{"policy_class": {":type:": "", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x792807eb1300>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1741328955620030249, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAZFqlvfh9zz6G9HO+WweDP0+omj+82I6/qcV2PiUpujk9Vds+e+X4v18O+78oXwXAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAAWo0vyjBcj90AoC/eKWGP/CFhD+hQIW/XEhtP+TiUj9ADvg+NMitvy1Spr+5Slu/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABkWqW9+H3PPob0c764jfC/5GPQP2+Hrb9bB4M/T6iaP7zYjr+2jrU+Ce5BP2/R1L+pxXY+JSm6OT1V2z6CJ/s+Qyx5u6PWxD575fi/Xw77vyhfBcCXKtO/gLGBv/YYIb6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-8.0738813e-02 4.0525794e-01 -2.3823747e-01]\n [ 1.0236620e+00 1.2082614e+00 -1.1159892e+00]\n [ 2.4098839e-01 3.5507340e-04 4.2838469e-01]\n [-1.9445032e+00 -1.9613761e+00 -2.0839329e+00]]", "desired_goal": "[[-0.7047425 0.94825983 -1.0000749 ]\n [ 1.0519247 1.0353374 -1.0410348 ]\n [ 0.92688537 0.8237746 0.48448372]\n [-1.3576722 -1.2993828 -0.8566089 ]]", "observation": "[[-8.0738813e-02 4.0525794e-01 -2.3823747e-01 -1.8793249e+00\n 1.6280484e+00 -1.3556956e+00]\n [ 1.0236620e+00 1.2082614e+00 -1.1159892e+00 3.5460442e-01\n 7.5753838e-01 -1.6626414e+00]\n [ 2.4098839e-01 3.5507340e-04 4.2838469e-01 4.9053580e-01\n -3.8020767e-03 3.8445005e-01]\n [-1.9445032e+00 -1.9613761e+00 -2.0839329e+00 -1.6497372e+00\n -1.0132294e+00 -1.5732178e-01]]"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAB8ENvdgkoTzl7SY+NWZ5PZmF8r13Wsw9FUfcvQf1BD6k+HM9HfGFvYeizL1GjoU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.03460791 0.01967089 0.16301687]\n [ 0.06088849 -0.11841888 0.09978192]\n [-0.10755745 0.12984096 0.05956329]\n [-0.06540129 -0.09991937 0.2608511 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9f+ERJ2+wmMAWyUSwSMAXSUR0CgfzJaRp1zdX2UKGgGR7+/I3irDIikaAdLAmgIR0Cgfut2s7uEdX2UKGgGR7+zphWo3rD7aAdLAmgIR0CgfvK3/givdX2UKGgGR7/HTw2ETQE7aAdLA2gIR0Cgf8zhP0qZdX2UKGgGR7/LO58Sf16FaAdLA2gIR0Cgf4WMCLdfdX2UKGgGR7/TB6KLsKLLaAdLA2gIR0Cgfz3BYV7AdX2UKGgGR7/B4wAU+LWJaAdLAmgIR0Cgf49n003wdX2UKGgGR7/IjD8+A3DOaAdLA2gIR0CgfwCEHt4SdX2UKGgGR7/QEU0vXbudaAdLA2gIR0Cgf9qubI91dX2UKGgGR7/SU+9rXUYsaAdLA2gIR0Cgf0tpmEoOdX2UKGgGR7/IyqMm4RVZaAdLA2gIR0Cgf5o7FKkEdX2UKGgGR7+49bHIZIhAaAdLAmgIR0Cgf1KSowVTdX2UKGgGR7/NYbKifxtpaAdLA2gIR0CgfwuearmydX2UKGgGR7/HdpItlI3BaAdLA2gIR0Cgf+h8YyfudX2UKGgGR7++717IDHOsaAdLAmgIR0Cgf6SMkyDadX2UKGgGR7/ApNsWO6uoaAdLAmgIR0Cgf1zEzfrKdX2UKGgGR7/BadMCcPOIaAdLAmgIR0Cgf+/z8P4EdX2UKGgGR7/M8QqZtvXLaAdLA2gIR0CgfxmwJPZadX2UKGgGR7/SO1OTJQtSaAdLA2gIR0Cgf7A75mAcdX2UKGgGR7/N6eGwiaAnaAdLA2gIR0Cgf2hzmwJPdX2UKGgGR7+6HTI/7iyZaAdLAmgIR0CgfyGbCrLhdX2UKGgGR7/LT9bX6InCaAdLA2gIR0Cgf/5s9B8hdX2UKGgGR7/NU+9rXUYsaAdLA2gIR0Cgf740EX+EdX2UKGgGR7/Q2nbZezD5aAdLA2gIR0Cgf3aFmFrVdX2UKGgGR7/hICuEEkjYaAdLBGgIR0CgfzMc6vJSdX2UKGgGR7/dTKT0QK8daAdLBGgIR0CggA08mrsCdX2UKGgGR7/IsunMt9QXaAdLA2gIR0Cgf8vJRwZPdX2UKGgGR7/Dqi48U21laAdLAmgIR0CgfzzdtVJddX2UKGgGR7/dkN4JNTLoaAdLBGgIR0Cgf4eMqBmPdX2UKGgGR7/I925hBqsVaAdLA2gIR0CggBqIJqqPdX2UKGgGR7/EstCiRGMGaAdLAmgIR0Cgf0QTEit8dX2UKGgGR7/I3AmAskIHaAdLA2gIR0Cgf9c1XNkfdX2UKGgGR7/BFYuCf6GhaAdLAmgIR0Cgf49sJpnIdX2UKGgGR7/JKe05U96kaAdLA2gIR0CggCjsD4gzdX2UKGgGR7+4HKOktVaPaAdLAmgIR0Cgf+GcOLBLdX2UKGgGR7/KWFev6j33aAdLA2gIR0Cgf1KxcE/0dX2UKGgGR7+za37UG3WnaAdLAmgIR0Cgf+jc/MW5dX2UKGgGR7/adGy5Zr57aAdLBGgIR0Cgf6FHz6JqdX2UKGgGR7/HIbwSamXPaAdLA2gIR0CggDRtpEhJdX2UKGgGR7/RZQHiWE9MaAdLA2gIR0Cgf13zlLezdX2UKGgGR7+i2+fywwCbaAdLAWgIR0CggDhNdqtYdX2UKGgGR7+9gmZ3LV4HaAdLAmgIR0Cgf/Dopx3ndX2UKGgGR7/V876pHZsbaAdLA2gIR0Cgf68rRSgodX2UKGgGR7/RcwxnFo+OaAdLA2gIR0Cgf2u0LMLXdX2UKGgGR7/RAzYVZcLSaAdLA2gIR0CggEXUpd8idX2UKGgGR7/RRISUTtb+aAdLA2gIR0Cgf/6SLZSOdX2UKGgGR7+9TZQHiWE9aAdLAmgIR0CggE2K/EfldX2UKGgGR7/gX7tRekYXaAdLBGgIR0Cgf75B9kSVdX2UKGgGR7/GDbrTpgTiaAdLA2gIR0Cgf3dTYNAkdX2UKGgGR7/OC04R28qXaAdLA2gIR0CggAzSLIgedX2UKGgGR7+0/SpiqhlEaAdLAmgIR0CggFgEEC/5dX2UKGgGR7/Ijt5UtI07aAdLA2gIR0Cgf8xAbADadX2UKGgGR7/QS9ugpSaWaAdLA2gIR0Cgf4VdHDrJdX2UKGgGR7/Pg4OtnwocaAdLA2gIR0CggBgm7aqTdX2UKGgGR7/EiTt9hJAdaAdLAmgIR0Cgf4zuWrwOdX2UKGgGR7/XXnQpnYg8aAdLBGgIR0CggGoClrM1dX2UKGgGR7/AGjbi6xxDaAdLAmgIR0CggCKveP7vdX2UKGgGR7/QCjUNKAavaAdLA2gIR0Cgf9sNDtw8dX2UKGgGR7+eHJtBOYY0aAdLAWgIR0Cgf960Y0l7dX2UKGgGR7/AZtNzr/sFaAdLAmgIR0CggCpiy6czdX2UKGgGR7/UJ8OTaCcxaAdLA2gIR0CggHWFN+LFdX2UKGgGR7/aUmD15B1LaAdLBGgIR0Cgf58ifQKKdX2UKGgGR7+yIhyKekHlaAdLAmgIR0CggH+23KB/dX2UKGgGR7/QVFQVKwpwaAdLBGgIR0Cgf/Bp5/smdX2UKGgGR7/cXyRSxZ+yaAdLBGgIR0CggDwFC9h7dX2UKGgGR7/EHt4RmK64aAdLA2gIR0Cgf6003wTedX2UKGgGR7/AIGhVU+9raAdLAmgIR0CggIdWhh6TdX2UKGgGR7/Mt5D7ZWaMaAdLA2gIR0Cgf/vPcBU8dX2UKGgGR7+xOxjawljWaAdLAmgIR0CggI7/n4fwdX2UKGgGR7/SRoRIz3yqaAdLA2gIR0CggEfJV81GdX2UKGgGR7/MzQeFL39KaAdLA2gIR0Cgf7kTg2qDdX2UKGgGR7+nixVyWAwxaAdLAWgIR0CggJXbM5fddX2UKGgGR7+3z4DcM3IdaAdLAmgIR0CggFIK+i8GdX2UKGgGR7/N0IToMa0haAdLA2gIR0CggApDE3sHdX2UKGgGR7+4bbUPQOWjaAdLAmgIR0Cgf8OlGgBcdX2UKGgGR7/R+36Q/5ckaAdLA2gIR0CggKEOiFj/dX2UKGgGR7/Iojv/io87aAdLA2gIR0CggF1eBxxUdX2UKGgGR7+7fDUExIrfaAdLAmgIR0CggKssQNCrdX2UKGgGR7/ak7wKBun/aAdLBGgIR0CggBvU8V59dX2UKGgGR7/gKrJbMX7+aAdLBGgIR0Cgf9UEHMUzdX2UKGgGR7/E76Hj6vaDaAdLAmgIR0CggGeeWfK7dX2UKGgGR7+1eRgZ0jkdaAdLAmgIR0CggCRmseXBdX2UKGgGR7/SSJj2Bas7aAdLA2gIR0CggLd1MdtEdX2UKGgGR7/LkPMB6rvLaAdLA2gIR0Cgf+FvAGjcdX2UKGgGR7/HhYNiH6/JaAdLA2gIR0CggHRb0OEvdX2UKGgGR7/OrT6SDAaeaAdLA2gIR0CggMW4Vh1DdX2UKGgGR7+4PSUkfLcLaAdLAmgIR0CggH5owmE5dX2UKGgGR7/co7FKkEcLaAdLBGgIR0CggDatT1kEdX2UKGgGR7/U3KSxJNCaaAdLA2gIR0Cgf+/JeVs2dX2UKGgGR7+XZ5AyEcsEaAdLAWgIR0CggDphWo3rdX2UKGgGR7+/FDOTq0MPaAdLAmgIR0CggM2LYPGydX2UKGgGR7+8i9qUNayKaAdLAmgIR0CggIYzrNW3dX2UKGgGR7+6OktVaOghaAdLAmgIR0CggEHrhR64dX2UKGgGR7/FHz6JqIrOaAdLA2gIR0Cgf/ry1/lRdX2UKGgGR7/ICU5dWyTqaAdLA2gIR0CggNtSAH3UdX2UKGgGR7/AnfEXLvCuaAdLAmgIR0CggAUngHeKdX2UKGgGR7/Y/wy6+WWyaAdLBGgIR0CggJfCqIacdX2UKGgGR7+76tT1kDp1aAdLAmgIR0CggOLO7g89dX2UKGgGR7/a96C17Y03aAdLBGgIR0CggFN/FzdUdX2UKGgGR7+oQHzH0btJaAdLAWgIR0CggFc5CF9KdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "", ":serialized:": "gAWVYwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBaMBGZ1bmOUjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-6.6.56+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Nov 10 10:07:59 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.29.0", "OpenAI Gym": "0.25.2"}}