--- license: apache-2.0 tags: - generated_from_trainer datasets: - audiofolder metrics: - accuracy model-index: - name: wav2vec2-base-Drum_Kit_Sounds results: [] --- # wav2vec2-base-Drum_Kit_Sounds This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0887 - Accuracy: 0.7812 - Weighted f1: 0.7692 - Micro f1: 0.7812 - Macro f1: 0.7845 - Weighted recall: 0.7812 - Micro recall: 0.7812 - Macro recall: 0.8187 - Weighted precision: 0.8717 - Micro precision: 0.7812 - Macro precision: 0.8534 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:| | 1.3743 | 1.0 | 4 | 1.3632 | 0.5625 | 0.5801 | 0.5625 | 0.5678 | 0.5625 | 0.5625 | 0.5670 | 0.6786 | 0.5625 | 0.6429 | | 1.3074 | 2.0 | 8 | 1.3149 | 0.3438 | 0.2567 | 0.3438 | 0.2696 | 0.3438 | 0.3438 | 0.375 | 0.3067 | 0.3438 | 0.3148 | | 1.2393 | 3.0 | 12 | 1.3121 | 0.2188 | 0.0785 | 0.2188 | 0.0897 | 0.2188 | 0.2188 | 0.25 | 0.0479 | 0.2188 | 0.0547 | | 1.2317 | 4.0 | 16 | 1.3112 | 0.2812 | 0.1800 | 0.2812 | 0.2057 | 0.2812 | 0.2812 | 0.3214 | 0.2698 | 0.2812 | 0.3083 | | 1.2107 | 5.0 | 20 | 1.2604 | 0.4375 | 0.3030 | 0.4375 | 0.3462 | 0.4375 | 0.4375 | 0.5 | 0.2552 | 0.4375 | 0.2917 | | 1.1663 | 6.0 | 24 | 1.2112 | 0.4688 | 0.3896 | 0.4688 | 0.4310 | 0.4688 | 0.4688 | 0.5268 | 0.5041 | 0.4688 | 0.5404 | | 1.1247 | 7.0 | 28 | 1.1746 | 0.5938 | 0.5143 | 0.5938 | 0.5603 | 0.5938 | 0.5938 | 0.6562 | 0.5220 | 0.5938 | 0.5609 | | 1.0856 | 8.0 | 32 | 1.1434 | 0.5938 | 0.5143 | 0.5938 | 0.5603 | 0.5938 | 0.5938 | 0.6562 | 0.5220 | 0.5938 | 0.5609 | | 1.0601 | 9.0 | 36 | 1.1417 | 0.6562 | 0.6029 | 0.6562 | 0.6389 | 0.6562 | 0.6562 | 0.7125 | 0.8440 | 0.6562 | 0.8217 | | 1.0375 | 10.0 | 40 | 1.1227 | 0.6875 | 0.6582 | 0.6875 | 0.6831 | 0.6875 | 0.6875 | 0.7330 | 0.8457 | 0.6875 | 0.8237 | | 1.0168 | 11.0 | 44 | 1.1065 | 0.7812 | 0.7692 | 0.7812 | 0.7845 | 0.7812 | 0.7812 | 0.8187 | 0.8717 | 0.7812 | 0.8534 | | 1.0093 | 12.0 | 48 | 1.0887 | 0.7812 | 0.7692 | 0.7812 | 0.7845 | 0.7812 | 0.7812 | 0.8187 | 0.8717 | 0.7812 | 0.8534 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1 - Datasets 2.8.0 - Tokenizers 0.12.1