DreamPerson commited on
Commit
3e29ca5
·
1 Parent(s): 39b9792

Delete dpm2mv2

Browse files
dpm2mv2/sampling.py DELETED
@@ -1,687 +0,0 @@
1
- import math
2
-
3
- from scipy import integrate
4
- import torch
5
- from torch import nn
6
- from torchdiffeq import odeint
7
- import torchsde
8
- from tqdm.auto import trange, tqdm
9
-
10
- from . import utils
11
-
12
-
13
- def append_zero(x):
14
- return torch.cat([x, x.new_zeros([1])])
15
-
16
-
17
- def get_sigmas_karras(n, sigma_min, sigma_max, rho=7., device='cpu'):
18
- """Constructs the noise schedule of Karras et al. (2022)."""
19
- ramp = torch.linspace(0, 1, n)
20
- min_inv_rho = sigma_min ** (1 / rho)
21
- max_inv_rho = sigma_max ** (1 / rho)
22
- sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
23
- return append_zero(sigmas).to(device)
24
-
25
-
26
- def get_sigmas_exponential(n, sigma_min, sigma_max, device='cpu'):
27
- """Constructs an exponential noise schedule."""
28
- sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), n, device=device).exp()
29
- return append_zero(sigmas)
30
-
31
-
32
- def get_sigmas_polyexponential(n, sigma_min, sigma_max, rho=1., device='cpu'):
33
- """Constructs an polynomial in log sigma noise schedule."""
34
- ramp = torch.linspace(1, 0, n, device=device) ** rho
35
- sigmas = torch.exp(ramp * (math.log(sigma_max) - math.log(sigma_min)) + math.log(sigma_min))
36
- return append_zero(sigmas)
37
-
38
-
39
- def get_sigmas_vp(n, beta_d=19.9, beta_min=0.1, eps_s=1e-3, device='cpu'):
40
- """Constructs a continuous VP noise schedule."""
41
- t = torch.linspace(1, eps_s, n, device=device)
42
- sigmas = torch.sqrt(torch.exp(beta_d * t ** 2 / 2 + beta_min * t) - 1)
43
- return append_zero(sigmas)
44
-
45
-
46
- def to_d(x, sigma, denoised):
47
- """Converts a denoiser output to a Karras ODE derivative."""
48
- return (x - denoised) / utils.append_dims(sigma, x.ndim)
49
-
50
-
51
- def get_ancestral_step(sigma_from, sigma_to, eta=1.):
52
- """Calculates the noise level (sigma_down) to step down to and the amount
53
- of noise to add (sigma_up) when doing an ancestral sampling step."""
54
- if not eta:
55
- return sigma_to, 0.
56
- sigma_up = min(sigma_to, eta * (sigma_to ** 2 * (sigma_from ** 2 - sigma_to ** 2) / sigma_from ** 2) ** 0.5)
57
- sigma_down = (sigma_to ** 2 - sigma_up ** 2) ** 0.5
58
- return sigma_down, sigma_up
59
-
60
-
61
- def default_noise_sampler(x):
62
- return lambda sigma, sigma_next: torch.randn_like(x)
63
-
64
-
65
- class BatchedBrownianTree:
66
- """A wrapper around torchsde.BrownianTree that enables batches of entropy."""
67
-
68
- def __init__(self, x, t0, t1, seed=None, **kwargs):
69
- t0, t1, self.sign = self.sort(t0, t1)
70
- w0 = kwargs.get('w0', torch.zeros_like(x))
71
- if seed is None:
72
- seed = torch.randint(0, 2 ** 63 - 1, []).item()
73
- self.batched = True
74
- try:
75
- assert len(seed) == x.shape[0]
76
- w0 = w0[0]
77
- except TypeError:
78
- seed = [seed]
79
- self.batched = False
80
- self.trees = [torchsde.BrownianTree(t0, w0, t1, entropy=s, **kwargs) for s in seed]
81
-
82
- @staticmethod
83
- def sort(a, b):
84
- return (a, b, 1) if a < b else (b, a, -1)
85
-
86
- def __call__(self, t0, t1):
87
- t0, t1, sign = self.sort(t0, t1)
88
- w = torch.stack([tree(t0, t1) for tree in self.trees]) * (self.sign * sign)
89
- return w if self.batched else w[0]
90
-
91
-
92
- class BrownianTreeNoiseSampler:
93
- """A noise sampler backed by a torchsde.BrownianTree.
94
-
95
- Args:
96
- x (Tensor): The tensor whose shape, device and dtype to use to generate
97
- random samples.
98
- sigma_min (float): The low end of the valid interval.
99
- sigma_max (float): The high end of the valid interval.
100
- seed (int or List[int]): The random seed. If a list of seeds is
101
- supplied instead of a single integer, then the noise sampler will
102
- use one BrownianTree per batch item, each with its own seed.
103
- transform (callable): A function that maps sigma to the sampler's
104
- internal timestep.
105
- """
106
-
107
- def __init__(self, x, sigma_min, sigma_max, seed=None, transform=lambda x: x):
108
- self.transform = transform
109
- t0, t1 = self.transform(torch.as_tensor(sigma_min)), self.transform(torch.as_tensor(sigma_max))
110
- self.tree = BatchedBrownianTree(x, t0, t1, seed)
111
-
112
- def __call__(self, sigma, sigma_next):
113
- t0, t1 = self.transform(torch.as_tensor(sigma)), self.transform(torch.as_tensor(sigma_next))
114
- return self.tree(t0, t1) / (t1 - t0).abs().sqrt()
115
-
116
-
117
- @torch.no_grad()
118
- def sample_euler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
119
- """Implements Algorithm 2 (Euler steps) from Karras et al. (2022)."""
120
- extra_args = {} if extra_args is None else extra_args
121
- s_in = x.new_ones([x.shape[0]])
122
- for i in trange(len(sigmas) - 1, disable=disable):
123
- gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
124
- eps = torch.randn_like(x) * s_noise
125
- sigma_hat = sigmas[i] * (gamma + 1)
126
- if gamma > 0:
127
- x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
128
- denoised = model(x, sigma_hat * s_in, **extra_args)
129
- d = to_d(x, sigma_hat, denoised)
130
- if callback is not None:
131
- callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
132
- dt = sigmas[i + 1] - sigma_hat
133
- # Euler method
134
- x = x + d * dt
135
- return x
136
-
137
-
138
- @torch.no_grad()
139
- def sample_euler_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
140
- """Ancestral sampling with Euler method steps."""
