUpujk9Vds+e+X4v18O+78oXwXAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAAWo0vyjBcj90AoC/eKWGP/CFhD+hQIW/XEhtP+TiUj9ADvg+NMitvy1Spr+5Slu/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABkWqW9+H3PPob0c764jfC/5GPQP2+Hrb9bB4M/T6iaP7zYjr+2jrU+Ce5BP2/R1L+pxXY+JSm6OT1V2z6CJ/s+Qyx5u6PWxD575fi/Xw77vyhfBcCXKtO/gLGBv/YYIb6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-8.0738813e-02 4.0525794e-01 -2.3823747e-01]\n [ 1.0236620e+00 1.2082614e+00 -1.1159892e+00]\n [ 2.4098839e-01 3.5507340e-04 4.2838469e-01]\n [-1.9445032e+00 -1.9613761e+00 -2.0839329e+00]]", "desired_goal": "[[-0.7047425 0.94825983 -1.0000749 ]\n [ 1.0519247 1.0353374 -1.0410348 ]\n [ 0.92688537 0.8237746 0.48448372]\n [-1.3576722 -1.2993828 -0.8566089 ]]", "observation": "[[-8.0738813e-02 4.0525794e-01 -2.3823747e-01 -1.8793249e+00\n 1.6280484e+00 -1.3556956e+00]\n [ 1.0236620e+00 1.2082614e+00 -1.1159892e+00 3.5460442e-01\n 7.5753838e-01 -1.6626414e+00]\n [ 2.4098839e-01 3.5507340e-04 4.2838469e-01 4.9053580e-01\n -3.8020767e-03 3.8445005e-01]\n [-1.9445032e+00 -1.9613761e+00 -2.0839329e+00 -1.6497372e+00\n -1.0132294e+00 -1.5732178e-01]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAB8ENvdgkoTzl7SY+NWZ5PZmF8r13Wsw9FUfcvQf1BD6k+HM9HfGFvYeizL1GjoU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.03460791 0.01967089 0.16301687]\n [ 0.06088849 -0.11841888 0.09978192]\n [-0.10755745 0.12984096 0.05956329]\n [-0.06540129 -0.09991937 0.2608511 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9f+ERJ2+wmMAWyUSwSMAXSUR0CgfzJaRp1zdX2UKGgGR7+/I3irDIikaAdLAmgIR0Cgfut2s7uEdX2UKGgGR7+zphWo3rD7aAdLAmgIR0CgfvK3/givdX2UKGgGR7/HTw2ETQE7aAdLA2gIR0Cgf8zhP0qZdX2UKGgGR7/LO58Sf16FaAdLA2gIR0Cgf4WMCLdfdX2UKGgGR7/TB6KLsKLLaAdLA2gIR0Cgfz3BYV7AdX2UKGgGR7/B4wAU+LWJaAdLAmgIR0Cgf49n003wdX2UKGgGR7/IjD8+A3DOaAdLA2gIR0CgfwCEHt4SdX2UKGgGR7/QEU0vXbudaAdLA2gIR0Cgf9qubI91dX2UKGgGR7/SU+9rXUYsaAdLA2gIR0Cgf0tpmEoOdX2UKGgGR7/IyqMm4RVZaAdLA2gIR0Cgf5o7FKkEdX2UKGgGR7+49bHIZIhAaAdLAmgIR0Cgf1KSowVTdX2UKGgGR7/NYbKifxtpaAdLA2gIR0CgfwuearmydX2UKGgGR7/HdpItlI3BaAdLA2gIR0Cgf+h8YyfudX2UKGgGR7++717IDHOsaAdLAmgIR0Cgf6