Upload 10 files
Browse files- added_tokens.json +16 -0
- config.json +50 -0
- configuration_chatglm.py +58 -0
- generation_config.json +13 -0
- model.safetensors.index.json +291 -0
- modeling_chatglm.py +1138 -0
- special_tokens_map.json +32 -0
- tokenization_chatglm.py +224 -0
- tokenizer.model +3 -0
- tokenizer_config.json +148 -0
    	
        added_tokens.json
    ADDED
    
    | @@ -0,0 +1,16 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "<eop>": 151334,
         | 
| 3 | 
            +
              "<sop>": 151333,
         | 
| 4 | 
            +
              "<|assistant|>": 151337,
         | 
| 5 | 
            +
              "<|begin_of_image|>": 151339,
         | 
| 6 | 
            +
              "<|begin_of_video|>": 151341,
         | 
| 7 | 
            +
              "<|end_of_image|>": 151340,
         | 
| 8 | 
            +
              "<|end_of_video|>": 151342,
         | 
| 9 | 
            +
              "<|endoftext|>": 151329,
         | 
| 10 | 
            +
              "<|observation|>": 151338,
         | 
| 11 | 
            +
              "<|system|>": 151335,
         | 
| 12 | 
            +
              "<|user|>": 151336,
         | 
| 13 | 
            +
              "[MASK]": 151330,
         | 
| 14 | 
            +
              "[gMASK]": 151331,
         | 
| 15 | 
            +
              "[sMASK]": 151332
         | 
| 16 | 
            +
            }
         | 
    	
        config.json
    ADDED
    
    | @@ -0,0 +1,50 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "_name_or_path": "/home/ubuntu/data/wagndi/duyu_temp/GLM/lp",
         | 
| 3 | 
            +
              "add_bias_linear": false,
         | 
| 4 | 
            +
              "add_qkv_bias": true,
         | 
| 5 | 
            +
              "apply_query_key_layer_scaling": true,
         | 
| 6 | 
            +
              "apply_residual_connection_post_layernorm": false,
         | 
| 7 | 
            +
              "architectures": [
         | 
| 8 | 
            +
                "ChatGLMForConditionalGeneration"
         | 
| 9 | 
            +
              ],
         | 
| 10 | 
            +
              "attention_dropout": 0.0,
         | 
| 11 | 
            +
              "attention_softmax_in_fp32": true,
         | 
| 12 | 
            +
              "auto_map": {
         | 
| 13 | 
            +
                "AutoConfig": "configuration_chatglm.ChatGLMConfig",
         | 
| 14 | 
            +
                "AutoModel": "modeling_chatglm.ChatGLMForConditionalGeneration",
         | 
| 15 | 
            +
                "AutoModelForCausalLM": "modeling_chatglm.ChatGLMForConditionalGeneration",
         | 
| 16 | 
            +
                "AutoModelForSeq2SeqLM": "modeling_chatglm.ChatGLMForConditionalGeneration",
         | 
| 17 | 
            +
                "AutoModelForSequenceClassification": "modeling_chatglm.ChatGLMForSequenceClassification"
         | 
| 18 | 
            +
              },
         | 
| 19 | 
            +
              "bias_dropout_fusion": true,
         | 
| 20 | 
            +
              "classifier_dropout": null,
         | 
| 21 | 
            +
              "eos_token_id": [
         | 
| 22 | 
            +
                151329,
         | 
| 23 | 
            +
                151336,
         | 
| 24 | 
            +
                151338
         | 
| 25 | 
            +
              ],
         | 
| 26 | 
            +
              "ffn_hidden_size": 13696,
         | 
| 27 | 
            +
              "fp32_residual_connection": false,
         | 
| 28 | 
            +
              "hidden_dropout": 0.0,
         | 
| 29 | 
            +
              "hidden_size": 4096,
         | 
| 30 | 
            +
              "kv_channels": 128,
         | 
| 31 | 
            +
              "layernorm_epsilon": 1.5625e-07,
         | 
| 32 | 
            +
              "model_type": "chatglm",
         | 
| 33 | 
            +
              "multi_query_attention": true,
         | 
| 34 | 
            +
              "multi_query_group_num": 2,
         | 
| 35 | 
            +
              "num_attention_heads": 32,
         | 
| 36 | 
            +
              "num_hidden_layers": 40,
         | 
| 37 | 
            +
              "num_layers": 40,
         | 
| 38 | 
            +
              "original_rope": true,
         | 
| 39 | 
            +
              "pad_token_id": 151329,
         | 
| 40 | 
            +
              "padded_vocab_size": 151552,
         | 
| 41 | 
            +
              "post_layer_norm": true,
         | 
| 42 | 
            +
              "rmsnorm": true,
         | 
| 43 | 
            +
              "rope_ratio": 500,
         | 
| 44 | 
            +
              "seq_length": 131072,
         | 
| 45 | 
            +
              "tie_word_embeddings": false,
         | 
| 46 | 
            +
              "torch_dtype": "bfloat16",
         | 
| 47 | 
            +
              "transformers_version": "4.45.2",
         | 
| 48 | 
            +
              "use_cache": true,
         | 
| 49 | 
            +
              "vocab_size": 151552
         | 
| 50 | 
            +
            }
         | 
    	
        configuration_chatglm.py
    ADDED
    
    | @@ -0,0 +1,58 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from transformers import PretrainedConfig
         | 
| 2 | 
            +
             | 
| 3 | 
            +
             | 
| 4 | 
            +
            class ChatGLMConfig(PretrainedConfig):
         | 
| 5 | 
            +
                model_type = "chatglm"
         | 
| 6 | 
            +
             | 
| 7 | 
            +
                def __init__(
         | 
| 8 | 
            +
                        self,
         | 
| 9 | 
            +
                        num_layers=28,
         | 
| 10 | 
            +
                        padded_vocab_size=65024,
         | 
| 11 | 
            +
                        hidden_size=4096,
         | 
| 12 | 
            +
                        ffn_hidden_size=13696,
         | 
| 13 | 
            +
                        kv_channels=128,
         | 
| 14 | 
            +
                        num_attention_heads=32,
         | 
| 15 | 
            +
                        seq_length=2048,
         | 
| 16 | 
            +
                        hidden_dropout=0.0,
         | 
| 17 | 
            +
                        classifier_dropout=None,
         | 
| 18 | 
            +
                        attention_dropout=0.0,
         | 
| 19 | 
            +
                        layernorm_epsilon=1e-5,
         | 
| 20 | 
            +
                        rmsnorm=True,
         | 
| 21 | 
            +
                        apply_residual_connection_post_layernorm=False,
         | 
| 22 | 
            +
                        post_layer_norm=True,
         | 
| 23 | 
            +
                        add_bias_linear=False,
         | 
| 24 | 
            +
                        add_qkv_bias=False,
         | 
| 25 | 
            +
                        bias_dropout_fusion=True,
         | 
| 26 | 
            +
                        multi_query_attention=False,
         | 
| 27 | 
            +
                        multi_query_group_num=1,
         | 
| 28 | 
            +
                        rope_ratio=1,
         | 
| 29 | 
            +
                        apply_query_key_layer_scaling=True,
         | 
| 30 | 
            +
                        attention_softmax_in_fp32=True,
         | 
| 31 | 
            +
                        fp32_residual_connection=False,
         | 
| 32 | 
            +
                        **kwargs
         | 
| 33 | 
            +
                ):
         | 
| 34 | 
            +
                    self.num_layers = num_layers
         | 
| 35 | 
            +
                    self.vocab_size = padded_vocab_size
         | 
| 36 | 
            +
                    self.padded_vocab_size = padded_vocab_size
         | 
| 37 | 
            +
                    self.hidden_size = hidden_size
         | 
| 38 | 
            +
                    self.ffn_hidden_size = ffn_hidden_size
         | 
| 39 | 
            +
                    self.kv_channels = kv_channels
         | 
| 40 | 
            +
                    self.num_attention_heads = num_attention_heads
         | 
| 41 | 
            +
                    self.seq_length = seq_length
         | 
| 42 | 
            +
                    self.hidden_dropout = hidden_dropout
         | 
| 43 | 
            +
                    self.classifier_dropout = classifier_dropout
         | 
| 44 | 
            +
                    self.attention_dropout = attention_dropout
         | 
| 45 | 
            +
                    self.layernorm_epsilon = layernorm_epsilon
         | 
| 46 | 
            +
                    self.rmsnorm = rmsnorm
         | 
| 47 | 
            +
                    self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
         | 
| 48 | 
            +
                    self.post_layer_norm = post_layer_norm
         | 
| 49 | 
            +
                    self.add_bias_linear = add_bias_linear
         | 
| 50 | 
            +
                    self.add_qkv_bias = add_qkv_bias
         | 
| 51 | 
            +
                    self.bias_dropout_fusion = bias_dropout_fusion
         | 
| 52 | 
            +
                    self.multi_query_attention = multi_query_attention
         | 
| 53 | 
            +
                    self.multi_query_group_num = multi_query_group_num
         | 
| 54 | 
            +
                    self.rope_ratio = rope_ratio
         | 
| 55 | 
            +
                    self.apply_query_key_layer_scaling = apply_query_key_layer_scaling
         | 
| 56 | 
            +
                    self.attention_softmax_in_fp32 = attention_softmax_in_fp32
         | 
| 57 | 
            +
                    self.fp32_residual_connection = fp32_residual_connection
         | 
| 58 | 
            +
                    super().__init__(**kwargs)
         | 
    	
        generation_config.json
    ADDED
    
    | @@ -0,0 +1,13 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "do_sample": true,
         | 
| 3 | 
            +
              "eos_token_id": [
         | 
| 4 | 
            +
                151329,
         | 
| 5 | 
            +
                151336,
         | 
| 6 | 
            +
                151338
         | 
| 7 | 
            +
              ],
         | 
| 8 | 
            +
              "max_length": 128000,
         | 
| 9 | 
            +
              "pad_token_id": 151329,
         | 
| 10 | 
            +
              "temperature": 0.8,
         | 
| 11 | 
            +
              "top_p": 0.8,
         | 
| 12 | 
            +
              "transformers_version": "4.45.2"
         | 
| 13 | 
            +
            }
         | 
    	
        model.safetensors.index.json
    ADDED
    
    | @@ -0,0 +1,291 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "metadata": {
         | 
| 3 | 
            +
                "total_size": 18799902784
         | 
| 4 | 
            +
              },
         | 
| 5 | 
            +
              "weight_map": {
         | 
| 6 | 
            +
                "transformer.embedding.word_embeddings.weight": "model-00001-of-00005.safetensors",
         | 
| 7 | 
            +
                "transformer.encoder.final_layernorm.weight": "model-00005-of-00005.safetensors",
