File size: 40,378 Bytes
f6c1e7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
# coding=utf-8
# Copyright 2025 SparkAudio & The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for SparkTTS. Combines text tokenization and audio feature extraction/processing.
"""

import os # Needed for save_pretrained
import re # For decoding
import torch
import numpy as np
import soundfile as sf # For audio loading
import soxr # For resampling

from pathlib import Path
from typing import Optional, Union, List, Dict, Tuple, Any

from transformers.processing_utils import ProcessorMixin
from transformers.tokenization_utils_base import BatchEncoding # Return type hint
from transformers.feature_extraction_utils import BatchFeature # Return type hint
from transformers.models.auto.tokenization_auto import AutoTokenizer
from transformers.models.wav2vec2.feature_extraction_wav2vec2 import Wav2Vec2FeatureExtractor
from transformers.utils import logging, PushToHubMixin # Added PushToHubMixin
from numpy.lib.stride_tricks import sliding_window_view
import soxr
import soundfile
import random

# Import custom config if needed for defaults
from .configuration_spark_tts import SparkTTSConfig

logger = logging.get_logger(__name__)


# =============================================================================
# >> START: PASTE CODE FROM sparktts/utils/* HERE <<
# =============================================================================
# IMPORTANT: Utility functions needed for processing (audio loading, token parsing)
# must be defined or imported here.

# --- Paste sparktts/utils/audio.py content here ---

def audio_volume_normalize(audio: np.ndarray, coeff: float = 0.2) -> np.ndarray:
    """
    Normalize the volume of an audio signal.

    Parameters:
        audio (numpy array): Input audio signal array.
        coeff (float): Target coefficient for normalization, default is 0.2.

    Returns:
        numpy array: The volume-normalized audio signal.
    """
    # Sort the absolute values of the audio signal
    temp = np.sort(np.abs(audio))

    # If the maximum value is less than 0.1, scale the array to have a maximum of 0.1
    if temp[-1] < 0.1:
        scaling_factor = max(
            temp[-1], 1e-3
        )  # Prevent division by zero with a small constant
        audio = audio / scaling_factor * 0.1

    # Filter out values less than 0.01 from temp
    temp = temp[temp > 0.01]
    L = temp.shape[0]  # Length of the filtered array

    # If there are fewer than or equal to 10 significant values, return the audio without further processing
    if L <= 10:
        return audio

    # Compute the average of the top 10% to 1% of values in temp
    volume = np.mean(temp[int(0.9 * L) : int(0.99 * L)])

    # Normalize the audio to the target coefficient level, clamping the scale factor between 0.1 and 10
    audio = audio * np.clip(coeff / volume, a_min=0.1, a_max=10)

    # Ensure the maximum absolute value in the audio does not exceed 1
    max_value = np.max(np.abs(audio))
    if max_value > 1:
        audio = audio / max_value

    return audio


def load_audio(
    adfile: Path,
    sampling_rate: int = None,
    length: int = None,
    volume_normalize: bool = False,
    segment_duration: int = None,
) -> np.ndarray:
    r"""Load audio file with target sampling rate and lsength

    Args:
        adfile (Path): path to audio file.
        sampling_rate (int, optional): target sampling rate. Defaults to None.
        length (int, optional): target audio length. Defaults to None.
        volume_normalize (bool, optional): whether perform volume normalization. Defaults to False.
        segment_duration (int): random select a segment with duration of {segment_duration}s.
                                Defualt to None which means the whole audio will be used.

    Returns:
        audio (np.ndarray): audio
    """

    audio, sr = soundfile.read(adfile)
    if len(audio.shape) > 1:
        audio = audio[:, 0]

    if sampling_rate is not None and sr != sampling_rate:
        audio = soxr.resample(audio, sr, sampling_rate, quality="VHQ")
        sr = sampling_rate

    if segment_duration is not None:
        seg_length = int(sr * segment_duration)
        audio = random_select_audio_segment(audio, seg_length)

    # Audio volume normalize
    if volume_normalize:
        audio = audio_volume_normalize(audio)
    # check the audio length
    if length is not None:
        assert abs(audio.shape[0] - length) < 1000
        if audio.shape[0] > length:
            audio = audio[:length]
        else:
            audio = np.pad(audio, (0, int(length - audio.shape[0])))
    return audio


def random_select_audio_segment(audio: np.ndarray, length: int) -> np.ndarray:
    """get an audio segment given the length