SMkyDadX2UKGgGR7/ApNsWO6uoaAdLAmgIR0Cgf1zEzfrKdX2UKGgGR7/BadMCcPOIaAdLAmgIR0Cgf+/z8P4EdX2UKGgGR7/M8QqZtvXLaAdLA2gIR0CgfxmwJPZadX2UKGgGR7/SO1OTJQtSaAdLA2gIR0Cgf7A75mAcdX2UKGgGR7/N6eGwiaAnaAdLA2gIR0Cgf2hzmwJPdX2UKGgGR7+6HTI/7iyZaAdLAmgIR0CgfyGbCrLhdX2UKGgGR7/LT9bX6InCaAdLA2gIR0Cgf/5s9B8hdX2UKGgGR7/NU+9rXUYsaAdLA2gIR0Cgf740EX+EdX2UKGgGR7/Q2nbZezD5aAdLA2gIR0Cgf3aFmFrVdX2UKGgGR7/hICuEEkjYaAdLBGgIR0CgfzMc6vJSdX2UKGgGR7/dTKT0QK8daAdLBGgIR0CggA08mrsCdX2UKGgGR7/IsunMt9QXaAdLA2gIR0Cgf8vJRwZPdX2UKGgGR7/Dqi48U21laAdLAmgIR0CgfzzdtVJddX2UKGgGR7/dkN4JNTLoaAdLBGgIR0Cgf4eMqBmPdX2UKGgGR7/I925hBqsVaAdLA2gIR0CggBqIJqqPdX2UKGgGR7/EstCiRGMGaAdLAmgIR0Cgf0QTEit8dX2UKGgGR7/I3AmAskIHaAdLA2gIR0Cgf9c1XNkfdX2UKGgGR7/BFYuCf6GhaAdLAmgIR0Cgf49sJpnIdX2UKGgGR7/JKe05U96kaAdLA2gIR0CggCjsD4gzdX2UKGgGR7+4HKOktVaPaAdLAmgIR0Cgf+GcOLBLdX2UKGgGR7/KWFev6j33aAdLA2gIR0Cgf1KxcE/0dX2UKGgGR7+za37UG3WnaAdLAmgIR0Cgf+jc/MW5dX2UKGgGR7/adGy5Zr57aAdLBGgIR0Cgf6FHz6JqdX2UKGgGR7/HIbwSamXPaAdLA2gIR0CggDRtpEhJdX2UKGgGR7/RZQHiWE9MaAdLA2gIR0Cgf13zlLezdX2UKGgGR7+i2+fywwCbaAdLAWgIR0CggDhNdqtYdX2UKGgGR7+9gmZ3LV4HaAdLAmgIR0Cgf/Dopx3ndX2UKGgGR7/V876pHZsbaAdLA2gIR0Cgf68rRSgodX2UKGgGR7/RcwxnFo+OaAdLA2gIR0Cgf2u0LMLXdX2UKGgGR7/RAzYVZcLSaAdLA2gIR0CggEXUpd8idX2UKGgGR7/RRISUTtb+aAdLA2gIR0Cgf/6SLZSOdX2UKGgGR7+9TZQHiWE9aAdLAmgIR0CggE2K/EfldX2UKGgGR7/gX7tRekYXaAdLBGgIR0Cgf75B9kSVdX2UKGgGR7/GDbrTpgTiaAdLA2gIR0Cgf3dTYNAkdX2UKGgGR7/OC04R28qXaAdLA2gIR0CggAzSLIgedX2UKGgGR7+0/SpiqhlEaAdLAmgIR0CggFgEEC/5dX2UKGgGR7/Ijt5UtI07aAdLA2gIR0Cgf8xAbADadX2UKGgGR7/QS9ugpSaWaAdLA2gIR0Cgf4VdHDrJdX2UKGgGR7/Pg4OtnwocaAdLA2gIR0CggBgm7aqTdX2UKGgGR7/EiTt9hJAdaAdLAmgIR0Cgf4zuWrwOdX2UKGgGR7/XXnQpnYg8aAdLBGgIR0CggGoClrM1dX2UKGgGR7/AGjbi6xxDaAdLAmgIR0CggCKveP7vdX2UKGgGR7/QCjUNKAavaAdLA2gIR0Cgf9sNDtw8dX2UKGgGR7+eHJtBOYY0aAdLAWgIR0Cgf960Y0l7dX2UKGgGR7/AZtNzr/sFaAdLAmgIR0CggCpiy6czdX2UKGgGR7/UJ8OTaCcxaAdLA2gIR0CggHWFN+LFdX2UKGgGR7/aUmD15B1LaAdLBGgIR0Cgf58ifQKKdX2UKGgGR7+yIhyKekHlaAdLAmgIR0CggH+23KB/dX2UKGgGR7/QVFQVKwpwaAdLBGgIR0Cgf/Bp5/smdX2UKGgGR7/cXyRSxZ+yaAdLBGgIR0CggDwFC9h7dX2UKGgGR7/EHt4RmK64aAdLA2gIR0Cgf6003wTedX2UKGgGR7/AIGhVU+9raAdLAmgIR0CggIdWhh6TdX