         | 
| 8 | 
            +
                "transformer.encoder.layers.0.input_layernorm.weight": "model-00001-of-00005.safetensors",
         | 
| 9 | 
            +
                "transformer.encoder.layers.0.mlp.dense_4h_to_h.weight": "model-00001-of-00005.safetensors",
         | 
| 10 | 
            +
                "transformer.encoder.layers.0.mlp.dense_h_to_4h.weight": "model-00001-of-00005.safetensors",
         | 
| 11 | 
            +
                "transformer.encoder.layers.0.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
         | 
| 12 | 
            +
                "transformer.encoder.layers.0.self_attention.dense.weight": "model-00001-of-00005.safetensors",
         | 
| 13 | 
            +
                "transformer.encoder.layers.0.self_attention.query_key_value.bias": "model-00001-of-00005.safetensors",
         | 
| 14 | 
            +
                "transformer.encoder.layers.0.self_attention.query_key_value.weight": "model-00001-of-00005.safetensors",
         | 
| 15 | 
            +
                "transformer.encoder.layers.1.input_layernorm.weight": "model-00001-of-00005.safetensors",
         | 
| 16 | 
            +
                "transformer.encoder.layers.1.mlp.dense_4h_to_h.weight": "model-00001-of-00005.safetensors",
         | 
| 17 | 
            +
                "transformer.encoder.layers.1.mlp.dense_h_to_4h.weight": "model-00001-of-00005.safetensors",
         | 
| 18 | 
            +
                "transformer.encoder.layers.1.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
         | 
| 19 | 
            +
                "transformer.encoder.layers.1.self_attention.dense.weight": "model-00001-of-00005.safetensors",
         | 
| 20 | 
            +
                "transformer.encoder.layers.1.self_attention.query_key_value.bias": "model-00001-of-00005.safetensors",
         | 
| 21 | 
            +
                "transformer.encoder.layers.1.self_attention.query_key_value.weight": "model-00001-of-00005.safetensors",
         | 
| 22 | 
            +
                "transformer.encoder.layers.10.input_layernorm.weight": "model-00002-of-00005.safetensors",
         | 
| 23 | 
            +
                "transformer.encoder.layers.10.mlp.dense_4h_to_h.weight": "model-00002-of-00005.safetensors",
         | 
| 24 | 
            +
                "transformer.encoder.layers.10.mlp.dense_h_to_4h.weight": "model-00002-of-00005.safetensors",
         | 
| 25 | 
            +
                "transformer.encoder.layers.10.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
         | 
| 26 | 
            +
                "transformer.encoder.layers.10.self_attention.dense.weight": "model-00002-of-00005.safetensors",
         | 
| 27 | 
            +
                "transformer.encoder.layers.10.self_attention.query_key_value.bias": "model-00002-of-00005.safetensors",
         | 
| 28 | 
            +
                "transformer.encoder.layers.10.self_attention.query_key_value.weight": "model-00002-of-00005.safetensors",
         | 
| 29 | 
            +
                "transformer.encoder.layers.11.input_layernorm.weight": "model-00002-of-00005.safetensors",
         | 
| 30 | 
            +
                "transformer.encoder.layers.11.mlp.dense_4h_to_h.weight": "model-00002-of-00005.safetensors",
         | 
| 31 | 
            +
                "transformer.encoder.layers.11.mlp.dense_h_to_4h.weight": "model-00002-of-00005.safetensors",
         | 
| 32 | 
            +
                "transformer.encoder.layers.11.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
         | 
| 33 | 
            +
                "transformer.encoder.layers.11.self_attention.dense.weight": "model-00002-of-00005.safetensors",
         | 
| 34 | 
            +
                "transformer.encoder.layers.11.self_attention.query_key_value.bias": "model-00002-of-00005.safetensors",
         | 
| 35 | 
            +
                "transformer.encoder.layers.11.self_attention.query_key_value.weight": "model-00002-of-00005.safetensors",
         | 
| 36 | 
            +
                "transformer.encoder.layers.12.input_layernorm.weight": "model-00002-of-00005.safetensors",
         | 
| 37 | 
            +
                "transformer.encoder.layers.12.mlp.dense_4h_to_h.weight": "model-00002-of-00005.safetensors",
         | 
| 38 | 
            +
                "transformer.encoder.layers.12.mlp.dense_h_to_4h.weight": "model-00002-of-00005.safetensors",
         | 
| 39 | 
            +
                "transformer.encoder.layers.12.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
         | 
| 40 | 
            +
                "transformer.encoder.layers.12.self_attention.dense.weight": "model-00002-of-00005.safetensors",
         | 
| 41 | 
            +
                "transformer.encoder.layers.12.self_attention.query_key_value.bias": "model-00002-of-00005.safetensors",
         | 
| 42 | 
            +
                "transformer.encoder.layers.12.self_attention.query_key_value.weight": "model-00002-of-00005.safetensors",
         | 
| 43 | 
            +
                "transformer.encoder.layers.13.input_layernorm.weight": "model-00002-of-00005.safetensors",
         | 
| 44 | 
            +
                "transformer.encoder.layers.13.mlp.dense_4h_to_h.weight": "model-00002-of-00005.safetensors",
         | 
| 45 | 
            +
                "transformer.encoder.layers.13.mlp.dense_h_to_4h.weight": "model-00002-of-00005.safetensors",
         | 
| 46 | 
            +
                "transformer.encoder.layers.13.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
         | 
| 47 | 
            +
                "transformer.encoder.layers.13.self_attention.dense.weight": "model-00002-of-00005.safetensors",
         | 
| 48 | 
            +
                "transformer.encoder.layers.13.self_attention.query_key_value.bias": "model-00002-of-00005.safetensors",
         | 
| 49 | 
            +
                "transformer.encoder.layers.13.self_attention.query_key_value.weight": "model-00002-of-00005.safetensors",
         | 
| 50 | 
            +
                "transformer.encoder.layers.14.input_layernorm.weight": "model-00002-of-00005.safetensors",
         | 
| 51 | 
            +
                "transformer.encoder.layers.14.mlp.dense_4h_to_h.weight": "model-00002-of-00005.safetensors",
         | 
| 52 | 
            +
                "transformer.encoder.layers.14.mlp.dense_h_to_4h.weight": "model-00002-of-00005.safetensors",
         | 
| 53 | 
            +
                "transformer.encoder.layers.14.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
         | 
| 54 | 
            +
                "transformer.encoder.layers.14.self_attention.dense.weight": "model-00002-of-00005.safetensors",
         | 
| 55 | 
            +
                "transformer.encoder.layers.14.self_attention.query_key_value.bias": "model-00002-of-00005.safetensors",
         | 
| 56 | 
            +
                "transformer.encoder.layers.14.self_attention.query_key_value.weight": "model-00002-of-00005.safetensors",
         | 
| 57 | 
            +
                "transformer.encoder.layers.15.input_layernorm.weight": "model-00002-of-00005.safetensors",
         | 
| 58 | 
            +
                "transformer.encoder.layers.15.mlp.dense_4h_to_h.weight": "model-00002-of-00005.safetensors",
         | 
| 59 | 
            +
                "transformer.encoder.layers.15.mlp.dense_h_to_4h.weight": "model-00002-of-00005.safetensors",
         | 
| 60 | 
            +
                "transformer.encoder.layers.15.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
         | 
| 61 | 
            +
                "transformer.encoder.layers.15.self_attention.dense.weight": "model-00002-of-00005.safetensors",
         | 
| 62 | 
            +
                "transformer.encoder.layers.15.self_attention.query_key_value.bias": "model-00002-of-00005.safetensors",
         | 
| 63 | 
            +
                "transformer.encoder.layers.15.self_attention.query_key_value.weight": "model-00002-of-00005.safetensors",
         | 
| 64 | 
            +
                "transformer.encoder.layers.16.input_layernorm.weight": "model-00002-of-00005.safetensors",
         | 
| 65 | 
            +
                "transformer.encoder.layers.16.mlp.dense_4h_to_h.weight": "model-00003-of-00005.safetensors",
         | 
| 66 | 
            +
                "transformer.encoder.layers.16.mlp.dense_h_to_4h.weight": "model-00003-of-00005.safetensors",
         | 
| 67 | 
            +
                "transformer.encoder.layers.16.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
         | 
| 68 | 
            +
                "transformer.encoder.layers.16.self_attention.dense.weight": "model-00002-of-00005.safetensors",
         | 
| 69 | 
            +
                "transformer.encoder.layers.16.self_attention.query_key_value.bias": "model-00002-of-00005.safetensors",
         | 
| 70 | 
            +
                "transformer.encoder.layers.16.self_attention.query_key_value.weight": "model-00002-of-00005.safetensors",
         | 
| 71 | 
            +
                "transformer.encoder.layers.17.input_layernorm.weight": "model-00003-of-00005.safetensors",
         | 
| 72 | 
            +
                "transformer.encoder.layers.17.mlp.dense_4h_to_h.weight": "model-00003-of-00005.safetensors",
         | 
| 73 | 
            +
                "transformer.encoder.layers.17.mlp.dense_h_to_4h.weight": "model-00003-of-00005.safetensors",
         | 
| 74 | 
            +
                "transformer.encoder.layers.17.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
         | 
| 75 | 
            +
                "transformer.encoder.layers.17.self_attention.dense.weight": "model-00003-of-00005.safetensors",
         | 
| 76 | 
            +
                "transformer.encoder.layers.17.self_attention.query_key_value.bias": "model-00003-of-00005.safetensors",
         | 
| 77 | 
            +
                "transformer.encoder.layers.17.self_attention.query_key_value.weight": "model-00003-of-00005.safetensors",
         | 
| 78 | 
            +
                "transformer.encoder.layers.18.input_layernorm.weight": "model-00003-of-00005.safetensors",
         | 
| 79 | 
            +
                "transformer.encoder.layers.18.mlp.dense_4h_to_h.weight": "model-00003-of-00005.safetensors",
         | 
| 80 | 
            +
                "transformer.encoder.layers.18.mlp.dense_h_to_4h.weight": "model-00003-of-00005.safetensors",
         | 
| 81 | 
            +
                "transformer.encoder.layers.18.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
         | 
| 82 | 
            +
                "transformer.encoder.layers.18.self_attention.dense.weight": "model-00003-of-00005.safetensors",
         | 
| 83 | 
            +
                "transformer.encoder.layers.18.self_attention.query_key_value.bias": "model-00003-of-00005.safetensors",
         | 
| 84 | 
            +
                "transformer.encoder.layers.18.self_attention.query_key_value.weight": "model-00003-of-00005.safetensors",
         | 
| 85 | 
            +
                "transformer.encoder.layers.19.input_layernorm.weight": "model-00003-of-00005.safetensors",
         | 
| 86 | 
            +
                "transformer.encoder.layers.19.mlp.dense_4h_to_h.weight": "model-00003-of-00005.safetensors",
         | 
| 87 | 
            +
                "transformer.encoder.layers.19.mlp.dense_h_to_4h.weight": "model-00003-of-00005.safetensors",
         | 