    Args:
        audio (np.ndarray):
        length (int): audio length = sampling_rate * duration
    """
    if audio.shape[0] < length:
        audio = np.pad(audio, (0, int(length - audio.shape[0])))
    start_index = random.randint(0, audio.shape[0] - length)
    end_index = int(start_index + length)

    return audio[start_index:end_index]

def get_ref_clip(wav: np.ndarray, config) -> np.ndarray: # Needs access to config attributes
    """Get reference audio clip for speaker embedding."""
    # Make sure config has sample_rate, ref_segment_duration, latent_hop_length
    if not all(hasattr(config, attr) for attr in ['sample_rate', 'ref_segment_duration', 'latent_hop_length']):
        raise AttributeError("Config object missing required attributes for get_ref_clip")
    ref_segment_length = (
        int(config.sample_rate * config.ref_segment_duration)
        // config.latent_hop_length
        * config.latent_hop_length
    )
    wav_length = len(wav)
    if ref_segment_length > wav_length:
        wav = np.tile(wav, ref_segment_length // wav_length + 1)
    return wav[:ref_segment_length]


# --- Paste sparktts/utils/token_parser.py content here ---

TASK_TOKEN_MAP = {
    "vc": "<|task_vc|>",
    "tts": "<|task_tts|>",
    "asr": "<|task_asr|>",
    "s2s": "<|task_s2s|>",
    "t2s": "<|task_t2s|>",
    "understand": "<|task_understand|>",
    "caption": "<|task_cap|>",
    "controllable_tts": "<|task_controllable_tts|>",
    "prompt_tts": "<|task_prompt_tts|>",
    "speech_edit": "<|task_edit|>",
}

LEVELS_MAP = {
    "very_low": 0,
    "low": 1,
    "moderate": 2,
    "high": 3,
    "very_high": 4,
}

LEVELS_MAP_UI = {
    1: 'very_low',
    2: 'low',
    3: 'moderate',
    4: 'high',
    5: 'very_high'
}

GENDER_MAP = {
    "female": 0,
    "male": 1,
}

AGE_MAP = {"Child": 0, "Teenager": 1, "Youth-Adult": 2, "Middle-aged": 3, "Elderly": 4}

EMO_MAP = {
    "UNKNOWN": 0,
    "NEUTRAL": 1,
    "ANGRY": 2,
    "HAPPY": 3,
    "SAD": 4,
    "FEARFUL": 5,
    "DISGUSTED": 6,
    "SURPRISED": 7,
    "SARCASTIC": 8,
    "EXCITED": 9,
    "SLEEPY": 10,
    "CONFUSED": 11,
    "EMPHASIS": 12,
    "LAUGHING": 13,
    "SINGING": 14,
    "WORRIED": 15,
    "WHISPER": 16,
    "ANXIOUS": 17,
    "NO-AGREEMENT": 18,
    "APOLOGETIC": 19,
    "CONCERNED": 20,
    "ENUNCIATED": 21,
    "ASSERTIVE": 22,
    "ENCOURAGING": 23,
    "CONTEMPT": 24,
}


class TokenParser:
    """Turn label to special token"""

    def __init__(self):
        pass

    """Parse the attributes of a person."""

    def __init__(self):
        pass

    @staticmethod
    def age(age: str) -> str:
        """Turn age token."""
        age_id = AGE_MAP[age]
        return f"<|age_{age_id}|>"

    @staticmethod
    def gender(gender: str) -> str:
        """Turn gender token."""
        gender_id = GENDER_MAP[gender]
        return f"<|gender_{gender_id}|>"

    @staticmethod
    def mel_value(mel: int):
        """Turn special token of mel scale pitch."""
        mel = max(0, int(mel))
        mel = min(1000, int(mel))
        return f"<|pitch_value_{mel}|>"

    @staticmethod
    def mel_level(level: str):
        """Turn special token of mel level."""
        level_tag = LEVELS_MAP[level]
        return f"<|pitch_label_{level_tag}|>"

    @staticmethod
    def pitch_var_value(pitch_std: int):
        """Turn special token of pitch_std value."""
        assert isinstance(pitch_std, int)
        pitch_std = max(0, int(pitch_std))
        pitch_std = min(10, int(pitch_std))
        return f"<|pitch_var_value_{pitch_std}|>"

    @staticmethod
    def pitch_var_level(level: str):
        """Turn special token of pitch std level."""
        level_tag = LEVELS_MAP[level]
        return f"<|pitch_var_label_{level_tag}|>"

    @staticmethod
    def loudness_value(loudness: int):
        """Turn special toak of loudness value [0, 30]"""
        assert loudness >= 0
        loudness = max(0, int(loudness))
        loudness = min(30, int(loudness))
        return f"<|loudness_value_{loudness}|>"