2UKGgGR7/Mt5D7ZWaMaAdLA2gIR0Cgf/vPcBU8dX2UKGgGR7+xOxjawljWaAdLAmgIR0CggI7/n4fwdX2UKGgGR7/SRoRIz3yqaAdLA2gIR0CggEfJV81GdX2UKGgGR7/MzQeFL39KaAdLA2gIR0Cgf7kTg2qDdX2UKGgGR7+nixVyWAwxaAdLAWgIR0CggJXbM5fddX2UKGgGR7+3z4DcM3IdaAdLAmgIR0CggFIK+i8GdX2UKGgGR7/N0IToMa0haAdLA2gIR0CggApDE3sHdX2UKGgGR7+4bbUPQOWjaAdLAmgIR0Cgf8OlGgBcdX2UKGgGR7/R+36Q/5ckaAdLA2gIR0CggKEOiFj/dX2UKGgGR7/Iojv/io87aAdLA2gIR0CggF1eBxxUdX2UKGgGR7+7fDUExIrfaAdLAmgIR0CggKssQNCrdX2UKGgGR7/ak7wKBun/aAdLBGgIR0CggBvU8V59dX2UKGgGR7/gKrJbMX7+aAdLBGgIR0Cgf9UEHMUzdX2UKGgGR7/E76Hj6vaDaAdLAmgIR0CggGeeWfK7dX2UKGgGR7+1eRgZ0jkdaAdLAmgIR0CggCRmseXBdX2UKGgGR7/SSJj2Bas7aAdLA2gIR0CggLd1MdtEdX2UKGgGR7/LkPMB6rvLaAdLA2gIR0Cgf+FvAGjcdX2UKGgGR7/HhYNiH6/JaAdLA2gIR0CggHRb0OEvdX2UKGgGR7/OrT6SDAaeaAdLA2gIR0CggMW4Vh1DdX2UKGgGR7+4PSUkfLcLaAdLAmgIR0CggH5owmE5dX2UKGgGR7/co7FKkEcLaAdLBGgIR0CggDatT1kEdX2UKGgGR7/U3KSxJNCaaAdLA2gIR0Cgf+/JeVs2dX2UKGgGR7+XZ5AyEcsEaAdLAWgIR0CggDphWo3rdX2UKGgGR7+/FDOTq0MPaAdLAmgIR0CggM2LYPGydX2UKGgGR7+8i9qUNayKaAdLAmgIR0CggIYzrNW3dX2UKGgGR7+6OktVaOghaAdLAmgIR0CggEHrhR64dX2UKGgGR7/FHz6JqIrOaAdLA2gIR0Cgf/ry1/lRdX2UKGgGR7/ICU5dWyTqaAdLA2gIR0CggNtSAH3UdX2UKGgGR7/AnfEXLvCuaAdLAmgIR0CggAUngHeKdX2UKGgGR7/Y/wy6+WWyaAdLBGgIR0CggJfCqIacdX2UKGgGR7+76tT1kDp1aAdLAmgIR0CggOLO7g89dX2UKGgGR7/a96C17Y03aAdLBGgIR0CggFN/FzdUdX2UKGgGR7+oQHzH0btJaAdLAWgIR0CggFc5CF9KdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVYwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBaMBGZ1bmOUjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-6.6.56+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Nov 10 10:07:59 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.29.0", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:49cf5b2d7a1a576e079470fd3161b78a3f342ba20c9c840430cc3275eb183e0d
|
3 |
+
size 680336
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.22435938399285077, "std_reward": 0.08097844905408932, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-03-07T07:34:50.874816"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eae33107e7c503aa5b9c14f5a461eddc6d38c500a12535156f79a5e47b2eb080
|
3 |
+
size 2613
|