141
- extra_args = {} if extra_args is None else extra_args
142
- noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
143
- s_in = x.new_ones([x.shape[0]])
144
- for i in trange(len(sigmas) - 1, disable=disable):
145
- denoised = model(x, sigmas[i] * s_in, **extra_args)
146
- sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
147
- if callback is not None:
148
- callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
149
- d = to_d(x, sigmas[i], denoised)
150
- # Euler method
151
- dt = sigma_down - sigmas[i]
152
- x = x + d * dt
153
- if sigmas[i + 1] > 0:
154
- x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
155
- return x
156
-
157
-
158
- @torch.no_grad()
159
- def sample_heun(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
160
- """Implements Algorithm 2 (Heun steps) from Karras et al. (2022)."""
161
- extra_args = {} if extra_args is None else extra_args
162
- s_in = x.new_ones([x.shape[0]])
163
- for i in trange(len(sigmas) - 1, disable=disable):
164
- gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
165
- eps = torch.randn_like(x) * s_noise
166
- sigma_hat = sigmas[i] * (gamma + 1)
167
- if gamma > 0:
168
- x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
169
- denoised = model(x, sigma_hat * s_in, **extra_args)
170
- d = to_d(x, sigma_hat, denoised)
171
- if callback is not None:
172
- callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
173
- dt = sigmas[i + 1] - sigma_hat
174
- if sigmas[i + 1] == 0:
175
- # Euler method
176
- x = x + d * dt
177
- else:
178
- # Heun's method
179
- x_2 = x + d * dt
180
- denoised_2 = model(x_2, sigmas[i + 1] * s_in, **extra_args)
181
- d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
182
- d_prime = (d + d_2) / 2
183
- x = x + d_prime * dt
184
- return x
185
-
186
-
187
- @torch.no_grad()
188
- def sample_dpm_2(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
189
- """A sampler inspired by DPM-Solver-2 and Algorithm 2 from Karras et al. (2022)."""
190
- extra_args = {} if extra_args is None else extra_args
191
- s_in = x.new_ones([x.shape[0]])
192
- for i in trange(len(sigmas) - 1, disable=disable):
193
- gamma = min(s_churn / (len(sigmas) - 1), 2 ** 0.5 - 1) if s_tmin <= sigmas[i] <= s_tmax else 0.
194
- eps = torch.randn_like(x) * s_noise
195
- sigma_hat = sigmas[i] * (gamma + 1)
196
- if gamma > 0:
197
- x = x + eps * (sigma_hat ** 2 - sigmas[i] ** 2) ** 0.5
198
- denoised = model(x, sigma_hat * s_in, **extra_args)
199
- d = to_d(x, sigma_hat, denoised)
200
- if callback is not None:
201
- callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised})
202
- if sigmas[i + 1] == 0:
203
- # Euler method
204
- dt = sigmas[i + 1] - sigma_hat
205
- x = x + d * dt
206
- else:
207
- # DPM-Solver-2
208
- sigma_mid = sigma_hat.log().lerp(sigmas[i + 1].log(), 0.5).exp()
209
- dt_1 = sigma_mid - sigma_hat
210
- dt_2 = sigmas[i + 1] - sigma_hat
211
- x_2 = x + d * dt_1
212
- denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
213
- d_2 = to_d(x_2, sigma_mid, denoised_2)
214
- x = x + d_2 * dt_2
215
- return x
216
-
217
-
218
- @torch.no_grad()
219
- def sample_dpm_2_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
220
- """Ancestral sampling with DPM-Solver second-order steps."""
221
- extra_args = {} if extra_args is None else extra_args
222
- noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
223
- s_in = x.new_ones([x.shape[0]])
224
- for i in trange(len(sigmas) - 1, disable=disable):
225
- denoised = model(x, sigmas[i] * s_in, **extra_args)
226
- sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
227
- if callback is not None:
228
- callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
229
- d = to_d(x, sigmas[i], denoised)
230
- if sigma_down == 0:
231
- # Euler method
232
- dt = sigma_down - sigmas[i]
233
- x = x + d * dt
234
- else:
235
- # DPM-Solver-2
236
- sigma_mid = sigmas[i].log().lerp(sigma_down.log(), 0.5).exp()
237
- dt_1 = sigma_mid - sigmas[i]
238
- dt_2 = sigma_down - sigmas[i]
239
- x_2 = x + d * dt_1
240
- denoised_2 = model(x_2, sigma_mid * s_in, **extra_args)
241
- d_2 = to_d(x_2, sigma_mid, denoised_2)
242
- x = x + d_2 * dt_2
243
- x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
244
- return x
245
-
246
-
247
- def linear_multistep_coeff(order, t, i, j):
248
- if order - 1 > i:
249
- raise ValueError(f'Order {order} too high for step {i}')
250
- def fn(tau):
251
- prod = 1.
252
- for k in range(order):
253
- if j == k:
254
- continue
255
- prod *= (tau - t[i - k]) / (t[i - j] - t[i - k])
256
- return prod
257
- return integrate.quad(fn, t[i], t[i + 1], epsrel=1e-4)[0]
258
-
259
-
260
- @torch.no_grad()
261
- def sample_lms(model, x, sigmas, extra_args=None, callback=None, disable=None, order=4):
262
- extra_args = {} if extra_args is None else extra_args
263
- s_in = x.new_ones([x.shape[0]])
264
- sigmas_cpu = sigmas.detach().cpu().numpy()
265
- ds = []
266
- for i in trange(len(sigmas) - 1, disable=disable):
267
- denoised = model(x, sigmas[i] * s_in, **extra_args)
268
- d = to_d(x, sigmas[i], denoised)
269
- ds.append(d)
270
- if len(ds) > order:
271
- ds.pop(0)
272
- if callback is not None:
273
- callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
274
- cur_order = min(i + 1, order)
275
- coeffs = [linear_multistep_coeff(cur_order, sigmas_cpu, i, j) for j in range(cur_order)]
276
- x = x + sum(coeff * d for coeff, d in zip(coeffs, reversed(ds)))
277
- return x
278
-
279
-
280
- @torch.no_grad()
281
- def log_likelihood(model, x, sigma_min, sigma_max, extra_args=None, atol=1e-4, rtol=1e-4):
282
- extra_args = {} if extra_args is None else extra_args
283
- s_in = x.new_ones([x.shape[0]])
284
- v = torch.randint_like(x, 2) * 2 - 1
285
- fevals = 0
286
- def ode_fn(sigma, x):
287
- nonlocal fevals
288
- with torch.enable_grad():
289
- x = x[0].detach().requires_grad_()
290
- denoised = model(x, sigma * s_in, **extra_args)
291
- d = to_d(x, sigma, denoised)
292
- fevals += 1
293
- grad = torch.autograd.grad((d * v).sum(), x)[0]
294
- d_ll = (v * grad).flatten(1).sum(1)
295
- return d.detach(), d_ll
296
- x_min = x, x.new_zeros([x.shape[0]])
297
- t = x.new_tensor([sigma_min, sigma_max])
298
- sol = odeint(ode_fn, x_min, t, atol=atol, rtol=rtol, method='dopri5')
299
- latent, delta_ll = sol[0][-1], sol[1][-1]
300
- ll_prior = torch.distributions.Normal(0, sigma_max).log_prob(latent).flatten(1).sum(1)
301
- return ll_prior + delta_ll, {'fevals': fevals}
302
-
303
-
304
- class PIDStepSizeController:
305
- """A PID controller for ODE adaptive step size control."""