| 88 | 
            +
                "transformer.encoder.layers.19.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
         | 
| 89 | 
            +
                "transformer.encoder.layers.19.self_attention.dense.weight": "model-00003-of-00005.safetensors",
         | 
| 90 | 
            +
                "transformer.encoder.layers.19.self_attention.query_key_value.bias": "model-00003-of-00005.safetensors",
         | 
| 91 | 
            +
                "transformer.encoder.layers.19.self_attention.query_key_value.weight": "model-00003-of-00005.safetensors",
         | 
| 92 | 
            +
                "transformer.encoder.layers.2.input_layernorm.weight": "model-00001-of-00005.safetensors",
         | 
| 93 | 
            +
                "transformer.encoder.layers.2.mlp.dense_4h_to_h.weight": "model-00001-of-00005.safetensors",
         | 
| 94 | 
            +
                "transformer.encoder.layers.2.mlp.dense_h_to_4h.weight": "model-00001-of-00005.safetensors",
         | 
| 95 | 
            +
                "transformer.encoder.layers.2.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
         | 
| 96 | 
            +
                "transformer.encoder.layers.2.self_attention.dense.weight": "model-00001-of-00005.safetensors",
         | 
| 97 | 
            +
                "transformer.encoder.layers.2.self_attention.query_key_value.bias": "model-00001-of-00005.safetensors",
         | 
| 98 | 
            +
                "transformer.encoder.layers.2.self_attention.query_key_value.weight": "model-00001-of-00005.safetensors",
         | 
| 99 | 
            +
                "transformer.encoder.layers.20.input_layernorm.weight": "model-00003-of-00005.safetensors",
         | 
| 100 | 
            +
                "transformer.encoder.layers.20.mlp.dense_4h_to_h.weight": "model-00003-of-00005.safetensors",
         | 
| 101 | 
            +
                "transformer.encoder.layers.20.mlp.dense_h_to_4h.weight": "model-00003-of-00005.safetensors",
         | 
| 102 | 
            +
                "transformer.encoder.layers.20.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
         | 
| 103 | 
            +
                "transformer.encoder.layers.20.self_attention.dense.weight": "model-00003-of-00005.safetensors",
         | 
| 104 | 
            +
                "transformer.encoder.layers.20.self_attention.query_key_value.bias": "model-00003-of-00005.safetensors",
         | 
| 105 | 
            +
                "transformer.encoder.layers.20.self_attention.query_key_value.weight": "model-00003-of-00005.safetensors",
         | 
| 106 | 
            +
                "transformer.encoder.layers.21.input_layernorm.weight": "model-00003-of-00005.safetensors",
         | 
| 107 | 
            +
                "transformer.encoder.layers.21.mlp.dense_4h_to_h.weight": "model-00003-of-00005.safetensors",
         | 
| 108 | 
            +
                "transformer.encoder.layers.21.mlp.dense_h_to_4h.weight": "model-00003-of-00005.safetensors",
         | 
| 109 | 
            +
                "transformer.encoder.layers.21.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
         | 
| 110 | 
            +
                "transformer.encoder.layers.21.self_attention.dense.weight": "model-00003-of-00005.safetensors",
         | 
| 111 | 
            +
                "transformer.encoder.layers.21.self_attention.query_key_value.bias": "model-00003-of-00005.safetensors",
         | 
| 112 | 
            +
                "transformer.encoder.layers.21.self_attention.query_key_value.weight": "model-00003-of-00005.safetensors",
         | 
| 113 | 
            +
                "transformer.encoder.layers.22.input_layernorm.weight": "model-00003-of-00005.safetensors",
         | 
| 114 | 
            +
                "transformer.encoder.layers.22.mlp.dense_4h_to_h.weight": "model-00003-of-00005.safetensors",
         | 
| 115 | 
            +
                "transformer.encoder.layers.22.mlp.dense_h_to_4h.weight": "model-00003-of-00005.safetensors",
         | 
| 116 | 
            +
                "transformer.encoder.layers.22.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
         | 
| 117 | 
            +
                "transformer.encoder.layers.22.self_attention.dense.weight": "model-00003-of-00005.safetensors",
         | 
| 118 | 
            +
                "transformer.encoder.layers.22.self_attention.query_key_value.bias": "model-00003-of-00005.safetensors",
         | 
| 119 | 
            +
                "transformer.encoder.layers.22.self_attention.query_key_value.weight": "model-00003-of-00005.safetensors",
         | 
| 120 | 
            +
                "transformer.encoder.layers.23.input_layernorm.weight": "model-00003-of-00005.safetensors",
         | 
| 121 | 
            +
                "transformer.encoder.layers.23.mlp.dense_4h_to_h.weight": "model-00003-of-00005.safetensors",
         | 
| 122 | 
            +
                "transformer.encoder.layers.23.mlp.dense_h_to_4h.weight": "model-00003-of-00005.safetensors",
         | 
| 123 | 
            +
                "transformer.encoder.layers.23.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
         | 
| 124 | 
            +
                "transformer.encoder.layers.23.self_attention.dense.weight": "model-00003-of-00005.safetensors",
         | 
| 125 | 
            +
                "transformer.encoder.layers.23.self_attention.query_key_value.bias": "model-00003-of-00005.safetensors",
         | 
| 126 | 
            +
                "transformer.encoder.layers.23.self_attention.query_key_value.weight": "model-00003-of-00005.safetensors",
         | 
| 127 | 
            +
                "transformer.encoder.layers.24.input_layernorm.weight": "model-00003-of-00005.safetensors",
         | 
| 128 | 
            +
                "transformer.encoder.layers.24.mlp.dense_4h_to_h.weight": "model-00003-of-00005.safetensors",
         | 
| 129 | 
            +
                "transformer.encoder.layers.24.mlp.dense_h_to_4h.weight": "model-00003-of-00005.safetensors",
         | 
| 130 | 
            +
                "transformer.encoder.layers.24.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
         | 
| 131 | 
            +
                "transformer.encoder.layers.24.self_attention.dense.weight": "model-00003-of-00005.safetensors",
         | 
| 132 | 
            +
                "transformer.encoder.layers.24.self_attention.query_key_value.bias": "model-00003-of-00005.safetensors",
         | 
| 133 | 
            +
                "transformer.encoder.layers.24.self_attention.query_key_value.weight": "model-00003-of-00005.safetensors",
         | 
| 134 | 
            +
                "transformer.encoder.layers.25.input_layernorm.weight": "model-00003-of-00005.safetensors",
         | 
| 135 | 
            +
                "transformer.encoder.layers.25.mlp.dense_4h_to_h.weight": "model-00004-of-00005.safetensors",
         | 
| 136 | 
            +
                "transformer.encoder.layers.25.mlp.dense_h_to_4h.weight": "model-00003-of-00005.safetensors",
         | 
| 137 | 
            +
                "transformer.encoder.layers.25.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
         | 
| 138 | 
            +
                "transformer.encoder.layers.25.self_attention.dense.weight": "model-00003-of-00005.safetensors",
         | 
| 139 | 
            +
                "transformer.encoder.layers.25.self_attention.query_key_value.bias": "model-00003-of-00005.safetensors",
         | 
| 140 | 
            +
                "transformer.encoder.layers.25.self_attention.query_key_value.weight": "model-00003-of-00005.safetensors",
         | 
| 141 | 
            +
                "transformer.encoder.layers.26.input_layernorm.weight": "model-00004-of-00005.safetensors",
         | 
| 142 | 
            +
                "transformer.encoder.layers.26.mlp.dense_4h_to_h.weight": "model-00004-of-00005.safetensors",
         | 
| 143 | 
            +
                "transformer.encoder.layers.26.mlp.dense_h_to_4h.weight": "model-00004-of-00005.safetensors",
         | 
| 144 | 
            +
                "transformer.encoder.layers.26.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
         | 
| 145 | 
            +
                "transformer.encoder.layers.26.self_attention.dense.weight": "model-00004-of-00005.safetensors",
         | 
| 146 | 
            +
                "transformer.encoder.layers.26.self_attention.query_key_value.bias": "model-00004-of-00005.safetensors",
         | 
| 147 | 
            +
                "transformer.encoder.layers.26.self_attention.query_key_value.weight": "model-00004-of-00005.safetensors",
         | 
| 148 | 
            +
                "transformer.encoder.layers.27.input_layernorm.weight": "model-00004-of-00005.safetensors",
         | 
| 149 | 
            +
                "transformer.encoder.layers.27.mlp.dense_4h_to_h.weight": "model-00004-of-00005.safetensors",
         | 
| 150 | 
            +
                "transformer.encoder.layers.27.mlp.dense_h_to_4h.weight": "model-00004-of-00005.safetensors",
         | 
| 151 | 
            +
                "transformer.encoder.layers.27.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
         | 
| 152 | 
            +
                "transformer.encoder.layers.27.self_attention.dense.weight": "model-00004-of-00005.safetensors",
         | 
| 153 | 
            +
                "transformer.encoder.layers.27.self_attention.query_key_value.bias": "model-00004-of-00005.safetensors",
         | 
| 154 | 
            +
                "transformer.encoder.layers.27.self_attention.query_key_value.weight": "model-00004-of-00005.safetensors",
         | 
| 155 | 
            +
                "transformer.encoder.layers.28.input_layernorm.weight": "model-00004-of-00005.safetensors",
         | 
| 156 | 
            +
                "transformer.encoder.layers.28.mlp.dense_4h_to_h.weight": "model-00004-of-00005.safetensors",
         | 
| 157 | 
            +
                "transformer.encoder.layers.28.mlp.dense_h_to_4h.weight": "model-00004-of-00005.safetensors",
         | 
| 158 | 
            +
                "transformer.encoder.layers.28.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
         | 
| 159 | 
            +
                "transformer.encoder.layers.28.self_attention.dense.weight": "model-00004-of-00005.safetensors",
         | 
| 160 | 
            +
                "transformer.encoder.layers.28.self_attention.query_key_value.bias": "model-00004-of-00005.safetensors",
         | 
| 161 | 
            +
                "transformer.encoder.layers.28.self_attention.query_key_value.weight": "model-00004-of-00005.safetensors",
         | 
| 162 | 
            +
                "transformer.encoder.layers.29.input_layernorm.weight": "model-00004-of-00005.safetensors",
         | 
| 163 | 
            +
                "transformer.encoder.layers.29.mlp.dense_4h_to_h.weight": "model-00004-of-00005.safetensors",
         | 
| 164 | 
            +
                "transformer.encoder.layers.29.mlp.dense_h_to_4h.weight": "model-00004-of-00005.safetensors",
         | 
| 165 | 
            +
                "transformer.encoder.layers.29.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
         | 
| 166 | 
            +
                "transformer.encoder.layers.29.self_attention.dense.weight": "model-00004-of-00005.safetensors",
         | 
| 167 | 
            +
                "transformer.encoder.layers.29.self_attention.query_key_value.bias": "model-00004-of-00005.safetensors",