    @staticmethod
    def loudness_level(level: str):
        """Turn special token of loudness level."""
        level_tag = LEVELS_MAP[level]
        return f"<|loudness_label_{level_tag}|>"

    @staticmethod
    def speed_value(speed: int):
        """Turn special token of speed value."""
        speed = max(0, int(speed))
        speed = min(10, int(speed))
        return f"<|speed_value_{speed}|>"

    @staticmethod
    def speed_level(level: str):
        """Turn special token of speed level."""
        level_tag = LEVELS_MAP[level]
        return f"<|speed_label_{level_tag}|>"

    @staticmethod
    def task(task: str) -> str:
        """Turn special token of task."""
        assert task in TASK_TOKEN_MAP.keys()

        return TASK_TOKEN_MAP[task]

    @staticmethod
    def emotion(emotion: str):
        emo_id = EMO_MAP[emotion]

        return f"<|emotion_{emo_id}|>"

# =============================================================================
# >> END: PASTE CODE FROM sparktts/utils/* HERE <<
# =============================================================================


class SparkTTSProcessor(ProcessorMixin, PushToHubMixin): # Added PushToHubMixin
    r"""
    Constructs a SparkTTS processor which wraps a text tokenizer and relevant audio processing logic.

    Args:
        tokenizer ([`PreTrainedTokenizer`]):
            An instance of [`PreTrainedTokenizer`]. This handles the text tokenization for the LLM.
        feature_extractor ([`Wav2Vec2FeatureExtractor`]):
            An instance of [`Wav2Vec2FeatureExtractor`]. Although Wav2Vec2 features are extracted
            within the model's `tokenize_audio`, the extractor's configuration (like sampling rate)
            is useful, and it aligns with the ProcessorMixin pattern.
        config ([`SparkTTSConfig`], *optional*):
            An instance of [`SparkTTSConfig`] to access configuration parameters like sample rate.
    """
    attributes = ["tokenizer", "feature_extractor"]
    tokenizer_class = "AutoTokenizer"
    feature_extractor_class = "Wav2Vec2FeatureExtractor" # Keep for consistency

    def __init__(self, tokenizer, feature_extractor, config: Optional[SparkTTSConfig] = None, **kwargs):
        super().__init__(tokenizer=tokenizer, feature_extractor=feature_extractor, **kwargs)
        self.model = None
        self.config = config
        # Set sampling rate
        if config and hasattr(config, 'sample_rate'):
             self.sampling_rate = config.sample_rate
        elif feature_extractor and hasattr(feature_extractor, 'sampling_rate'):
             self.sampling_rate = feature_extractor.sampling_rate
        else:
             self.sampling_rate = 16000
             logger.warning(f"Could not determine sampling rate. Defaulting to {self.sampling_rate} Hz.")

        # # Ensure tokenizer pad token
        # if self.tokenizer.pad_token is None:
        #     if self.tokenizer.eos_token is not None:
        #         logger.warning("Tokenizer does not have a pad token. Setting pad_token to eos_token.")
        #         self.tokenizer.pad_token = self.tokenizer.eos_token
        #     else:
        #          logger.warning("Tokenizer lacks pad and eos token. Adding default pad token '<|pad|>'.")
        #          self.tokenizer.add_special_tokens({'pad_token': '<|pad|>'})

    def link_model(self, model):
        """Links the processor to a SparkTTSModel instance for audio processing calls."""
        if not hasattr(model, 'tokenize_audio') or not hasattr(model, 'detokenize_audio'):
             raise TypeError("The provided model instance does not have the required 'tokenize_audio' and 'detokenize_audio' methods.")
        if not hasattr(model, 'config'):
             logger.warning("Linked model does not have a 'config' attribute. Some processor functionalities might rely on it.")

        self.model = model
        logger.info("SparkTTSModel successfully linked to the processor.")
        # Update sampling rate based on linked model's config if available
        if hasattr(model, 'config') and hasattr(model.config, 'sample_rate'):
             if self.sampling_rate != model.config.sample_rate:
                  logger.info(f"Updating processor sampling rate from {self.sampling_rate} to {model.config.sample_rate} based on linked model config.")
                  self.sampling_rate = model.config.sample_rate
             # Also update feature extractor sampling rate if it differs
             if hasattr(self, 'feature_extractor') and self.feature_extractor.sampling_rate != model.config.sample_rate:
                  logger.info(f"Updating feature_extractor sampling rate from {self.feature_extractor.sampling_rate} to {model.config.sample_rate}.")
                  self.feature_extractor.sampling_rate = model.config.sample_rate


    def __call__(
        self,
        text: str,
        prompt_speech_path: Optional[Union[str, Path]] = None,
        prompt_text: Optional[str] = None,
        gender: Optional[str] = None,
        pitch: Optional[str] = None,
        speed: Optional[str] = None,
        return_tensors: Optional[str] = "pt",
        **kwargs, # Allow passing other args like padding, truncation to tokenizer
    ) -> BatchEncoding:
        """
        Processes the input text and optional prompt audio/control parameters into a format suitable for [`SparkTTSModel`].