306
- def __init__(self, h, pcoeff, icoeff, dcoeff, order=1, accept_safety=0.81, eps=1e-8):
307
- self.h = h
308
- self.b1 = (pcoeff + icoeff + dcoeff) / order
309
- self.b2 = -(pcoeff + 2 * dcoeff) / order
310
- self.b3 = dcoeff / order
311
- self.accept_safety = accept_safety
312
- self.eps = eps
313
- self.errs = []
314
-
315
- def limiter(self, x):
316
- return 1 + math.atan(x - 1)
317
-
318
- def propose_step(self, error):
319
- inv_error = 1 / (float(error) + self.eps)
320
- if not self.errs:
321
- self.errs = [inv_error, inv_error, inv_error]
322
- self.errs[0] = inv_error
323
- factor = self.errs[0] ** self.b1 * self.errs[1] ** self.b2 * self.errs[2] ** self.b3
324
- factor = self.limiter(factor)
325
- accept = factor >= self.accept_safety
326
- if accept:
327
- self.errs[2] = self.errs[1]
328
- self.errs[1] = self.errs[0]
329
- self.h *= factor
330
- return accept
331
-
332
-
333
- class DPMSolver(nn.Module):
334
- """DPM-Solver. See https://arxiv.org/abs/2206.00927."""
335
-
336
- def __init__(self, model, extra_args=None, eps_callback=None, info_callback=None):
337
- super().__init__()
338
- self.model = model
339
- self.extra_args = {} if extra_args is None else extra_args
340
- self.eps_callback = eps_callback
341
- self.info_callback = info_callback
342
-
343
- def t(self, sigma):
344
- return -sigma.log()
345
-
346
- def sigma(self, t):
347
- return t.neg().exp()
348
-
349
- def eps(self, eps_cache, key, x, t, *args, **kwargs):
350
- if key in eps_cache:
351
- return eps_cache[key], eps_cache
352
- sigma = self.sigma(t) * x.new_ones([x.shape[0]])
353
- eps = (x - self.model(x, sigma, *args, **self.extra_args, **kwargs)) / self.sigma(t)
354
- if self.eps_callback is not None:
355
- self.eps_callback()
356
- return eps, {key: eps, **eps_cache}
357
-
358
- def dpm_solver_1_step(self, x, t, t_next, eps_cache=None):
359
- eps_cache = {} if eps_cache is None else eps_cache
360
- h = t_next - t
361
- eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
362
- x_1 = x - self.sigma(t_next) * h.expm1() * eps
363
- return x_1, eps_cache
364
-
365
- def dpm_solver_2_step(self, x, t, t_next, r1=1 / 2, eps_cache=None):
366
- eps_cache = {} if eps_cache is None else eps_cache
367
- h = t_next - t
368
- eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
369
- s1 = t + r1 * h
370
- u1 = x - self.sigma(s1) * (r1 * h).expm1() * eps
371
- eps_r1, eps_cache = self.eps(eps_cache, 'eps_r1', u1, s1)
372
- x_2 = x - self.sigma(t_next) * h.expm1() * eps - self.sigma(t_next) / (2 * r1) * h.expm1() * (eps_r1 - eps)
373
- return x_2, eps_cache
374
-
375
- def dpm_solver_3_step(self, x, t, t_next, r1=1 / 3, r2=2 / 3, eps_cache=None):
376
- eps_cache = {} if eps_cache is None else eps_cache
377
- h = t_next - t
378
- eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
379
- s1 = t + r1 * h
380
- s2 = t + r2 * h
381
- u1 = x - self.sigma(s1) * (r1 * h).expm1() * eps
382
- eps_r1, eps_cache = self.eps(eps_cache, 'eps_r1', u1, s1)
383
- u2 = x - self.sigma(s2) * (r2 * h).expm1() * eps - self.sigma(s2) * (r2 / r1) * ((r2 * h).expm1() / (r2 * h) - 1) * (eps_r1 - eps)
384
- eps_r2, eps_cache = self.eps(eps_cache, 'eps_r2', u2, s2)
385
- x_3 = x - self.sigma(t_next) * h.expm1() * eps - self.sigma(t_next) / r2 * (h.expm1() / h - 1) * (eps_r2 - eps)
386
- return x_3, eps_cache
387
-
388
- def dpm_solver_fast(self, x, t_start, t_end, nfe, eta=0., s_noise=1., noise_sampler=None):
389
- noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
390
- if not t_end > t_start and eta:
391
- raise ValueError('eta must be 0 for reverse sampling')
392
-
393
- m = math.floor(nfe / 3) + 1
394
- ts = torch.linspace(t_start, t_end, m + 1, device=x.device)
395
-
396
- if nfe % 3 == 0:
397
- orders = [3] * (m - 2) + [2, 1]
398
- else:
399
- orders = [3] * (m - 1) + [nfe % 3]
400
-
401
- for i in range(len(orders)):
402
- eps_cache = {}
403
- t, t_next = ts[i], ts[i + 1]
404
- if eta:
405
- sd, su = get_ancestral_step(self.sigma(t), self.sigma(t_next), eta)
406
- t_next_ = torch.minimum(t_end, self.t(sd))
407
- su = (self.sigma(t_next) ** 2 - self.sigma(t_next_) ** 2) ** 0.5
408
- else:
409
- t_next_, su = t_next, 0.