         | 
| 168 | 
            +
                "transformer.encoder.layers.29.self_attention.query_key_value.weight": "model-00004-of-00005.safetensors",
         | 
| 169 | 
            +
                "transformer.encoder.layers.3.input_layernorm.weight": "model-00001-of-00005.safetensors",
         | 
| 170 | 
            +
                "transformer.encoder.layers.3.mlp.dense_4h_to_h.weight": "model-00001-of-00005.safetensors",
         | 
| 171 | 
            +
                "transformer.encoder.layers.3.mlp.dense_h_to_4h.weight": "model-00001-of-00005.safetensors",
         | 
| 172 | 
            +
                "transformer.encoder.layers.3.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
         | 
| 173 | 
            +
                "transformer.encoder.layers.3.self_attention.dense.weight": "model-00001-of-00005.safetensors",
         | 
| 174 | 
            +
                "transformer.encoder.layers.3.self_attention.query_key_value.bias": "model-00001-of-00005.safetensors",
         | 
| 175 | 
            +
                "transformer.encoder.layers.3.self_attention.query_key_value.weight": "model-00001-of-00005.safetensors",
         | 
| 176 | 
            +
                "transformer.encoder.layers.30.input_layernorm.weight": "model-00004-of-00005.safetensors",
         | 
| 177 | 
            +
                "transformer.encoder.layers.30.mlp.dense_4h_to_h.weight": "model-00004-of-00005.safetensors",
         | 
| 178 | 
            +
                "transformer.encoder.layers.30.mlp.dense_h_to_4h.weight": "model-00004-of-00005.safetensors",
         | 
| 179 | 
            +
                "transformer.encoder.layers.30.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
         | 
| 180 | 
            +
                "transformer.encoder.layers.30.self_attention.dense.weight": "model-00004-of-00005.safetensors",
         | 
| 181 | 
            +
                "transformer.encoder.layers.30.self_attention.query_key_value.bias": "model-00004-of-00005.safetensors",
         | 
| 182 | 
            +
                "transformer.encoder.layers.30.self_attention.query_key_value.weight": "model-00004-of-00005.safetensors",
         | 
| 183 | 
            +
                "transformer.encoder.layers.31.input_layernorm.weight": "model-00004-of-00005.safetensors",
         | 
| 184 | 
            +
                "transformer.encoder.layers.31.mlp.dense_4h_to_h.weight": "model-00004-of-00005.safetensors",
         | 
| 185 | 
            +
                "transformer.encoder.layers.31.mlp.dense_h_to_4h.weight": "model-00004-of-00005.safetensors",
         | 
| 186 | 
            +
                "transformer.encoder.layers.31.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
         | 
| 187 | 
            +
                "transformer.encoder.layers.31.self_attention.dense.weight": "model-00004-of-00005.safetensors",
         | 
| 188 | 
            +
                "transformer.encoder.layers.31.self_attention.query_key_value.bias": "model-00004-of-00005.safetensors",
         | 
| 189 | 
            +
                "transformer.encoder.layers.31.self_attention.query_key_value.weight": "model-00004-of-00005.safetensors",
         | 
| 190 | 
            +
                "transformer.encoder.layers.32.input_layernorm.weight": "model-00004-of-00005.safetensors",
         | 
| 191 | 
            +
                "transformer.encoder.layers.32.mlp.dense_4h_to_h.weight": "model-00004-of-00005.safetensors",
         | 
| 192 | 
            +
                "transformer.encoder.layers.32.mlp.dense_h_to_4h.weight": "model-00004-of-00005.safetensors",
         | 
| 193 | 
            +
                "transformer.encoder.layers.32.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
         | 
| 194 | 
            +
                "transformer.encoder.layers.32.self_attention.dense.weight": "model-00004-of-00005.safetensors",
         | 
| 195 | 
            +
                "transformer.encoder.layers.32.self_attention.query_key_value.bias": "model-00004-of-00005.safetensors",
         | 
| 196 | 
            +
                "transformer.encoder.layers.32.self_attention.query_key_value.weight": "model-00004-of-00005.safetensors",
         | 
| 197 | 
            +
                "transformer.encoder.layers.33.input_layernorm.weight": "model-00004-of-00005.safetensors",
         | 
| 198 | 
            +
                "transformer.encoder.layers.33.mlp.dense_4h_to_h.weight": "model-00004-of-00005.safetensors",
         | 
| 199 | 
            +
                "transformer.encoder.layers.33.mlp.dense_h_to_4h.weight": "model-00004-of-00005.safetensors",
         | 
| 200 | 
            +
                "transformer.encoder.layers.33.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
         | 
| 201 | 
            +
                "transformer.encoder.layers.33.self_attention.dense.weight": "model-00004-of-00005.safetensors",
         | 
| 202 | 
            +
                "transformer.encoder.layers.33.self_attention.query_key_value.bias": "model-00004-of-00005.safetensors",
         | 
| 203 | 
            +
                "transformer.encoder.layers.33.self_attention.query_key_value.weight": "model-00004-of-00005.safetensors",
         | 
| 204 | 
            +
                "transformer.encoder.layers.34.input_layernorm.weight": "model-00004-of-00005.safetensors",
         | 
| 205 | 
            +
                "transformer.encoder.layers.34.mlp.dense_4h_to_h.weight": "model-00004-of-00005.safetensors",
         | 
| 206 | 
            +
                "transformer.encoder.layers.34.mlp.dense_h_to_4h.weight": "model-00004-of-00005.safetensors",
         | 
| 207 | 
            +
                "transformer.encoder.layers.34.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
         | 
| 208 | 
            +
                "transformer.encoder.layers.34.self_attention.dense.weight": "model-00004-of-00005.safetensors",
         | 
| 209 | 
            +
                "transformer.encoder.layers.34.self_attention.query_key_value.bias": "model-00004-of-00005.safetensors",
         | 
| 210 | 
            +
                "transformer.encoder.layers.34.self_attention.query_key_value.weight": "model-00004-of-00005.safetensors",
         | 
| 211 | 
            +
                "transformer.encoder.layers.35.input_layernorm.weight": "model-00004-of-00005.safetensors",
         | 
| 212 | 
            +
                "transformer.encoder.layers.35.mlp.dense_4h_to_h.weight": "model-00005-of-00005.safetensors",
         | 
| 213 | 
            +
                "transformer.encoder.layers.35.mlp.dense_h_to_4h.weight": "model-00005-of-00005.safetensors",
         | 
| 214 | 
            +
                "transformer.encoder.layers.35.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
         | 
| 215 | 
            +
                "transformer.encoder.layers.35.self_attention.dense.weight": "model-00004-of-00005.safetensors",
         | 
| 216 | 
            +
                "transformer.encoder.layers.35.self_attention.query_key_value.bias": "model-00004-of-00005.safetensors",
         | 
| 217 | 
            +
                "transformer.encoder.layers.35.self_attention.query_key_value.weight": "model-00004-of-00005.safetensors",
         | 
| 218 | 
            +
                "transformer.encoder.layers.36.input_layernorm.weight": "model-00005-of-00005.safetensors",
         | 
| 219 | 
            +
                "transformer.encoder.layers.36.mlp.dense_4h_to_h.weight": "model-00005-of-00005.safetensors",
         | 
| 220 | 
            +
                "transformer.encoder.layers.36.mlp.dense_h_to_4h.weight": "model-00005-of-00005.safetensors",
         | 
| 221 | 
            +
                "transformer.encoder.layers.36.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
         | 
| 222 | 
            +
                "transformer.encoder.layers.36.self_attention.dense.weight": "model-00005-of-00005.safetensors",
         | 
| 223 | 
            +
                "transformer.encoder.layers.36.self_attention.query_key_value.bias": "model-00005-of-00005.safetensors",
         | 
| 224 | 
            +
                "transformer.encoder.layers.36.self_attention.query_key_value.weight": "model-00005-of-00005.safetensors",
         | 
| 225 | 
            +
                "transformer.encoder.layers.37.input_layernorm.weight": "model-00005-of-00005.safetensors",
         | 
| 226 | 
            +
                "transformer.encoder.layers.37.mlp.dense_4h_to_h.weight": "model-00005-of-00005.safetensors",
         | 
| 227 | 
            +
                "transformer.encoder.layers.37.mlp.dense_h_to_4h.weight": "model-00005-of-00005.safetensors",
         | 
| 228 | 
            +
                "transformer.encoder.layers.37.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
         | 
| 229 | 
            +
                "transformer.encoder.layers.37.self_attention.dense.weight": "model-00005-of-00005.safetensors",
         | 
| 230 | 
            +
                "transformer.encoder.layers.37.self_attention.query_key_value.bias": "model-00005-of-00005.safetensors",
         | 
| 231 | 
            +
                "transformer.encoder.layers.37.self_attention.query_key_value.weight": "model-00005-of-00005.safetensors",
         | 
| 232 | 
            +
                "transformer.encoder.layers.38.input_layernorm.weight": "model-00005-of-00005.safetensors",
         | 
| 233 | 
            +
                "transformer.encoder.layers.38.mlp.dense_4h_to_h.weight": "model-00005-of-00005.safetensors",
         | 
| 234 | 
            +
                "transformer.encoder.layers.38.mlp.dense_h_to_4h.weight": "model-00005-of-00005.safetensors",
         | 
| 235 | 
            +
                "transformer.encoder.layers.38.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
         | 
| 236 | 
            +
                "transformer.encoder.layers.38.self_attention.dense.weight": "model-00005-of-00005.safetensors",
         | 
| 237 | 
            +
                "transformer.encoder.layers.38.self_attention.query_key_value.bias": "model-00005-of-00005.safetensors",
         | 
| 238 | 
            +
                "transformer.encoder.layers.38.self_attention.query_key_value.weight": "model-00005-of-00005.safetensors",
         | 
| 239 | 
            +
                "transformer.encoder.layers.39.input_layernorm.weight": "model-00005-of-00005.safetensors",
         | 
| 240 | 
            +
                "transformer.encoder.layers.39.mlp.dense_4h_to_h.weight": "model-00005-of-00005.safetensors",
         | 
| 241 | 
            +
                "transformer.encoder.layers.39.mlp.dense_h_to_4h.weight": "model-00005-of-00005.safetensors",
         | 
| 242 | 
            +
                "transformer.encoder.layers.39.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
         | 
| 243 | 
            +
                "transformer.encoder.layers.39.self_attention.dense.weight": "model-00005-of-00005.safetensors",
         | 
| 244 | 
            +
                "transformer.encoder.layers.39.self_attention.query_key_value.bias": "model-00005-of-00005.safetensors",
         | 
| 245 | 
            +
                "transformer.encoder.layers.39.self_attention.query_key_value.weight": "model-00005-of-00005.safetensors",
         | 
| 246 | 
            +
                "transformer.encoder.layers.4.input_layernorm.weight": "model-00001-of-00005.safetensors",