        Args:
            text (`str`):
                The main text to be synthesized.
            prompt_speech_path (`str` or `Path`, *optional*):
                Path to the prompt audio file for voice cloning. Required if `gender` is not set.
            prompt_text (`str`, *optional*):
                Transcript of the prompt audio. Used only in voice cloning mode.
            gender (`str`, *optional*):
                Target gender ("male" or "female") for controllable synthesis. If set, enables control mode.
            pitch (`str`, *optional*):
                Target pitch level ("very_low", "low", "moderate", "high", "very_high") for control mode. Required if `gender` is set.
            speed (`str`, *optional*):
                Target speed level ("very_low", "low", "moderate", "high", "very_high") for control mode. Required if `gender` is set.
            return_tensors (`str`, *optional*, defaults to `"pt"`):
                If set, will return tensors instead of list of python integers. Only "pt" (PyTorch) is supported currently.
            **kwargs:
                Additional arguments passed to the underlying tokenizer's `__call__` method.

        Returns:
            [`BatchEncoding`]: A dictionary containing the `input_ids` and `attention_mask` for the LLM.
            In voice cloning mode, it also includes `global_token_ids_prompt` (torch.Tensor) representing the
            global tokens extracted from the prompt audio.
        """

        global_token_ids_prompt = None # Initialize

        # Determine mode: Control TTS or Voice Cloning (Prompt TTS)
        is_control_mode = gender is not None
        is_cloning_mode = prompt_speech_path is not None and not is_control_mode

        if is_control_mode:
            # --- Controllable TTS Prompt Construction ---
            if not all([pitch, speed]):
                raise ValueError("For controllable TTS, 'gender', 'pitch', and 'speed' must all be provided.")
            if prompt_speech_path is not None:
                 logger.warning("`prompt_speech_path` provided but ignored because `gender` is set (controllable TTS mode).")

            if not all(k in GENDER_MAP for k in [gender]): # Basic check
                 raise ValueError(f"Invalid gender provided: {gender}. Must be one of {list(GENDER_MAP.keys())}")
            if not all(k in LEVELS_MAP for k in [pitch, speed]): # Basic check
                 raise ValueError(f"Invalid pitch or speed level provided. Must be one of {list(LEVELS_MAP.keys())}")

            gender_id = GENDER_MAP[gender]
            pitch_level_id = LEVELS_MAP[pitch]
            speed_level_id = LEVELS_MAP[speed]

            pitch_label_tokens = f"<|pitch_label_{pitch_level_id}|>"
            speed_label_tokens = f"<|speed_label_{speed_level_id}|>"
            gender_tokens = f"<|gender_{gender_id}|>"

            attribute_tokens = "".join([gender_tokens, pitch_label_tokens, speed_label_tokens])

            prompt_list = [
                TASK_TOKEN_MAP["controllable_tts"],
                "<|start_content|>",
                text,
                "<|end_content|>",
                "<|start_style_label|>",
                attribute_tokens,
                "<|end_style_label|>",
            ]
            prompt_string = "".join(prompt_list)

        elif is_cloning_mode:
            # --- Voice Cloning Prompt Construction ---
            if self.model is None:
                raise RuntimeError("Processor must be linked to a SparkTTSModel instance via `processor.link_model(model)` before performing voice cloning.")
            prompt_speech_path = Path(prompt_speech_path) # Ensure it's a Path object
            if not prompt_speech_path.exists():
                 raise FileNotFoundError(f"Prompt audio file not found: {prompt_speech_path}")

            # Load and process prompt audio
            try:
                model_config = self.model.config if self.model and hasattr(self.model, 'config') else self.config
                if model_config is None:
                     raise ValueError("Configuration not available in processor or linked model.")