410
-
411
- eps, eps_cache = self.eps(eps_cache, 'eps', x, t)
412
- denoised = x - self.sigma(t) * eps
413
- if self.info_callback is not None:
414
- self.info_callback({'x': x, 'i': i, 't': ts[i], 't_up': t, 'denoised': denoised})
415
-
416
- if orders[i] == 1:
417
- x, eps_cache = self.dpm_solver_1_step(x, t, t_next_, eps_cache=eps_cache)
418
- elif orders[i] == 2:
419
- x, eps_cache = self.dpm_solver_2_step(x, t, t_next_, eps_cache=eps_cache)
420
- else:
421
- x, eps_cache = self.dpm_solver_3_step(x, t, t_next_, eps_cache=eps_cache)
422
-
423
- x = x + su * s_noise * noise_sampler(self.sigma(t), self.sigma(t_next))
424
-
425
- return x
426
-
427
- def dpm_solver_adaptive(self, x, t_start, t_end, order=3, rtol=0.05, atol=0.0078, h_init=0.05, pcoeff=0., icoeff=1., dcoeff=0., accept_safety=0.81, eta=0., s_noise=1., noise_sampler=None):
428
- noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
429
- if order not in {2, 3}:
430
- raise ValueError('order should be 2 or 3')
431
- forward = t_end > t_start
432
- if not forward and eta:
433
- raise ValueError('eta must be 0 for reverse sampling')
434
- h_init = abs(h_init) * (1 if forward else -1)
435
- atol = torch.tensor(atol)
436
- rtol = torch.tensor(rtol)
437
- s = t_start
438
- x_prev = x
439
- accept = True
440
- pid = PIDStepSizeController(h_init, pcoeff, icoeff, dcoeff, 1.5 if eta else order, accept_safety)
441
- info = {'steps': 0, 'nfe': 0, 'n_accept': 0, 'n_reject': 0}
442
-
443
- while s < t_end - 1e-5 if forward else s > t_end + 1e-5:
444
- eps_cache = {}
445
- t = torch.minimum(t_end, s + pid.h) if forward else torch.maximum(t_end, s + pid.h)
446
- if eta:
447
- sd, su = get_ancestral_step(self.sigma(s), self.sigma(t), eta)
448
- t_ = torch.minimum(t_end, self.t(sd))
449
- su = (self.sigma(t) ** 2 - self.sigma(t_) ** 2) ** 0.5
450
- else:
451
- t_, su = t, 0.
452
-
453
- eps, eps_cache = self.eps(eps_cache, 'eps', x, s)
454
- denoised = x - self.sigma(s) * eps
455
-
456
- if order == 2:
457
- x_low, eps_cache = self.dpm_solver_1_step(x, s, t_, eps_cache=eps_cache)
458
- x_high, eps_cache = self.dpm_solver_2_step(x, s, t_, eps_cache=eps_cache)
459
- else:
460
- x_low, eps_cache = self.dpm_solver_2_step(x, s, t_, r1=1 / 3, eps_cache=eps_cache)
461
- x_high, eps_cache = self.dpm_solver_3_step(x, s, t_, eps_cache=eps_cache)
462
- delta = torch.maximum(atol, rtol * torch.maximum(x_low.abs(), x_prev.abs()))
463
- error = torch.linalg.norm((x_low - x_high) / delta) / x.numel() ** 0.5
464
- accept = pid.propose_step(error)
465
- if accept:
466
- x_prev = x_low
467
- x = x_high + su * s_noise * noise_sampler(self.sigma(s), self.sigma(t))
468
- s = t
469
- info['n_accept'] += 1
470
- else:
471
- info['n_reject'] += 1
472
- info['nfe'] += order
473
- info['steps'] += 1
474
-
475
- if self.info_callback is not None:
476
- self.info_callback({'x': x, 'i': info['steps'] - 1, 't': s, 't_up': s, 'denoised': denoised, 'error': error, 'h': pid.h, **info})
477
-
478
- return x, info
479
-
480
-
481
- @torch.no_grad()
482
- def sample_dpm_fast(model, x, sigma_min, sigma_max, n, extra_args=None, callback=None, disable=None, eta=0., s_noise=1., noise_sampler=None):
483
- """DPM-Solver-Fast (fixed step size). See https://arxiv.org/abs/2206.00927."""
484
- if sigma_min <= 0 or sigma_max <= 0:
485
- raise ValueError('sigma_min and sigma_max must not be 0')
486
- with tqdm(total=n, disable=disable) as pbar:
487
- dpm_solver = DPMSolver(model, extra_args, eps_callback=pbar.update)
488
- if callback is not None:
489
- dpm_solver.info_callback = lambda info: callback({'sigma': dpm_solver.sigma(info['t']), 'sigma_hat': dpm_solver.sigma(info['t_up']), **info})
490
- return dpm_solver.dpm_solver_fast(x, dpm_solver.t(torch.tensor(sigma_max)), dpm_solver.t(torch.tensor(sigma_min)), n, eta, s_noise, noise_sampler)
491
-
492
-
493
- @torch.no_grad()
494
- def sample_dpm_adaptive(model, x, sigma_min, sigma_max, extra_args=None, callback=None, disable=None, order=3, rtol=0.05, atol=0.0078, h_init=0.05, pcoeff=0., icoeff=1., dcoeff=0., accept_safety=0.81, eta=0., s_noise=1., noise_sampler=None, return_info=False):
495
- """DPM-Solver-12 and 23 (adaptive step size). See https://arxiv.org/abs/2206.00927."""
496
- if sigma_min <= 0 or sigma_max <= 0:
497
- raise ValueError('sigma_min and sigma_max must not be 0')
498
- with tqdm(disable=disable) as pbar:
499
- dpm_solver = DPMSolver(model, extra_args, eps_callback=pbar.update)
500
- if callback is not None:
501
- dpm_solver.info_callback = lambda info: callback({'sigma': dpm_solver.sigma(info['t']), 'sigma_hat': dpm_solver.sigma(info['t_up']), **info})
502
- x, info = dpm_solver.dpm_solver_adaptive(x, dpm_solver.t(torch.tensor(sigma_max)), dpm_solver.t(torch.tensor(sigma_min)), order, rtol, atol, h_init, pcoeff, icoeff, dcoeff, accept_safety, eta, s_noise, noise_sampler)
503
- if return_info:
504
- return x, info
505
- return x
506
-
507
-
508
- @torch.no_grad()
509
- def sample_dpmpp_2s_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
510
- """Ancestral sampling with DPM-Solver++(2S) second-order steps."""