         | 
| 247 | 
            +
                "transformer.encoder.layers.4.mlp.dense_4h_to_h.weight": "model-00001-of-00005.safetensors",
         | 
| 248 | 
            +
                "transformer.encoder.layers.4.mlp.dense_h_to_4h.weight": "model-00001-of-00005.safetensors",
         | 
| 249 | 
            +
                "transformer.encoder.layers.4.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
         | 
| 250 | 
            +
                "transformer.encoder.layers.4.self_attention.dense.weight": "model-00001-of-00005.safetensors",
         | 
| 251 | 
            +
                "transformer.encoder.layers.4.self_attention.query_key_value.bias": "model-00001-of-00005.safetensors",
         | 
| 252 | 
            +
                "transformer.encoder.layers.4.self_attention.query_key_value.weight": "model-00001-of-00005.safetensors",
         | 
| 253 | 
            +
                "transformer.encoder.layers.5.input_layernorm.weight": "model-00001-of-00005.safetensors",
         | 
| 254 | 
            +
                "transformer.encoder.layers.5.mlp.dense_4h_to_h.weight": "model-00001-of-00005.safetensors",
         | 
| 255 | 
            +
                "transformer.encoder.layers.5.mlp.dense_h_to_4h.weight": "model-00001-of-00005.safetensors",
         | 
| 256 | 
            +
                "transformer.encoder.layers.5.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
         | 
| 257 | 
            +
                "transformer.encoder.layers.5.self_attention.dense.weight": "model-00001-of-00005.safetensors",
         | 
| 258 | 
            +
                "transformer.encoder.layers.5.self_attention.query_key_value.bias": "model-00001-of-00005.safetensors",
         | 
| 259 | 
            +
                "transformer.encoder.layers.5.self_attention.query_key_value.weight": "model-00001-of-00005.safetensors",
         | 
| 260 | 
            +
                "transformer.encoder.layers.6.input_layernorm.weight": "model-00001-of-00005.safetensors",
         | 
| 261 | 
            +
                "transformer.encoder.layers.6.mlp.dense_4h_to_h.weight": "model-00002-of-00005.safetensors",
         | 
| 262 | 
            +
                "transformer.encoder.layers.6.mlp.dense_h_to_4h.weight": "model-00001-of-00005.safetensors",
         | 
| 263 | 
            +
                "transformer.encoder.layers.6.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
         | 
| 264 | 
            +
                "transformer.encoder.layers.6.self_attention.dense.weight": "model-00001-of-00005.safetensors",
         | 
| 265 | 
            +
                "transformer.encoder.layers.6.self_attention.query_key_value.bias": "model-00001-of-00005.safetensors",
         | 
| 266 | 
            +
                "transformer.encoder.layers.6.self_attention.query_key_value.weight": "model-00001-of-00005.safetensors",
         | 
| 267 | 
            +
                "transformer.encoder.layers.7.input_layernorm.weight": "model-00002-of-00005.safetensors",
         | 
| 268 | 
            +
                "transformer.encoder.layers.7.mlp.dense_4h_to_h.weight": "model-00002-of-00005.safetensors",
         | 
| 269 | 
            +
                "transformer.encoder.layers.7.mlp.dense_h_to_4h.weight": "model-00002-of-00005.safetensors",
         | 
| 270 | 
            +
                "transformer.encoder.layers.7.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
         | 
| 271 | 
            +
                "transformer.encoder.layers.7.self_attention.dense.weight": "model-00002-of-00005.safetensors",
         | 
| 272 | 
            +
                "transformer.encoder.layers.7.self_attention.query_key_value.bias": "model-00002-of-00005.safetensors",
         | 
| 273 | 
            +
                "transformer.encoder.layers.7.self_attention.query_key_value.weight": "model-00002-of-00005.safetensors",
         | 
| 274 | 
            +
                "transformer.encoder.layers.8.input_layernorm.weight": "model-00002-of-00005.safetensors",
         | 
| 275 | 
            +
                "transformer.encoder.layers.8.mlp.dense_4h_to_h.weight": "model-00002-of-00005.safetensors",
         | 
| 276 | 
            +
                "transformer.encoder.layers.8.mlp.dense_h_to_4h.weight": "model-00002-of-00005.safetensors",
         | 
| 277 | 
            +
                "transformer.encoder.layers.8.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
         | 
| 278 | 
            +
                "transformer.encoder.layers.8.self_attention.dense.weight": "model-00002-of-00005.safetensors",
         | 
| 279 | 
            +
                "transformer.encoder.layers.8.self_attention.query_key_value.bias": "model-00002-of-00005.safetensors",
         | 
| 280 | 
            +
                "transformer.encoder.layers.8.self_attention.query_key_value.weight": "model-00002-of-00005.safetensors",
         | 
| 281 | 
            +
                "transformer.encoder.layers.9.input_layernorm.weight": "model-00002-of-00005.safetensors",
         | 
| 282 | 
            +
                "transformer.encoder.layers.9.mlp.dense_4h_to_h.weight": "model-00002-of-00005.safetensors",
         | 
| 283 | 
            +
                "transformer.encoder.layers.9.mlp.dense_h_to_4h.weight": "model-00002-of-00005.safetensors",
         | 
| 284 | 
            +
                "transformer.encoder.layers.9.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
         | 
| 285 | 
            +
                "transformer.encoder.layers.9.self_attention.dense.weight": "model-00002-of-00005.safetensors",
         | 
| 286 | 
            +
                "transformer.encoder.layers.9.self_attention.query_key_value.bias": "model-00002-of-00005.safetensors",
         | 
| 287 | 
            +
                "transformer.encoder.layers.9.self_attention.query_key_value.weight": "model-00002-of-00005.safetensors",
         | 
| 288 | 
            +
                "transformer.output_layer.weight": "model-00005-of-00005.safetensors",
         | 
| 289 | 
            +
                "transformer.rotary_pos_emb.inv_freq": "model-00001-of-00005.safetensors"
         | 
| 290 | 
            +
              }
         | 
| 291 | 
            +
            }
         | 
    	
        modeling_chatglm.py
    ADDED
    
    | @@ -0,0 +1,1138 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """ PyTorch ChatGLM model. """
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import math
         | 
| 4 | 
            +
            import sys
         | 
| 5 | 
            +
            import torch
         | 
| 6 | 
            +
            import torch.utils.checkpoint
         | 
| 7 | 
            +
            import torch.nn.functional as F
         | 
| 8 | 
            +
            from torch import nn
         | 
| 9 | 
            +
            from torch.nn import CrossEntropyLoss, LayerNorm, MSELoss, BCEWithLogitsLoss
         | 
| 10 | 
            +
            from torch.nn.utils import skip_init
         | 
| 11 | 
            +
            from typing import Optional, Tuple, Union, List, Dict, Any
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            from transformers.modeling_outputs import (
         | 
| 14 | 
            +
                BaseModelOutputWithPast,
         | 
| 15 | 
            +
                CausalLMOutputWithPast,
         | 
| 16 | 
            +
                SequenceClassifierOutputWithPast,
         | 
| 17 | 
            +
            )
         | 
| 18 | 
            +
            from transformers.modeling_utils import PreTrainedModel
         | 
| 19 | 
            +
            from transformers.utils import logging, is_torch_npu_available
         | 
| 20 | 
            +
            from transformers.generation.logits_process import LogitsProcessor
         | 
| 21 | 
            +
            from transformers.generation.utils import ModelOutput
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            from .configuration_chatglm import ChatGLMConfig
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            try:
         | 
| 26 | 
            +
                from transformers.utils import is_flash_attn_greater_or_equal_2_10, is_flash_attn_2_available
         | 
| 27 | 
            +
             | 
| 28 | 
            +
                if is_flash_attn_2_available():
         | 
| 29 | 
            +
                    from flash_attn import flash_attn_func, flash_attn_varlen_func
         | 
| 30 | 
            +
                    from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input  # noqa
         | 
| 31 | 
            +
            except:
         | 
| 32 | 
            +
                pass
         | 
| 33 | 
            +
             | 
| 34 | 
            +
            # flags required to enable jit fusion kernels
         | 
| 35 | 
            +
             | 
| 36 | 
            +
            if sys.platform != 'darwin' and not is_torch_npu_available():
         | 
| 37 | 
            +
                torch._C._jit_set_profiling_mode(False)
         | 
| 38 | 
            +
                torch._C._jit_set_profiling_executor(False)
         | 
| 39 | 
            +
                torch._C._jit_override_can_fuse_on_cpu(True)
         | 
| 40 | 
            +
                torch._C._jit_override_can_fuse_on_gpu(True)
         | 
| 41 | 
            +
             | 
| 42 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 43 | 
            +
             | 
| 44 | 
            +
            _CHECKPOINT_FOR_DOC = "THUDM/ChatGLM"
         | 
| 45 | 
            +
            _CONFIG_FOR_DOC = "ChatGLMConfig"
         | 
| 46 | 
            +
             | 
| 47 | 
            +
             | 
| 48 | 
            +
            def default_init(cls, *args, **kwargs):
         | 
| 49 | 
            +
                return cls(*args, **kwargs)
         | 
| 50 | 
            +
             | 
| 51 | 
            +
             | 
| 52 | 
            +
            class InvalidScoreLogitsProcessor(LogitsProcessor):
         | 
| 53 | 
            +
                def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
         | 
| 54 | 
            +
                    if torch.isnan(scores).any() or torch.isinf(scores).any():
         | 
| 55 | 
            +
                        scores.zero_()
         | 
| 56 | 
            +
                        scores[..., 198] = 5e4
         | 
| 57 | 
            +
                    return scores
         | 
| 58 | 
            +
             | 
| 59 | 
            +
             | 
| 60 | 
            +
            def split_tensor_along_last_dim(
         | 
| 61 | 
            +
                    tensor: torch.Tensor,
         | 
| 62 | 
            +
                    num_partitions: int,
         | 
| 63 | 
            +
                    contiguous_split_chunks: bool = False,
         | 
| 64 | 
            +
            ) -> List[torch.Tensor]:
         | 
| 65 | 
            +
                """Split a tensor along its last dimension.
         | 
| 66 | 
            +
             | 
| 67 | 
            +
                Arguments:
         | 
| 68 | 
            +
                    tensor: input tensor.
         | 
| 69 | 
            +
                    num_partitions: number of partitions to split the tensor
         | 
| 70 | 
            +
                    contiguous_split_chunks: If True, make each chunk contiguous
         | 
| 71 | 
            +
                                             in memory.