                # Load main wav
                wav = load_audio(
                    prompt_speech_path,
                    sampling_rate=self.sampling_rate,
                    volume_normalize=getattr(model_config, 'volume_normalize', True), # Use getattr for safety
                )
                # Get reference clip
                wav_ref_np = get_ref_clip(wav, model_config) # Pass config object
                wav_ref = torch.from_numpy(wav_ref_np).unsqueeze(0).float()
                wav_tensor = torch.from_numpy(wav).unsqueeze(0).float()

                # Tokenize using the linked model's method
                # Assuming tokenize_audio returns tensors with batch dim 1: [1, N_global], [1, N_semantic]
                global_tokens_tensor, semantic_tokens_tensor = self.model.tokenize_audio(wav_tensor, wav_ref)

                # Store the global tokens tensor (with batch dim) for the output dict
                global_token_ids_prompt = global_tokens_tensor # Keep batch dim [1, N_global]

                # Convert tensors to lists of ints for string formatting
                global_token_list = global_tokens_tensor.squeeze().tolist() # Remove batch dim -> list
                semantic_token_list = semantic_tokens_tensor.squeeze().tolist() # Remove batch dim -> list

            except Exception as e:
                logger.error(f"Error processing prompt audio {prompt_speech_path}: {e}")
                import traceback
                traceback.print_exc()
                raise

            # ==============================================================
            # CORRECTED TOKEN STRING FORMATTING
            # ==============================================================
            # Create individual token strings for each ID
            global_tokens_str = "".join([f"<|bicodec_global_{gid}|>" for gid in global_token_list])
            semantic_tokens_str = "".join([f"<|bicodec_semantic_{sid}|>" for sid in semantic_token_list])
            # ==============================================================
            
            # Construct prompt list based on presence of prompt_text
            if prompt_text is not None and prompt_text.strip(): # Check if prompt_text is meaningful
                logger.info("Using prompt text in voice cloning prompt.")
                prompt_list = [
                    TASK_TOKEN_MAP["tts"], # Or maybe TASK_TOKEN_MAP["prompt_tts"]? Check original logic. Assuming "tts".
                    "<|start_content|>",
                    prompt_text, # Transcript first
                    text,        # Then target text
                    "<|end_content|>",
                    "<|start_global_token|>",
                    global_tokens_str,
                    "<|end_global_token|>",
                    "<|start_semantic_token|>",
                    semantic_tokens_str,
                    # "<|end_semantic_token|>", # Original code didn't have this marker here
                ]
            else:
                 # Simpler prompt without semantic tokens if no transcript provided
                 logger.info("No prompt text provided, using text-only voice cloning prompt.")
                 prompt_list = [
                    TASK_TOKEN_MAP["tts"], # Or maybe TASK_TOKEN_MAP["prompt_tts"]?
                    "<|start_content|>",
                    text, # Only target text
                    "<|end_content|>",
                    "<|start_global_token|>",
                    global_tokens_str,
                    "<|end_global_token|>",
                 ]
            prompt_string = "".join(prompt_list)
            logger.debug(f"Generated prompt string (cloning): {prompt_string[:200]}...") # Log start of prompt

        else:
            raise ValueError("Invalid input combination. Either provide `prompt_speech_path` for cloning or (`gender`, `pitch`, `speed`) for control.")

        # --- Tokenize the final prompt string ---
        # print(f"Tokenizing prompt: {prompt_string}")
        inputs = self.tokenizer(
            prompt_string,
            return_tensors=return_tensors,
            padding=kwargs.get("padding", False), # Often False for generation prompts unless batching > 1
            truncation=kwargs.get("truncation", True),
            max_length=kwargs.get("max_length", self.tokenizer.model_max_length),
            add_special_tokens=kwargs.get("add_special_tokens", True), # Usually True unless handled manually
            return_attention_mask=kwargs.get("return_attention_mask", True), # Need attention mask
            **{k: v for k, v in kwargs.items() if k not in ["padding", "truncation", "max_length", "add_special_tokens", "return_attention_mask"]}
        )
        logger.debug(f"Tokenized input_ids shape: {inputs['input_ids'].shape}")


        # Add the prompt's global tokens (as tensor with batch dim) to the output if in cloning mode
        if is_cloning_mode and global_token_ids_prompt is not None:
            if return_tensors == "pt":
                 inputs["global_token_ids_prompt"] = global_token_ids_prompt # Already has batch dim [1, N_global]
            else:
                 # Handle non-tensor return if necessary
                 inputs["global_token_ids_prompt"] = global_token_ids_prompt.tolist()

        return inputs


    def decode(
        self,
        generated_ids: torch.Tensor,
        global_token_ids_prompt: Optional[torch.Tensor] = None,
        input_ids_len: Optional[int] = None,
        skip_special_tokens: bool = True,
    ) -> Dict[str, Any]:
        """
        Decodes the generated token IDs from [`SparkTTSModel`] into an audio waveform.