511
- extra_args = {} if extra_args is None else extra_args
512
- noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
513
- s_in = x.new_ones([x.shape[0]])
514
- sigma_fn = lambda t: t.neg().exp()
515
- t_fn = lambda sigma: sigma.log().neg()
516
-
517
- for i in trange(len(sigmas) - 1, disable=disable):
518
- denoised = model(x, sigmas[i] * s_in, **extra_args)
519
- sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
520
- if callback is not None:
521
- callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
522
- if sigma_down == 0:
523
- # Euler method
524
- d = to_d(x, sigmas[i], denoised)
525
- dt = sigma_down - sigmas[i]
526
- x = x + d * dt
527
- else:
528
- # DPM-Solver++(2S)
529
- t, t_next = t_fn(sigmas[i]), t_fn(sigma_down)
530
- r = 1 / 2
531
- h = t_next - t
532
- s = t + r * h
533
- x_2 = (sigma_fn(s) / sigma_fn(t)) * x - (-h * r).expm1() * denoised
534
- denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
535
- x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_2
536
- # Noise addition
537
- if sigmas[i + 1] > 0:
538
- x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
539
- return x
540
-
541
-
542
- @torch.no_grad()
543
- def sample_dpmpp_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2):
544
- """DPM-Solver++ (stochastic)."""
545
- sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
546
- noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max) if noise_sampler is None else noise_sampler
547
- extra_args = {} if extra_args is None else extra_args
548
- s_in = x.new_ones([x.shape[0]])
549
- sigma_fn = lambda t: t.neg().exp()
550
- t_fn = lambda sigma: sigma.log().neg()
551
-
552
- for i in trange(len(sigmas) - 1, disable=disable):
553
- denoised = model(x, sigmas[i] * s_in, **extra_args)
554
- if callback is not None:
555
- callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
556
- if sigmas[i + 1] == 0:
557
- # Euler method
558
- d = to_d(x, sigmas[i], denoised)
559
- dt = sigmas[i + 1] - sigmas[i]
560
- x = x + d * dt
561
- else:
562
- # DPM-Solver++
563
- t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
564
- h = t_next - t
565
- s = t + h * r
566
- fac = 1 / (2 * r)
567
-
568
- # Step 1
569
- sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(s), eta)
570
- s_ = t_fn(sd)
571
- x_2 = (sigma_fn(s_) / sigma_fn(t)) * x - (t - s_).expm1() * denoised
572
- x_2 = x_2 + noise_sampler(sigma_fn(t), sigma_fn(s)) * s_noise * su
573
- denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
574
-
575
- # Step 2
576
- sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(t_next), eta)
577
- t_next_ = t_fn(sd)
578
- denoised_d = (1 - fac) * denoised + fac * denoised_2
579
- x = (sigma_fn(t_next_) / sigma_fn(t)) * x - (t - t_next_).expm1() * denoised_d
580
- x = x + noise_sampler(sigma_fn(t), sigma_fn(t_next)) * s_noise * su
581
- return x
582
-
583
-
584
- @torch.no_grad()
585
- def sample_dpmpp_2m(model, x, sigmas, extra_args=None, callback=None, disable=None):
586
- """DPM-Solver++(2M)."""
587
- extra_args = {} if extra_args is None else extra_args
588
- s_in = x.new_ones([x.shape[0]])
589
- sigma_fn = lambda t: t.neg().exp()
590
- t_fn = lambda sigma: sigma.log().neg()
591
- old_denoised = None
592
-
593
- for i in trange(len(sigmas) - 1, disable=disable):
594
- denoised = model(x, sigmas[i] * s_in, **extra_args)
595
- if callback is not None:
596
- callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
597
- t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
598
- h = t_next - t
599
- if old_denoised is None or sigmas[i + 1] == 0:
600
- x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised
601
- else:
602
- h_last = t - t_fn(sigmas[i - 1])
603
- r = h_last / h
604
- denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised
605
- x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d
606
- old_denoised = denoised
607
- return x
608
-
609
-
610
- @torch.no_grad()
611
- def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
612
- """DPM-Solver++(2M) SDE."""
613
-
614
- if solver_type not in {'heun', 'midpoint'}:
615
- raise ValueError('solver_type must be \'heun\' or \'midpoint\'')
616
-
617
- sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
618
- noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max) if noise_sampler is None else noise_sampler
619
- extra_args = {} if extra_args is None else extra_args
620
- s_in = x.new_ones([x.shape[0]])
621
-
622
- old_denoised = None
623
- h_last = None
624
-
625
- for i in trange(len(sigmas) - 1, disable=disable):
626
- denoised = model(x, sigmas[i] * s_in, **extra_args)
627
- if callback is not None:
628
- callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
629
- if sigmas[i + 1] == 0:
630
- # Denoising step
631
- x = denoised
632
- else:
633
- # DPM-Solver++(2M) SDE
634
- t, s = -sigmas[i].log(), -sigmas[i + 1].log()
635
- h = s - t
636
- eta_h = eta * h
637
-
638
- x = sigmas[i + 1] / sigmas[i] * (-eta_h).exp() * x + (-h - eta_h).expm1().neg() * denoised
639
-
640
- if old_denoised is not None:
641
- r = h_last / h
642
- if solver_type == 'heun':
643
- x = x + ((-h - eta_h).expm1().neg() / (-h - eta_h) + 1) * (1 / r) * (denoised - old_denoised)
644
- elif solver_type == 'midpoint':
645
- x = x + 0.5 * (-h - eta_h).expm1().neg() * (1 / r) * (denoised - old_denoised)
646
-
647
- x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * eta_h).expm1().neg().sqrt() * s_noise
648
-
649
- old_denoised = denoised
650
- h_last = h
651
- return x
652
-
653
-
654
- @torch.no_grad()
655
- def sample_dpmpp_2m_test(model, x, sigmas, extra_args=None, callback=None, disable=None):
656
- """DPM-Solver++(2M)."""
