File size: 4,201 Bytes
ae0d726
 
 
 
 
 
 
5dbc2ce
 
 
 
 
 
 
 
 
d630adf
5dbc2ce
ae0d726
 
d630adf
ae0d726
5dbc2ce
 
ae0d726
 
 
 
 
 
 
 
 
 
 
 
 
d630adf
ae0d726
 
 
d630adf
ae0d726
 
 
d630adf
ae0d726
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5dbc2ce
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: xlnet-base-cased-finetuned-WikiCorpus-PoS
  results: []
datasets:
- Babelscape/wikineural
language:
- en
metrics:
- accuracy
- f1
- recall
- precision
- seqeval
pipeline_tag: token-classification
---

# xlnet-base-cased-finetuned-WikiNeural-PoS

This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased).

It achieves the following results on the evaluation set:
- Loss: 0.0949
- Loc: {'precision': 0.9289891395154553, 'recall': 0.9336691855583543, 'f1': 0.931323283082077, 'number': 5955}
- Misc: {'precision': 0.8191960332920134, 'recall': 0.9140486069946651, 'f1': 0.8640268957788569, 'number': 5061}
- Org: {'precision': 0.9199886104783599, 'recall': 0.9367932734125833, 'f1': 0.9283148972848728, 'number': 3449}
- Per: {'precision': 0.9687377113645301, 'recall': 0.9456813819577735, 'f1': 0.9570707070707071, 'number': 5210}
- Overall Precision: 0.9068
- Overall Recall: 0.9324
- Overall F1: 0.9194
- Overall Accuracy: 0.9904

## Model description

For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Token%20Classification/Monolingual/WikiNeural%20-%20Transformer%20Comparison/POS%20Project%20with%20Wikineural%20Dataset%20-%20XLNet%20Transformer.ipynb

## Intended uses & limitations

This model is intended to demonstrate my ability to solve a complex problem using technology.

## Training and evaluation data

Dataset Source: https://huggingface.co/datasets/Babelscape/wikineural

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Loc                                                                                                       | Misc                                                                                                      | Org                                                                                                       | Per                                                                                                       | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 0.1119        | 1.0   | 5795  | 0.1067          | {'precision': 0.9053637984119267, 'recall': 0.9382031905961377, 'f1': 0.9214910110506349, 'number': 5955} | {'precision': 0.7967393230551125, 'recall': 0.8883619837976684, 'f1': 0.8400597907324365, 'number': 5061} | {'precision': 0.911225658648339, 'recall': 0.9225862568860539, 'f1': 0.9168707679008787, 'number': 3449}  | {'precision': 0.958470156461271, 'recall': 0.9523992322456813, 'f1': 0.9554250505439492, 'number': 5210}  | 0.8899            | 0.9264         | 0.9078     | 0.9887           |
| 0.0724        | 2.0   | 11590 | 0.0949          | {'precision': 0.9289891395154553, 'recall': 0.9336691855583543, 'f1': 0.931323283082077, 'number': 5955}  | {'precision': 0.8191960332920134, 'recall': 0.9140486069946651, 'f1': 0.8640268957788569, 'number': 5061} | {'precision': 0.9199886104783599, 'recall': 0.9367932734125833, 'f1': 0.9283148972848728, 'number': 3449} | {'precision': 0.9687377113645301, 'recall': 0.9456813819577735, 'f1': 0.9570707070707071, 'number': 5210} | 0.9068            | 0.9324         | 0.9194     | 0.9904           |


### Framework versions

- Transformers 4.28.1
- Pytorch 2.0.0
- Datasets 2.11.0
- Tokenizers 0.13.3