        Args:
            generated_ids (`torch.Tensor`):
                Tensor of token IDs generated by `model.generate()`, including the input prompt part. Shape [B, seq_len].
            global_token_ids_prompt (`torch.Tensor`, *optional*):
                The global tokens extracted from the prompt audio during the `__call__` step (for voice cloning).
                Shape [B, N_global]. Required if the generation was for voice cloning.
            input_ids_len (`int`, *optional*):
                The length of the original input prompt `input_ids` fed to `model.generate()`. Required to
                correctly isolate the newly generated tokens.
            skip_special_tokens (`bool`, *optional*, defaults to `True`):
                Whether to skip special tokens during the text decoding step (used to extract audio tokens).

        Returns:
            Dict[str, Any]: A dictionary containing:
                - "audio": The decoded audio waveform as a NumPy array. Shape [T_audio] (if B=1) or [B, T_audio].
                - "sampling_rate": The sampling rate of the audio.
        """
        if self.model is None:
            raise RuntimeError("Processor must be linked to a SparkTTSModel instance via `processor.link_model(model)` before decoding.")
        if input_ids_len is None:
            raise ValueError("`input_ids_len` (length of the prompt input_ids) must be provided for decoding.")

        # --- Isolate generated part and decode text ---
        # Assumes generated_ids has shape [B, full_seq_len]
        # Handle case where generated sequence is shorter than prompt (shouldn't happen with max_new_tokens > 0)
        if generated_ids.shape[1] < input_ids_len:
             logger.warning(f"Generated sequence length ({generated_ids.shape[1]}) is shorter than input prompt length ({input_ids_len}). Decoding might be incorrect.")
             output_only_ids = generated_ids[:, input_ids_len:] # Will be empty if equal
        else:
             output_only_ids = generated_ids[:, input_ids_len:]


        # Decode the generated part to find audio tokens
        # Need to handle batch decoding if B > 1
        # print("decode token", self.tokenizer.batch_decode(output_only_ids, skip_special_tokens=False))
        decoded_texts = self.tokenizer.batch_decode(output_only_ids, skip_special_tokens=skip_special_tokens)

        # --- Extract Audio Tokens ---
        # Handle batch processing correctly
        batch_size = generated_ids.shape[0]
        all_semantic_ids = []
        all_global_tokens = []
        successful_indices = [] # Keep track of which batch items were successful

        for i in range(batch_size):
            decoded_text = decoded_texts[i]
            current_semantic_ids = None
            current_global_tokens = None

            # Extract semantic tokens
            try:
                pred_semantic_indices = [int(token) for token in re.findall(r"bicodec_semantic_(\d+)", decoded_text)]
                if not pred_semantic_indices:
                    logger.warning(f"Batch item {i}: No semantic tokens found in decoded text: '{decoded_text[:200]}...'")
                    continue # Skip this item

                current_semantic_ids = torch.tensor(pred_semantic_indices).long() # Shape [N_semantic]
            except Exception as e:
                logger.error(f"Batch item {i}: Error parsing semantic tokens from: '{decoded_text[:200]}...'. Error: {e}")
                continue # Skip this item

            # Determine global tokens
            if global_token_ids_prompt is not None:
                # Cloning mode: Use the provided prompt global tokens for this batch item
                if global_token_ids_prompt.shape[0] != batch_size:
                     raise ValueError(f"Batch size mismatch: generated_ids has {batch_size}, but global_token_ids_prompt has {global_token_ids_prompt.shape[0]}.")
                current_global_tokens = global_token_ids_prompt[i] # Shape [N_global]
            else:
                # Control mode: Extract global tokens from the generated text
                try:
                    pred_global_indices = [int(token) for token in re.findall(r"bicodec_global_(\d+)", decoded_text)]
                    if not pred_global_indices:
                        logger.warning(f"Batch item {i}: No global tokens found in decoded text for control mode: '{decoded_text[:200]}...'")
                        continue # Skip this item

                    current_global_tokens = torch.tensor(pred_global_indices).long() # Shape [N_global]

                except Exception as e:
                    logger.error(f"Batch item {i}: Error parsing global tokens from: '{decoded_text[:200]}...'. Error: {e}")
                    continue # Skip this item

            # If both tokens extracted successfully
            all_semantic_ids.append(current_semantic_ids)
            all_global_tokens.append(current_global_tokens)
            successful_indices.append(i)

        if not successful_indices:
            logger.error("Failed to extract audio tokens for any item in the batch.")
            return {"audio": np.array([], dtype=np.float32), "sampling_rate": self.sampling_rate}