657
- extra_args = {} if extra_args is None else extra_args
658
- s_in = x.new_ones([x.shape[0]])
659
- sigma_fn = lambda t: t.neg().exp()
660
- t_fn = lambda sigma: sigma.log().neg()
661
- old_denoised = None
662
-
663
- for i in trange(len(sigmas) - 1, disable=disable):
664
- denoised = model(x, sigmas[i] * s_in, **extra_args)
665
- if callback is not None:
666
- callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
667
- t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
668
- h = t_next - t
669
-
670
- t_min = min(sigma_fn(t_next), sigma_fn(t))
671
- t_max = max(sigma_fn(t_next), sigma_fn(t))
672
-
673
- if old_denoised is None or sigmas[i + 1] == 0:
674
- x = (t_min / t_max) * x - (-h).expm1() * denoised
675
- else:
676
- h_last = t - t_fn(sigmas[i - 1])
677
-
678
- h_min = min(h_last, h)
679
- h_max = max(h_last, h)
680
- r = h_max / h_min
681
-
682
- h_d = (h_max + h_min) / 2
683
- denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised
684
- x = (t_min / t_max) * x - (-h_d).expm1() * denoised_d
685
-
686
- old_denoised = denoised
687
- return x
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dpm2mv2/sd_samplers_kdiffusion.py DELETED
@@ -1,394 +0,0 @@
1
- from collections import deque
2
- import torch
3
- import inspect
4
- import k_diffusion.sampling
5
- from modules import prompt_parser, devices, sd_samplers_common
6
-
7
- from modules.shared import opts, state
8
- import modules.shared as shared
9
- from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback
10
- from modules.script_callbacks import CFGDenoisedParams, cfg_denoised_callback
11
- from modules.script_callbacks import AfterCFGCallbackParams, cfg_after_cfg_callback
12
-
13
- samplers_k_diffusion = [
14
- ('Euler a', 'sample_euler_ancestral', ['k_euler_a', 'k_euler_ancestral'], {"uses_ensd": True}),
15
- ('Euler', 'sample_euler', ['k_euler'], {}),
16
- ('LMS', 'sample_lms', ['k_lms'], {}),
17
- ('Heun', 'sample_heun', ['k_heun'], {"second_order": True}),
18
- ('DPM2', 'sample_dpm_2', ['k_dpm_2'], {'discard_next_to_last_sigma': True}),
19
- ('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {'discard_next_to_last_sigma': True, "uses_ensd": True}),
20
- ('DPM++ 2S a', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a'], {"uses_ensd": True, "second_order": True}),
21
- ('DPM++ 2M', 'sample_dpmpp_2m', ['k_dpmpp_2m'], {}),
22
- ('DPM++ 2M V2', 'sample_dpmpp_2m_test', ['k_dpmpp_2m'], {}),
23
- ('DPM++ SDE', 'sample_dpmpp_sde', ['k_dpmpp_sde'], {"second_order": True, "brownian_noise": True}),
24
- ('DPM++ 2M SDE', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_ka'], {"brownian_noise": True, 'discard_next_to_last_sigma': True}),
25
- ('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {"uses_ensd": True}),
26
- ('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {"uses_ensd": True}),
27
- ('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}),
28
- ('DPM2 Karras', 'sample_dpm_2', ['k_dpm_2_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True, "uses_ensd": True, "second_order": True}),
29
- ('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True, "uses_ensd": True, "second_order": True}),
30
- ('DPM++ 2S a Karras', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a_ka'], {'scheduler': 'karras', "uses_ensd": True, "second_order": True}),
31
- ('DPM++ 2M Karras', 'sample_dpmpp_2m', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}),
32
- ('DPM++ 2M Karras V2', 'sample_dpmpp_2m_test', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}),
33
- ('DPM++ SDE Karras', 'sample_dpmpp_sde', ['k_dpmpp_sde_ka'], {'scheduler': 'karras', "second_order": True, "brownian_noise": True}),
34
- ('DPM++ 2M SDE Karras', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_ka'], {'scheduler': 'karras', "brownian_noise": True, 'discard_next_to_last_sigma': True}),
35
- ]
36
-
37
- samplers_data_k_diffusion = [
38
- sd_samplers_common.SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options)
39
- for label, funcname, aliases, options in samplers_k_diffusion
40
- if hasattr(k_diffusion.sampling, funcname)
41
- ]
42
-
43
- sampler_extra_params = {
44
- 'sample_euler': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
45
- 'sample_heun': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
46
- 'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
47
- }
48
-
49
-
50
- class CFGDenoiser(torch.nn.Module):
51
- """
52
- Classifier free guidance denoiser. A wrapper for stable diffusion model (specifically for unet)
53
- that can take a noisy picture and produce a noise-free picture using two guidances (prompts)
54
- instead of one. Originally, the second prompt is just an empty string, but we use non-empty
55
- negative prompt.
56
- """
57
-
58
- def __init__(self, model):
59
- super().__init__()
60
- self.inner_model = model
61
- self.mask = None
62
- self.nmask = None
63
- self.init_latent = None
64
- self.step = 0
65
- self.image_cfg_scale = None
66
-
67
- def combine_denoised(self, x_out, conds_list, uncond, cond_scale):
68
- denoised_uncond = x_out[-uncond.shape[0]:]
69
- denoised = torch.clone(denoised_uncond)
70
-
71
- for i, conds in enumerate(conds_list):
72
- for cond_index, weight in conds:
73
- denoised[i] += (x_out[cond_index] - denoised_uncond[i]) * (weight * cond_scale)
74
-
75
- return denoised
76
-
77
- def combine_denoised_for_edit_model(self, x_out, cond_scale):
78
- out_cond, out_img_cond, out_uncond = x_out.chunk(3)
79
- denoised = out_uncond + cond_scale * (out_cond - out_img_cond) + self.image_cfg_scale * (out_img_cond - out_uncond)
80
-
81
- return denoised
82
-
83
- def forward(self, x, sigma, uncond, cond, cond_scale, s_min_uncond, image_cond):
84
- if state.interrupted or state.skipped:
85
- raise sd_samplers_common.InterruptedException
86
-
87
- # at self.image_cfg_scale == 1.0 produced results for edit model are the same as with normal sampling,
88
- # so is_edit_model is set to False to support AND composition.