         | 
| 72 | 
            +
             | 
| 73 | 
            +
                Returns:
         | 
| 74 | 
            +
                    A list of Tensors
         | 
| 75 | 
            +
                """
         | 
| 76 | 
            +
                # Get the size and dimension.
         | 
| 77 | 
            +
                last_dim = tensor.dim() - 1
         | 
| 78 | 
            +
                last_dim_size = tensor.size()[last_dim] // num_partitions
         | 
| 79 | 
            +
                # Split.
         | 
| 80 | 
            +
                tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
         | 
| 81 | 
            +
                # Note: torch.split does not create contiguous tensors by default.
         | 
| 82 | 
            +
                if contiguous_split_chunks:
         | 
| 83 | 
            +
                    return tuple(chunk.contiguous() for chunk in tensor_list)
         | 
| 84 | 
            +
             | 
| 85 | 
            +
                return tensor_list
         | 
| 86 | 
            +
             | 
| 87 | 
            +
             | 
| 88 | 
            +
            class RotaryEmbedding(nn.Module):
         | 
| 89 | 
            +
                def __init__(self, dim, rope_ratio=1, original_impl=False, device=None, dtype=None):
         | 
| 90 | 
            +
                    super().__init__()
         | 
| 91 | 
            +
                    inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, device=device).to(dtype=dtype) / dim))
         | 
| 92 | 
            +
                    self.register_buffer("inv_freq", inv_freq)
         | 
| 93 | 
            +
                    self.dim = dim
         | 
| 94 | 
            +
                    self.original_impl = original_impl
         | 
| 95 | 
            +
                    self.rope_ratio = rope_ratio
         | 
| 96 | 
            +
             | 
| 97 | 
            +
                def forward_impl(
         | 
| 98 | 
            +
                        self, seq_len: int, n_elem: int, dtype: torch.dtype, device: torch.device, base: int = 10000
         | 
| 99 | 
            +
                ):
         | 
| 100 | 
            +
                    """Enhanced Transformer with Rotary Position Embedding.
         | 
| 101 | 
            +
             | 
| 102 | 
            +
                    Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/
         | 
| 103 | 
            +
                    transformers/rope/__init__.py. MIT License:
         | 
| 104 | 
            +
                    https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license.
         | 
| 105 | 
            +
                    """
         | 
| 106 | 
            +
                    # $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
         | 
| 107 | 
            +
                    base = base * self.rope_ratio
         | 
| 108 | 
            +
                    theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, dtype=torch.float, device=device) / n_elem))
         | 
| 109 | 
            +
             | 
| 110 | 
            +
                    # Create position indexes `[0, 1, ..., seq_len - 1]`
         | 
| 111 | 
            +
                    seq_idx = torch.arange(seq_len, dtype=torch.float, device=device)
         | 
| 112 | 
            +
             | 
| 113 | 
            +
                    # Calculate the product of position index and $\theta_i$
         | 
| 114 | 
            +
                    idx_theta = torch.outer(seq_idx, theta).float()
         | 
| 115 | 
            +
             | 
| 116 | 
            +
                    cache = torch.stack([torch.cos(idx_theta), torch.sin(idx_theta)], dim=-1)
         | 
| 117 | 
            +
             | 
| 118 | 
            +
                    # this is to mimic the behaviour of complex32, else we will get different results
         | 
| 119 | 
            +
                    if dtype in (torch.float16, torch.bfloat16, torch.int8):
         | 
| 120 | 
            +
                        cache = cache.bfloat16() if dtype == torch.bfloat16 else cache.half()
         | 
| 121 | 
            +
                    return cache
         | 
| 122 | 
            +
             | 
| 123 | 
            +
                def forward(self, max_seq_len, offset=0):
         | 
| 124 | 
            +
                    return self.forward_impl(
         | 
| 125 | 
            +
                        max_seq_len, self.dim, dtype=self.inv_freq.dtype, device=self.inv_freq.device
         | 
| 126 | 
            +
                    )
         | 
| 127 | 
            +
             | 
| 128 | 
            +
             | 
| 129 | 
            +
            @torch.jit.script
         | 
| 130 | 
            +
            def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor:
         | 
| 131 | 
            +
                # x: [b, np, sq, hn]
         | 
| 132 | 
            +
                b, np, sq, hn = x.size(0), x.size(1), x.size(2), x.size(3)
         | 
| 133 | 
            +
                rot_dim = rope_cache.shape[-2] * 2
         | 
| 134 | 
            +
                x, x_pass = x[..., :rot_dim], x[..., rot_dim:]
         | 
| 135 | 
            +
                # truncate to support variable sizes
         | 
| 136 | 
            +
                rope_cache = rope_cache[:, :sq]
         | 
| 137 | 
            +
                xshaped = x.reshape(b, np, sq, rot_dim // 2, 2)
         | 
| 138 | 
            +
                rope_cache = rope_cache.view(-1, 1, sq, xshaped.size(3), 2)
         | 
| 139 | 
            +
                x_out2 = torch.stack(
         | 
| 140 | 
            +
                    [
         | 
| 141 | 
            +
                        xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1],
         | 
| 142 | 
            +
                        xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1],
         | 
| 143 | 
            +
                    ],
         | 
| 144 | 
            +
                    -1,
         | 
| 145 | 
            +
                )
         | 
| 146 | 
            +
                x_out2 = x_out2.flatten(3)
         | 
| 147 | 
            +
                return torch.cat((x_out2, x_pass), dim=-1)
         | 
| 148 | 
            +
             | 
| 149 | 
            +
             | 
| 150 | 
            +
            class RMSNorm(torch.nn.Module):
         | 
| 151 | 
            +
                def __init__(self, normalized_shape, eps=1e-5, device=None, dtype=None, **kwargs):
         | 
| 152 | 
            +
                    super().__init__()
         | 
| 153 | 
            +
                    self.weight = torch.nn.Parameter(torch.empty(normalized_shape, device=device, dtype=dtype))
         | 
| 154 | 
            +
                    self.eps = eps
         | 
| 155 | 
            +
             | 
| 156 | 
            +
                def forward(self, hidden_states: torch.Tensor):
         | 
| 157 | 
            +
                    input_dtype = hidden_states.dtype
         | 
| 158 | 
            +
                    variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
         | 
| 159 | 
            +
                    hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
         | 
| 160 | 
            +
             | 
| 161 | 
            +
                    return (self.weight * hidden_states).to(input_dtype)
         | 
| 162 | 
            +
             | 
| 163 | 
            +
             | 
| 164 | 
            +
            class CoreAttention(torch.nn.Module):
         | 
| 165 | 
            +
                def __init__(self, config: ChatGLMConfig, layer_number):
         | 
| 166 | 
            +
                    super(CoreAttention, self).__init__()
         | 
| 167 | 
            +
                    self.config = config
         | 
| 168 | 
            +
                    self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling
         | 
| 169 | 
            +
                    self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
         | 
| 170 | 
            +
                    if self.apply_query_key_layer_scaling:
         | 
| 171 | 
            +
                        self.attention_softmax_in_fp32 = True
         | 
| 172 | 
            +
                    self.layer_number = max(1, layer_number)
         | 
| 173 | 
            +
                    self.is_causal = True
         | 
| 174 | 
            +
             | 
| 175 | 
            +
                    projection_size = config.kv_channels * config.num_attention_heads
         | 
| 176 | 
            +
             | 
| 177 | 
            +
                    # Per attention head and per partition values.
         | 
| 178 | 
            +
                    self.hidden_size_per_partition = projection_size
         | 
| 179 | 
            +
                    self.hidden_size_per_attention_head = projection_size // config.num_attention_heads
         | 
| 180 | 
            +
                    self.num_attention_heads_per_partition = config.num_attention_heads
         | 
| 181 | 
            +
             | 
| 182 | 
            +
                    coeff = None
         | 
| 183 | 
            +
                    self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
         | 
| 184 | 
            +
                    if self.apply_query_key_layer_scaling:
         | 
| 185 | 
            +
                        coeff = self.layer_number
         | 
| 186 | 
            +
                        self.norm_factor *= coeff
         | 
| 187 | 
            +
                    self.coeff = coeff
         | 
| 188 | 
            +
             | 
| 189 | 
            +
                    self.attention_dropout = torch.nn.Dropout(config.attention_dropout)
         | 
| 190 | 
            +
             | 
| 191 | 
            +
                def forward(self, query_layer, key_layer, value_layer, attention_mask):
         | 
| 192 | 
            +
                    # [b, np, sq, sk]
         | 
| 193 | 
            +
                    output_size = (query_layer.size(0), query_layer.size(1), query_layer.size(2), key_layer.size(2))
         | 
| 194 | 
            +
             | 
| 195 | 
            +
                    # [b, np, sq, hn] -> [b * np, sq, hn]
         | 
| 196 | 
            +
                    query_layer = query_layer.view(output_size[0] * output_size[1], output_size[2], -1)
         | 
| 197 | 
            +
                    # [b, np, sk, hn] -> [b * np, sk, hn]
         | 
| 198 | 
            +
                    key_layer = key_layer.view(output_size[0] * output_size[1], output_size[3], -1)
         | 
| 199 | 
            +
             | 
| 200 | 
            +
                    # preallocting input tensor: [b * np, sq, sk]
         | 
| 201 | 
            +
                    matmul_input_buffer = torch.empty(
         | 
| 202 | 
            +
                        output_size[0] * output_size[1], output_size[2], output_size[3], dtype=query_layer.dtype,
         | 
| 203 | 
            +
                        device=query_layer.device
         | 
| 204 | 
            +
                    )
         | 
| 205 | 
            +
             | 
| 206 | 
            +
                    # Raw attention scores. [b * np, sq, sk]
         | 
| 207 | 
            +
                    matmul_result = torch.baddbmm(
         | 
| 208 | 
            +
                        matmul_input_buffer,
         | 
| 209 | 
            +
                        query_layer,  # [b * np, sq, hn]
         | 
| 210 | 
            +
                        key_layer.transpose(1, 2),  # [b * np, hn, sk]
         | 
| 211 | 
            +
                        beta=0.0,
         | 
| 212 | 
            +
                        alpha=(1.0 / self.norm_factor),
         | 
| 213 | 
            +
                    )
         | 
| 214 | 
            +
             | 
| 215 | 
            +
                    # change view to [b, np, sq, sk]
         | 
| 216 | 
            +
                    attention_scores = matmul_result.view(*output_size)
         | 
| 217 | 
            +
             | 
| 218 | 
            +
                    # ===========================
         | 
| 219 | 
            +
                    # Attention probs and dropout
         | 
| 220 | 
            +
                    # ===========================
         | 
| 221 | 
            +
             | 
| 222 | 
            +
                    # attention scores and attention mask [b, np, sq, sk]
         | 
| 223 | 
            +
                    if self.attention_softmax_in_fp32:
         | 
| 224 | 
            +
                        attention_scores = attention_scores.float()
         | 
| 225 | 
            +
                    if self.coeff is not None:
         | 
| 226 | 
            +
                        attention_scores = attention_scores * self.coeff
         | 
| 227 | 
            +
                    if attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]:
         | 
| 228 | 
            +
                        attention_mask = torch.ones(output_size[0], 1, output_size[2], output_size[3],
         | 
| 229 | 
            +
                                                    device=attention_scores.device, dtype=torch.bool)
         | 
| 230 | 
            +
                        attention_mask.tril_()
         | 
| 231 | 
            +
                        attention_mask = ~attention_mask
         | 
| 232 | 
            +
                    if attention_mask is not None:
         | 
| 233 | 
            +
                        attention_scores = attention_scores.masked_fill(attention_mask, float("-inf"))
         | 
| 234 | 
            +
                    attention_probs = F.softmax(attention_scores, dim=-1)
         | 
| 235 | 
            +
                    attention_probs = attention_probs.type_as(value_layer)