        # Pad sequences to the max length within the successful batch items for batch detokenization
        # Note: BiCodec might not support batching if sequences have different lengths. Check its implementation.
        # Assuming BiCodec *can* handle batches if padded (or if lengths are naturally equal).
        # This padding might be unnecessary if BiCodec handles variable lengths or if B=1 anyway.
        # For now, let's assume B=1 was handled correctly and skip complex padding.
        if batch_size > 1 and len(successful_indices) < batch_size:
             logger.warning(f"Only successfully decoded {len(successful_indices)} out of {batch_size} batch items.")
             # Further processing might need to handle only the successful items.

        # Let's proceed assuming B=1 or BiCodec handles batches appropriately.
        # Stack the successful tokens.
        try:
            # Need to ensure tensors have the same length before stacking if BiCodec requires it.
            # If BiCodec handles variable length, stacking might not be needed, just loop and call detokenize.
            # Let's assume B=1 for simplicity of the example, matching original code's likely behavior.
            if len(successful_indices) != 1:
                 raise NotImplementedError("Batch decoding (B > 1) requires verification of BiCodec's batch handling and potentially padding.")

            final_semantic_ids = all_semantic_ids[0].unsqueeze(0) # Add batch dim [1, N_semantic]
            final_global_tokens = all_global_tokens[0].unsqueeze(0) # Add batch dim [1, N_global]

        except IndexError: # Should not happen if successful_indices is not empty
             logger.error("Internal error during token batch preparation.")
             return {"audio": np.array([], dtype=np.float32), "sampling_rate": self.sampling_rate}


        # --- Detokenize Audio ---
        try:
            # Call the linked model's detokenize method
            # print(f"DEBUG: Detokenizing audio with global tokens {final_global_tokens.shape}, semantic tokens {final_semantic_ids.shape}")
            output_wav = self.model.detokenize_audio(final_global_tokens, final_semantic_ids)
            # detokenize_audio now returns numpy array float32 in [-1, 1]

            # Optional: Double-check dtype here if needed, but should be handled by detokenize_audio now
            # if output_wav.dtype != np.float32:
            #    logger.warning(f"Audio dtype after detokenize is {output_wav.dtype}. Converting to float32.")
            #    output_wav = output_wav.astype(np.float32)
            # output_wav = np.clip(output_wav, -1.0, 1.0) # Clipping done in detokenize_audio

        except Exception as e:
             logger.error(f"Error during audio detokenization: {e}")
             import traceback
             traceback.print_exc()
             raise RuntimeError("Audio detokenization failed.") from e

        return {"audio": output_wav, "sampling_rate": self.sampling_rate}


    @classmethod
    def from_pretrained(
        cls,
        pretrained_model_name_or_path: Union[str, os.PathLike],
        cache_dir: Optional[Union[str, os.PathLike]] = None,
        force_download: bool = False,
        local_files_only: bool = False,
        token: Optional[Union[str, bool]] = None,
        revision: str = "main",
        trust_remote_code: bool = False, # Allow passing this, needed for config potentially
        **kwargs,
    ):
        r"""
        Instantiate a SparkTTSProcessor from pretrained components.
        """
        # Pop specific kwargs for this method
        config = kwargs.pop("config", None) # Allow passing config explicitly

        # --- 1. Load Config (to find component paths) ---
        # We need the config even if the processor doesn't store it permanently,
        # just to find where the tokenizer/feature_extractor live.
        loaded_config = None
        if not isinstance(config, SparkTTSConfig):
            try:
                # Load the specific config class
                loaded_config = SparkTTSConfig.from_pretrained(
                    pretrained_model_name_or_path,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    local_files_only=local_files_only,
                    token=token,
                    revision=revision,
                    trust_remote_code=trust_remote_code, # Config might be custom
                    **kwargs, # Pass relevant kwargs
                )
            except Exception as e:
                logger.warning(
                    f"Could not load SparkTTSConfig from {pretrained_model_name_or_path}. "
                    f"Attempting to load components from default relative paths ('LLM', 'wav2vec2-large-xlsr-53'). Error: {e}"
                )
                loaded_config = None # Fallback
        else:
             # Config object was passed directly
             loaded_config = config


        # --- 2. Determine Component Paths ---
        llm_tokenizer_path_or_id = "./LLM" # Default relative path
        w2v_processor_path_or_id = "./wav2vec2-large-xlsr-53" # Default relative path

        if loaded_config:
            llm_tokenizer_path_or_id = getattr(loaded_config, 'llm_model_name_or_path', llm_tokenizer_path_or_id)
            w2v_processor_path_or_id = getattr(loaded_config, 'wav2vec2_model_name_or_path', w2v_processor_path_or_id)

        # The component `from_pretrained` methods handle resolving these paths/IDs
        # whether they are relative subfolders of `pretrained_model_name_or_path`
        # or separate Hub IDs.