89
- is_edit_model = shared.sd_model.cond_stage_key == "edit" and self.image_cfg_scale is not None and self.image_cfg_scale != 1.0
90
-
91
- conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
92
- uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step)
93
-
94
- assert not is_edit_model or all(len(conds) == 1 for conds in conds_list), "AND is not supported for InstructPix2Pix checkpoint (unless using Image CFG scale = 1.0)"
95
-
96
- batch_size = len(conds_list)
97
- repeats = [len(conds_list[i]) for i in range(batch_size)]
98
-
99
- if shared.sd_model.model.conditioning_key == "crossattn-adm":
100
- image_uncond = torch.zeros_like(image_cond)
101
- make_condition_dict = lambda c_crossattn, c_adm: {"c_crossattn": c_crossattn, "c_adm": c_adm}
102
- else:
103
- image_uncond = image_cond
104
- make_condition_dict = lambda c_crossattn, c_concat: {"c_crossattn": c_crossattn, "c_concat": [c_concat]}
105
-
106
- if not is_edit_model:
107
- x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x])
108
- sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma])
109
- image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_uncond])
110
- else:
111
- x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x] + [x])
112
- sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma] + [sigma])
113
- image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_uncond] + [torch.zeros_like(self.init_latent)])
114
-
115
- denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps, tensor, uncond)
116
- cfg_denoiser_callback(denoiser_params)
117
- x_in = denoiser_params.x
118
- image_cond_in = denoiser_params.image_cond
119
- sigma_in = denoiser_params.sigma
120
- tensor = denoiser_params.text_cond
121
- uncond = denoiser_params.text_uncond
122
- skip_uncond = False
123
-
124
- # alternating uncond allows for higher thresholds without the quality loss normally expected from raising it
125
- if self.step % 2 and s_min_uncond > 0 and sigma[0] < s_min_uncond and not is_edit_model:
126
- skip_uncond = True
127
- x_in = x_in[:-batch_size]
128
- sigma_in = sigma_in[:-batch_size]
129
-
130
- if tensor.shape[1] == uncond.shape[1] or skip_uncond:
131
- if is_edit_model:
132
- cond_in = torch.cat([tensor, uncond, uncond])
133
- elif skip_uncond:
134
- cond_in = tensor
135
- else:
136
- cond_in = torch.cat([tensor, uncond])
137
-
138
- if shared.batch_cond_uncond:
139
- x_out = self.inner_model(x_in, sigma_in, cond=make_condition_dict([cond_in], image_cond_in))
140
- else:
141
- x_out = torch.zeros_like(x_in)
142
- for batch_offset in range(0, x_out.shape[0], batch_size):
143
- a = batch_offset
144
- b = a + batch_size
145
- x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict([cond_in[a:b]], image_cond_in[a:b]))
146
- else:
147
- x_out = torch.zeros_like(x_in)
148
- batch_size = batch_size*2 if shared.batch_cond_uncond else batch_size
149
- for batch_offset in range(0, tensor.shape[0], batch_size):
150
- a = batch_offset
151
- b = min(a + batch_size, tensor.shape[0])
152
-
153
- if not is_edit_model:
154
- c_crossattn = [tensor[a:b]]
155
- else:
156
- c_crossattn = torch.cat([tensor[a:b]], uncond)
157
-
158
- x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(c_crossattn, image_cond_in[a:b]))
159
-
160
- if not skip_uncond:
161
- x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond=make_condition_dict([uncond], image_cond_in[-uncond.shape[0]:]))
162
-
163
- denoised_image_indexes = [x[0][0] for x in conds_list]
164
- if skip_uncond:
165
- fake_uncond = torch.cat([x_out[i:i+1] for i in denoised_image_indexes])
166
- x_out = torch.cat([x_out, fake_uncond]) # we skipped uncond denoising, so we put cond-denoised image to where the uncond-denoised image should be
167
-
168
- denoised_params = CFGDenoisedParams(x_out, state.sampling_step, state.sampling_steps, self.inner_model)
169
- cfg_denoised_callback(denoised_params)
170
-
171
- devices.test_for_nans(x_out, "unet")
172
-
173
- if opts.live_preview_content == "Prompt":
174
- sd_samplers_common.store_latent(torch.cat([x_out[i:i+1] for i in denoised_image_indexes]))
175
- elif opts.live_preview_content == "Negative prompt":
176
- sd_samplers_common.store_latent(x_out[-uncond.shape[0]:])
177
-
178
- if is_edit_model:
179
- denoised = self.combine_denoised_for_edit_model(x_out, cond_scale)
180
- elif skip_uncond:
181
- denoised = self.combine_denoised(x_out, conds_list, uncond, 1.0)
182
- else:
183
- denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale)
184
-
185
- if self.mask is not None:
186
- denoised = self.init_latent * self.mask + self.nmask * denoised
187
-
188
- after_cfg_callback_params = AfterCFGCallbackParams(denoised, state.sampling_step, state.sampling_steps)
189
- cfg_after_cfg_callback(after_cfg_callback_params)
190
- denoised = after_cfg_callback_params.x
191
-
192
- self.step += 1
193
- return denoised
194
-
195
-
196
- class TorchHijack:
197
- def __init__(self, sampler_noises):
198
- # Using a deque to efficiently receive the sampler_noises in the same order as the previous index-based
199
- # implementation.