         | 
| 236 | 
            +
             | 
| 237 | 
            +
                    # This is actually dropping out entire tokens to attend to, which might
         | 
| 238 | 
            +
                    # seem a bit unusual, but is taken from the original Transformer paper.
         | 
| 239 | 
            +
                    attention_probs = self.attention_dropout(attention_probs)
         | 
| 240 | 
            +
             | 
| 241 | 
            +
                    # query layer shape: [b * np, sq, hn]
         | 
| 242 | 
            +
                    # value layer shape: [b, np, sk, hn]
         | 
| 243 | 
            +
                    # attention shape: [b, np, sq, sk]
         | 
| 244 | 
            +
                    # context layer shape: [b, np, sq, hn]
         | 
| 245 | 
            +
                    output_size = (value_layer.size(0), value_layer.size(1), query_layer.size(1), value_layer.size(3))
         | 
| 246 | 
            +
                    # change view [b * np, sk, hn]
         | 
| 247 | 
            +
                    value_layer = value_layer.view(output_size[0] * output_size[1], value_layer.size(2), -1)
         | 
| 248 | 
            +
                    # change view [b * np, sq, sk]
         | 
| 249 | 
            +
                    attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
         | 
| 250 | 
            +
                    # matmul: [b * np, sq, hn]
         | 
| 251 | 
            +
                    context_layer = torch.bmm(attention_probs, value_layer)
         | 
| 252 | 
            +
                    # change view [b, np, sq, hn]
         | 
| 253 | 
            +
                    context_layer = context_layer.view(*output_size)
         | 
| 254 | 
            +
                    # [b, np, sq, hn] --> [b, sq, np, hn]
         | 
| 255 | 
            +
                    context_layer = context_layer.transpose(1, 2).contiguous()
         | 
| 256 | 
            +
                    # [b, sq, np, hn] --> [b, sq, hp]
         | 
| 257 | 
            +
                    new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
         | 
| 258 | 
            +
                    context_layer = context_layer.reshape(*new_context_layer_shape)
         | 
| 259 | 
            +
             | 
| 260 | 
            +
                    return context_layer
         | 
| 261 | 
            +
             | 
| 262 | 
            +
             | 
| 263 | 
            +
            class SdpaAttention(CoreAttention):
         | 
| 264 | 
            +
                def forward(self, query_layer, key_layer, value_layer, attention_mask):
         | 
| 265 | 
            +
                    if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
         | 
| 266 | 
            +
                        context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
         | 
| 267 | 
            +
                                                                                         is_causal=True,
         | 
| 268 | 
            +
                                                                                         dropout_p=self.config.attention_dropout if self.training else 0.0)
         | 
| 269 | 
            +
                    else:
         | 
| 270 | 
            +
                        if attention_mask is not None:
         | 
| 271 | 
            +
                            attention_mask = ~attention_mask
         | 
| 272 | 
            +
                        context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
         | 
| 273 | 
            +
                                                                                         attention_mask,
         | 
| 274 | 
            +
                                                                                         dropout_p=self.config.attention_dropout if self.training else 0.0)
         | 
| 275 | 
            +
                    context_layer = context_layer.transpose(1, 2).contiguous()
         | 
| 276 | 
            +
                    new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
         | 
| 277 | 
            +
                    context_layer = context_layer.reshape(*new_context_layer_shape)
         | 
| 278 | 
            +
                    return context_layer
         | 
| 279 | 
            +
             | 
| 280 | 
            +
             | 
| 281 | 
            +
            def _get_unpad_data(attention_mask):
         | 
| 282 | 
            +
                seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
         | 
| 283 | 
            +
                indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
         | 
| 284 | 
            +
                max_seqlen_in_batch = seqlens_in_batch.max().item()
         | 
| 285 | 
            +
                cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
         | 
| 286 | 
            +
                return (
         | 
| 287 | 
            +
                    indices,
         | 
| 288 | 
            +
                    cu_seqlens,
         | 
| 289 | 
            +
                    max_seqlen_in_batch,
         | 
| 290 | 
            +
                )
         | 
| 291 | 
            +
             | 
| 292 | 
            +
             | 
| 293 | 
            +
            # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2
         | 
| 294 | 
            +
            class FlashAttention2(CoreAttention):
         | 
| 295 | 
            +
                def __init__(self, *args, **kwargs):
         | 
| 296 | 
            +
                    super().__init__(*args, **kwargs)
         | 
| 297 | 
            +
                    self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
         | 
| 298 | 
            +
             | 
| 299 | 
            +
                def forward(self, query_states, key_states, value_states, attention_mask):
         | 
| 300 | 
            +
                    query_states = query_states.transpose(1, 2)
         | 
| 301 | 
            +
                    key_states = key_states.transpose(1, 2)
         | 
| 302 | 
            +
                    value_states = value_states.transpose(1, 2)
         | 
| 303 | 
            +
                    batch_size, query_length = query_states.shape[:2]
         | 
| 304 | 
            +
                    if not self._flash_attn_uses_top_left_mask:
         | 
| 305 | 
            +
                        causal = self.is_causal
         | 
| 306 | 
            +
                    else:
         | 
| 307 | 
            +
                        # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
         | 
| 308 | 
            +
                        causal = self.is_causal and query_length != 1
         | 
| 309 | 
            +
                    dropout = self.config.attention_dropout if self.training else 0.0
         | 
| 310 | 
            +
                    # Contains at least one padding token in the sequence
         | 
| 311 | 
            +
                    if attention_mask is not None:
         | 
| 312 | 
            +
                        query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
         | 
| 313 | 
            +
                            query_states, key_states, value_states, attention_mask, query_length
         | 
| 314 | 
            +
                        )
         | 
| 315 | 
            +
             | 
| 316 | 
            +
                        cu_seqlens_q, cu_seqlens_k = cu_seq_lens
         | 
| 317 | 
            +
                        max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
         | 
| 318 | 
            +
             | 
| 319 | 
            +
                        attn_output_unpad = flash_attn_varlen_func(
         | 
| 320 | 
            +
                            query_states,
         | 
| 321 | 
            +
                            key_states,
         | 
| 322 | 
            +
                            value_states,
         | 
| 323 | 
            +
                            cu_seqlens_q=cu_seqlens_q,
         | 
| 324 | 
            +
                            cu_seqlens_k=cu_seqlens_k,
         | 
| 325 | 
            +
                            max_seqlen_q=max_seqlen_in_batch_q,
         | 
| 326 | 
            +
                            max_seqlen_k=max_seqlen_in_batch_k,
         | 
| 327 | 
            +
                            dropout_p=dropout,
         | 
| 328 | 
            +
                            softmax_scale=None,
         | 
| 329 | 
            +
                            causal=causal,
         | 
| 330 | 
            +
                        )
         | 
| 331 | 
            +
             | 
| 332 | 
            +
                        attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
         | 
| 333 | 
            +
                    else:
         | 
| 334 | 
            +
                        attn_output = flash_attn_func(
         | 
| 335 | 
            +
                            query_states, key_states, value_states, dropout, softmax_scale=None, causal=causal
         | 
| 336 | 
            +
                        )
         | 
| 337 | 
            +
                    attn_output = attn_output.reshape(batch_size, query_length, self.hidden_size_per_partition).contiguous()
         | 
| 338 | 
            +
                    return attn_output
         | 
| 339 | 
            +
             | 
| 340 | 
            +
                def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
         | 
| 341 | 
            +
                    indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
         | 
| 342 | 
            +
                    batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
         | 
| 343 | 
            +
             | 
| 344 | 
            +
                    key_layer = index_first_axis(
         | 
| 345 | 
            +
                        key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
         | 
| 346 | 
            +
                    )
         | 
| 347 | 
            +
                    value_layer = index_first_axis(
         | 
| 348 | 
            +
                        value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
         | 
| 349 | 
            +
                    )
         | 
| 350 | 
            +
                    if query_length == kv_seq_len:
         | 
| 351 | 
            +
                        query_layer = index_first_axis(
         | 
| 352 | 
            +
                            query_layer.reshape(batch_size * kv_seq_len, self.num_attention_heads_per_partition, head_dim),
         | 
| 353 | 
            +
                            indices_k
         | 
| 354 | 
            +
                        )
         | 
| 355 | 
            +
                        cu_seqlens_q = cu_seqlens_k
         | 
| 356 | 
            +
                        max_seqlen_in_batch_q = max_seqlen_in_batch_k
         | 
| 357 | 
            +
                        indices_q = indices_k
         | 
| 358 | 
            +
                    elif query_length == 1:
         | 
| 359 | 
            +
                        max_seqlen_in_batch_q = 1
         | 
| 360 | 
            +
                        cu_seqlens_q = torch.arange(
         | 
| 361 | 
            +
                            batch_size + 1, dtype=torch.int32, device=query_layer.device
         | 
| 362 | 
            +
                        )  # There is a memcpy here, that is very bad.
         | 
| 363 | 
            +
                        indices_q = cu_seqlens_q[:-1]
         | 
| 364 | 
            +
                        query_layer = query_layer.squeeze(1)
         | 
| 365 | 
            +
                    else:
         | 
| 366 | 
            +
                        # The -q_len: slice assumes left padding.
         | 
| 367 | 
            +
                        attention_mask = attention_mask[:, -query_length:]
         | 
| 368 | 
            +
                        query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
         | 
| 369 | 
            +
             | 
| 370 | 
            +
                    return (
         | 
| 371 | 
            +
                        query_layer,
         | 
| 372 | 
            +
                        key_layer,
         | 
| 373 | 
            +
                        value_layer,
         | 
| 374 | 
            +
                        indices_q,
         | 
| 375 | 
            +
                        (cu_seqlens_q, cu_seqlens_k),
         | 
| 376 | 
            +
                        (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
         | 
| 377 | 
            +
                    )
         | 
| 378 | 
            +
             | 
| 379 | 
            +
             | 
| 380 | 
            +
            CORE_ATTENTION_CLASSES = {
         | 
| 381 | 
            +
                "eager": CoreAttention,
         | 
| 382 | 
            +
                "sdpa": SdpaAttention,
         | 
| 383 | 
            +
                "flash_attention_2": FlashAttention2
         | 
| 384 | 
            +
            }
         | 
| 385 | 
            +
             | 
| 386 | 
            +
             | 
| 387 | 
            +
            class SelfAttention(torch.nn.Module):
         | 
| 388 | 
            +
                """Parallel self-attention layer abstract class.