        # --- 3. Load Components ---
        # Pass down relevant kwargs for loading components
        component_loading_kwargs = {
             "cache_dir": cache_dir,
             "force_download": force_download,
             "local_files_only": local_files_only,
             "token": token,
             "revision": revision,
             **kwargs # Pass other user kwargs
        }
        try:
            # Tokenizer might require trust_remote_code if its class is custom
            tokenizer = AutoTokenizer.from_pretrained(
                pretrained_model_name_or_path, # Main path
                subfolder=llm_tokenizer_path_or_id.lstrip('./'), # Specify subfolder relative to main path
                trust_remote_code=trust_remote_code,
                **component_loading_kwargs
            )
        except Exception as e:
            # Fallback: try loading directly using the path/id from config if different
            if llm_tokenizer_path_or_id != "./LLM":
                 try:
                      logger.info(f"Retrying tokenizer load directly from: {llm_tokenizer_path_or_id}")
                      tokenizer = AutoTokenizer.from_pretrained(
                           llm_tokenizer_path_or_id,
                           trust_remote_code=trust_remote_code,
                           **component_loading_kwargs
                      )
                 except Exception as e2:
                      raise OSError(f"Could not load tokenizer using main path + subfolder or directly from '{llm_tokenizer_path_or_id}'. Error: {e2}") from e
            else:
                 raise OSError(f"Could not load tokenizer from subfolder '{llm_tokenizer_path_or_id}' within '{pretrained_model_name_or_path}'. Error: {e}")


        try:
            # Feature extractor usually doesn't need trust_remote_code
            feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
                pretrained_model_name_or_path, # Main path
                subfolder=w2v_processor_path_or_id.lstrip('./'), # Specify subfolder relative to main path
                **component_loading_kwargs
            )
        except Exception as e:
             # Fallback: try loading directly using the path/id from config if different
            if w2v_processor_path_or_id != "./wav2vec2-large-xlsr-53":
                 try:
                      logger.info(f"Retrying feature extractor load directly from: {w2v_processor_path_or_id}")
                      feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
                           w2v_processor_path_or_id,
                           **component_loading_kwargs
                      )
                 except Exception as e2:
                      raise OSError(f"Could not load feature extractor using main path + subfolder or directly from '{w2v_processor_path_or_id}'. Error: {e2}") from e
            else:
                 raise OSError(f"Could not load feature extractor from subfolder '{w2v_processor_path_or_id}' within '{pretrained_model_name_or_path}'. Error: {e}")


        # --- 4. Instantiate processor ---
        # Pass the potentially loaded config object (or None)
        return cls(tokenizer=tokenizer, feature_extractor=feature_extractor, config=loaded_config)

    
    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
        push_to_hub: bool = False,
        **kwargs,
    ):
        """
        Save the processor's state (tokenizer and feature extractor files) to a directory.

        Args:
            save_directory (`str` or `os.PathLike`):
                Directory where the processor files will be saved.
            push_to_hub (`bool`, *optional*, defaults to `False`):
                Whether or not to push your model to the Hugging Face Hub after saving it.
            **kwargs:
                Additional key word arguments passed along to the `push_to_hub` method.
        """
        save_directory = Path(save_directory)
        save_directory.mkdir(parents=True, exist_ok=True)

        # Save tokenizer
        self.tokenizer.save_pretrained(str(save_directory), **kwargs)

        # Save feature extractor
        self.feature_extractor.save_pretrained(str(save_directory), **kwargs)

        # Save the main processor config (if it exists and has relevant info)
        # Note: The SparkTTSConfig is usually saved with the *model*, not the processor.
        # However, if the processor holds specific config needed for reloading *itself*,
        # it could be saved here. Usually, relying on the model's config is sufficient.
        # if self.config:
        #    self.config.save_pretrained(str(save_directory)) # Example if needed

        logger.info(f"Processor components saved in {save_directory}")

        if push_to_hub:
             # Commit message and other hub kwargs can be passed via **kwargs
             commit_message = kwargs.pop("commit_message", "Save processor")
             return self.push_to_hub(save_directory, commit_message=commit_message, **kwargs)

        return str(save_directory) # Return path consistent with Mixin