200
- self.sampler_noises = deque(sampler_noises)
201
-
202
- def __getattr__(self, item):
203
- if item == 'randn_like':
204
- return self.randn_like
205
-
206
- if hasattr(torch, item):
207
- return getattr(torch, item)
208
-
209
- raise AttributeError(f"'{type(self).__name__}' object has no attribute '{item}'")
210
-
211
- def randn_like(self, x):
212
- if self.sampler_noises:
213
- noise = self.sampler_noises.popleft()
214
- if noise.shape == x.shape:
215
- return noise
216
-
217
- if opts.randn_source == "CPU" or x.device.type == 'mps':
218
- return torch.randn_like(x, device=devices.cpu).to(x.device)
219
- else:
220
- return torch.randn_like(x)
221
-
222
-
223
- class KDiffusionSampler:
224
- def __init__(self, funcname, sd_model):
225
- denoiser = k_diffusion.external.CompVisVDenoiser if sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser
226
-
227
- self.model_wrap = denoiser(sd_model, quantize=shared.opts.enable_quantization)
228
- self.funcname = funcname
229
- self.func = getattr(k_diffusion.sampling, self.funcname)
230
- self.extra_params = sampler_extra_params.get(funcname, [])
231
- self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
232
- self.sampler_noises = None
233
- self.stop_at = None
234
- self.eta = None
235
- self.config = None # set by the function calling the constructor
236
- self.last_latent = None
237
- self.s_min_uncond = None
238
-
239
- self.conditioning_key = sd_model.model.conditioning_key
240
-
241
- def callback_state(self, d):
242
- step = d['i']
243
- latent = d["denoised"]
244
- if opts.live_preview_content == "Combined":
245
- sd_samplers_common.store_latent(latent)
246
- self.last_latent = latent
247
-
248
- if self.stop_at is not None and step > self.stop_at:
249
- raise sd_samplers_common.InterruptedException
250
-
251
- state.sampling_step = step
252
- shared.total_tqdm.update()
253
-
254
- def launch_sampling(self, steps, func):
255
- state.sampling_steps = steps
256
- state.sampling_step = 0
257
-
258
- try:
259
- return func()
260
- except sd_samplers_common.InterruptedException:
261
- return self.last_latent
262
-
263
- def number_of_needed_noises(self, p):
264
- return p.steps
265
-
266
- def initialize(self, p):
267
- self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
268
- self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
269
- self.model_wrap_cfg.step = 0
270
- self.model_wrap_cfg.image_cfg_scale = getattr(p, 'image_cfg_scale', None)
271
- self.eta = p.eta if p.eta is not None else opts.eta_ancestral
272
- self.s_min_uncond = getattr(p, 's_min_uncond', 0.0)
273
-
274
- k_diffusion.sampling.torch = TorchHijack(self.sampler_noises if self.sampler_noises is not None else [])
275
-
276
- extra_params_kwargs = {}
277
- for param_name in self.extra_params:
278
- if hasattr(p, param_name) and param_name in inspect.signature(self.func).parameters:
279
- extra_params_kwargs[param_name] = getattr(p, param_name)
280
-
281
- if 'eta' in inspect.signature(self.func).parameters:
282
- if self.eta != 1.0:
283
- p.extra_generation_params["Eta"] = self.eta
284
-
285
- extra_params_kwargs['eta'] = self.eta
286
-
287
- return extra_params_kwargs
288
-
289
- def get_sigmas(self, p, steps):
290
- discard_next_to_last_sigma = self.config is not None and self.config.options.get('discard_next_to_last_sigma', False)
291
- if opts.always_discard_next_to_last_sigma and not discard_next_to_last_sigma:
292
- discard_next_to_last_sigma = True
293
- p.extra_generation_params["Discard penultimate sigma"] = True
294
-
295
- steps += 1 if discard_next_to_last_sigma else 0
296
-
297
- if p.sampler_noise_scheduler_override:
298
- sigmas = p.sampler_noise_scheduler_override(steps)
299
- elif self.config is not None and self.config.options.get('scheduler', None) == 'karras':
300
- sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item())
301
-
302
- sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, device=shared.device)
303
- else:
304
- sigmas = self.model_wrap.get_sigmas(steps)
305
-
306
- if discard_next_to_last_sigma:
307
- sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
308
-
309
- return sigmas
310
-
311
- def create_noise_sampler(self, x, sigmas, p):
312
- """For DPM++ SDE: manually create noise sampler to enable deterministic results across different batch sizes"""
313
- if shared.opts.no_dpmpp_sde_batch_determinism:
314
- return None
315
-
316
- from k_diffusion.sampling import BrownianTreeNoiseSampler
317
- sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
318
- current_iter_seeds = p.all_seeds[p.iteration * p.batch_size:(p.iteration + 1) * p.batch_size]
319
- return BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=current_iter_seeds)
320
-
321
- def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
322
- steps, t_enc = sd_samplers_common.setup_img2img_steps(p, steps)
323
-
324
- sigmas = self.get_sigmas(p, steps)
325
-
326
- sigma_sched = sigmas[steps - t_enc - 1:]
327
- xi = x + noise * sigma_sched[0]
328
-
329
- extra_params_kwargs = self.initialize(p)
330
- parameters = inspect.signature(self.func).parameters
331
-
332
- if 'sigma_min' in parameters:
333
- ## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last
334
- extra_params_kwargs['sigma_min'] = sigma_sched[-2]
335
- if 'sigma_max' in parameters:
336
- extra_params_kwargs['sigma_max'] = sigma_sched[0]
337
- if 'n' in parameters:
338
- extra_params_kwargs['n'] = len(sigma_sched) - 1
339
- if 'sigma_sched' in parameters:
340
- extra_params_kwargs['sigma_sched'] = sigma_sched
341
- if 'sigmas' in parameters:
342
- extra_params_kwargs['sigmas'] = sigma_sched
343
-
344
- if self.config.options.get('brownian_noise', False):
345
- noise_sampler = self.create_noise_sampler(x, sigmas, p)
346
- extra_params_kwargs['noise_sampler'] = noise_sampler
347
-
348
- self.model_wrap_cfg.init_latent = x
349
- self.last_latent = x
350
- extra_args = {
351
- 'cond': conditioning,
352
- 'image_cond': image_conditioning,
353
- 'uncond': unconditional_conditioning,
354
- 'cond_scale': p.cfg_scale,
355
- 's_min_uncond': self.s_min_uncond
356
- }
357
-
358
- samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
359
-
360
- return samples
361
-
362
- def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
363
- steps = steps or p.steps
364
-
365
- sigmas = self.get_sigmas(p, steps)
366
-
367
- x = x * sigmas[0]
368
-
369
- extra_params_kwargs = self.initialize(p)
370
- parameters = inspect.signature(self.func).parameters
371
-
372
- if 'sigma_min' in parameters:
373
- extra_params_kwargs['sigma_min'] = self.model_wrap.sigmas[0].item()
374
- extra_params_kwargs['sigma_max'] = self.model_wrap.sigmas[-1].item()
375
- if 'n' in parameters:
376
- extra_params_kwargs['n'] = steps
377
- else:
378
- extra_params_kwargs['sigmas'] = sigmas
379
-
380
- if self.config.options.get('brownian_noise', False):
381
- noise_sampler = self.create_noise_sampler(x, sigmas, p)
382
- extra_params_kwargs['noise_sampler'] = noise_sampler
383
-
384
- self.last_latent = x
385
- samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={
386
- 'cond': conditioning,
387
- 'image_cond': image_conditioning,
388
- 'uncond': unconditional_conditioning,
389
- 'cond_scale': p.cfg_scale,
390
- 's_min_uncond': self.s_min_uncond
391
- }, disable=False, callback=self.callback_state, **extra_params_kwargs))
392
-
393
- return samples
394
-