         | 
| 389 | 
            +
             | 
| 390 | 
            +
                Self-attention layer takes input with size [s, b, h]
         | 
| 391 | 
            +
                and returns output of the same size.
         | 
| 392 | 
            +
                """
         | 
| 393 | 
            +
             | 
| 394 | 
            +
                def __init__(self, config: ChatGLMConfig, layer_number, device=None):
         | 
| 395 | 
            +
                    super(SelfAttention, self).__init__()
         | 
| 396 | 
            +
                    self.layer_number = max(1, layer_number)
         | 
| 397 | 
            +
             | 
| 398 | 
            +
                    self.projection_size = config.kv_channels * config.num_attention_heads
         | 
| 399 | 
            +
             | 
| 400 | 
            +
                    # Per attention head and per partition values.
         | 
| 401 | 
            +
                    self.hidden_size_per_attention_head = self.projection_size // config.num_attention_heads
         | 
| 402 | 
            +
                    self.num_attention_heads_per_partition = config.num_attention_heads
         | 
| 403 | 
            +
             | 
| 404 | 
            +
                    self.multi_query_attention = config.multi_query_attention
         | 
| 405 | 
            +
                    self.qkv_hidden_size = 3 * self.projection_size
         | 
| 406 | 
            +
                    if self.multi_query_attention:
         | 
| 407 | 
            +
                        self.num_multi_query_groups_per_partition = config.multi_query_group_num
         | 
| 408 | 
            +
                        self.qkv_hidden_size = (
         | 
| 409 | 
            +
                                self.projection_size + 2 * self.hidden_size_per_attention_head * config.multi_query_group_num
         | 
| 410 | 
            +
                        )
         | 
| 411 | 
            +
                    self.query_key_value = nn.Linear(config.hidden_size, self.qkv_hidden_size,
         | 
| 412 | 
            +
                                                     bias=config.add_bias_linear or config.add_qkv_bias,
         | 
| 413 | 
            +
                                                     device=device, **_config_to_kwargs(config)
         | 
| 414 | 
            +
                                                     )
         | 
| 415 | 
            +
             | 
| 416 | 
            +
                    self.core_attention = CORE_ATTENTION_CLASSES[config._attn_implementation](config, self.layer_number)
         | 
| 417 | 
            +
             | 
| 418 | 
            +
                    # Output.
         | 
| 419 | 
            +
                    self.dense = nn.Linear(self.projection_size, config.hidden_size, bias=config.add_bias_linear,
         | 
| 420 | 
            +
                                           device=device, **_config_to_kwargs(config)
         | 
| 421 | 
            +
                                           )
         | 
| 422 | 
            +
             | 
| 423 | 
            +
                def _allocate_memory(self, inference_max_sequence_len, batch_size, device=None, dtype=None):
         | 
| 424 | 
            +
                    if self.multi_query_attention:
         | 
| 425 | 
            +
                        num_attention_heads = self.num_multi_query_groups_per_partition
         | 
| 426 | 
            +
                    else:
         | 
| 427 | 
            +
                        num_attention_heads = self.num_attention_heads_per_partition
         | 
| 428 | 
            +
                    return torch.empty(
         | 
| 429 | 
            +
                        inference_max_sequence_len,
         | 
| 430 | 
            +
                        batch_size,
         | 
| 431 | 
            +
                        num_attention_heads,
         | 
| 432 | 
            +
                        self.hidden_size_per_attention_head,
         | 
| 433 | 
            +
                        dtype=dtype,
         | 
| 434 | 
            +
                        device=device,
         | 
| 435 | 
            +
                    )
         | 
| 436 | 
            +
             | 
| 437 | 
            +
                def forward(
         | 
| 438 | 
            +
                        self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True
         | 
| 439 | 
            +
                ):
         | 
| 440 | 
            +
                    # hidden_states: [b, sq, h]
         | 
| 441 | 
            +
             | 
| 442 | 
            +
                    # =================================================
         | 
| 443 | 
            +
                    # Pre-allocate memory for key-values for inference.
         | 
| 444 | 
            +
                    # =================================================
         | 
| 445 | 
            +
                    # =====================
         | 
| 446 | 
            +
                    # Query, Key, and Value
         | 
| 447 | 
            +
                    # =====================
         | 
| 448 | 
            +
             | 
| 449 | 
            +
                    # Attention heads [b, sq, h] --> [b, sq, (np * 3 * hn)]
         | 
| 450 | 
            +
                    mixed_x_layer = self.query_key_value(hidden_states)
         | 
| 451 | 
            +
             | 
| 452 | 
            +
                    if self.multi_query_attention:
         | 
| 453 | 
            +
                        (query_layer, key_layer, value_layer) = mixed_x_layer.split(
         | 
| 454 | 
            +
                            [
         | 
| 455 | 
            +
                                self.num_attention_heads_per_partition * self.hidden_size_per_attention_head,
         | 
| 456 | 
            +
                                self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
         | 
| 457 | 
            +
                                self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
         | 
| 458 | 
            +
                            ],
         | 
| 459 | 
            +
                            dim=-1,
         | 
| 460 | 
            +
                        )
         | 
| 461 | 
            +
                        query_layer = query_layer.view(
         | 
| 462 | 
            +
                            query_layer.size()[:-1] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
         | 
| 463 | 
            +
                        )
         | 
| 464 | 
            +
                        key_layer = key_layer.view(
         | 
| 465 | 
            +
                            key_layer.size()[:-1] + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
         | 
| 466 | 
            +
                        )
         | 
| 467 | 
            +
                        value_layer = value_layer.view(
         | 
| 468 | 
            +
                            value_layer.size()[:-1]
         | 
| 469 | 
            +
                            + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
         | 
| 470 | 
            +
                        )
         | 
| 471 | 
            +
                    else:
         | 
| 472 | 
            +
                        new_tensor_shape = mixed_x_layer.size()[:-1] + \
         | 
| 473 | 
            +
                                           (self.num_attention_heads_per_partition,
         | 
| 474 | 
            +
                                            3 * self.hidden_size_per_attention_head)
         | 
| 475 | 
            +
                        mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
         | 
| 476 | 
            +
             | 
| 477 | 
            +
                        # [b, sq, np, 3 * hn] --> 3 [b, sq, np, hn]
         | 
| 478 | 
            +
                        (query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
         | 
| 479 | 
            +
             | 
| 480 | 
            +
                    # [b, sq, np, hn] -> [b, np, sq, hn]
         | 
| 481 | 
            +
                    query_layer, key_layer, value_layer = [k.transpose(1, 2) for k in [query_layer, key_layer, value_layer]]
         | 
| 482 | 
            +
             | 
| 483 | 
            +
                    # apply relative positional encoding (rotary embedding)
         | 
| 484 | 
            +
                    if rotary_pos_emb is not None:
         | 
| 485 | 
            +
                        query_layer = apply_rotary_pos_emb(query_layer, rotary_pos_emb)
         | 
| 486 | 
            +
                        key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb)
         | 
| 487 | 
            +
             | 
| 488 | 
            +
                    # adjust key and value for inference
         | 
| 489 | 
            +
                    if kv_cache is not None:
         | 
| 490 | 
            +
                        cache_k, cache_v = kv_cache
         | 
| 491 | 
            +
                        key_layer = torch.cat((cache_k, key_layer), dim=2)
         | 
| 492 | 
            +
                        value_layer = torch.cat((cache_v, value_layer), dim=2)
         | 
| 493 | 
            +
                    if use_cache:
         | 
| 494 | 
            +
                        if kv_cache is None:
         | 
| 495 | 
            +
                            kv_cache = torch.cat((key_layer.unsqueeze(0).unsqueeze(0), value_layer.unsqueeze(0).unsqueeze(0)),
         | 
| 496 | 
            +
                                                 dim=1)
         | 
| 497 | 
            +
                        else:
         | 
| 498 | 
            +
                            kv_cache = (key_layer, value_layer)
         | 
| 499 | 
            +
                    else:
         | 
| 500 | 
            +
                        kv_cache = None
         | 
| 501 | 
            +
             | 
| 502 | 
            +
                    if self.multi_query_attention:
         | 
| 503 | 
            +
                        key_layer = key_layer.unsqueeze(2)
         | 
| 504 | 
            +
                        key_layer = key_layer.expand(
         | 
| 505 | 
            +
                            -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1, -1
         | 
| 506 | 
            +
                        )
         | 
| 507 | 
            +
                        key_layer = key_layer.contiguous().view(
         | 
| 508 | 
            +
                            key_layer.size()[:1] + (self.num_attention_heads_per_partition,) + key_layer.size()[3:]
         | 
| 509 | 
            +
                        )
         | 
| 510 | 
            +
                        value_layer = value_layer.unsqueeze(2)
         | 
| 511 | 
            +
                        value_layer = value_layer.expand(
         | 
| 512 | 
            +
                            -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1, -1
         | 
| 513 | 
            +
                        )
         | 
| 514 | 
            +
                        value_layer = value_layer.contiguous().view(
         | 
| 515 | 
            +
                            value_layer.size()[:1] + (self.num_attention_heads_per_partition,) + value_layer.size()[3:]
         | 
| 516 | 
            +
                        )
         | 
| 517 | 
            +
             | 
| 518 | 
            +
                    # ==================================
         | 
| 519 | 
            +
                    # core attention computation
         | 
| 520 | 
            +
                    # ==================================
         | 
| 521 | 
            +
             | 
| 522 | 
            +
                    context_layer = self.core_attention(query_layer, key_layer, value_layer, attention_mask)
         | 
| 523 | 
            +
             | 
| 524 | 
            +
                    # =================
         | 
| 525 | 
            +
                    # Output. [sq, b, h]
         | 
| 526 | 
            +
                    # =================
         | 
| 527 | 
            +
             | 
| 528 | 
            +
                    output = self.dense(context_layer)
         | 
| 529 | 
            +
             | 
| 530 | 
            +
                    return output, kv_cache
         | 
| 531 | 
            +
             | 
| 532 | 
            +
             | 
| 533 | 
            +
            def _config_to_kwargs(args):
         | 
| 534 | 
            +
                common_kwargs = {
         | 
| 535 | 
            +
                    "dtype": args.torch_dtype,
         | 
| 536 | 
            +
                }
         | 
| 537 | 
            +
                return common_kwargs
         | 
| 538 | 
            +
             | 
| 539 | 
            +
             | 
| 540 | 
            +
            class MLP(torch.nn.Module):
         | 
| 541 | 
            +
                """MLP.
         | 
| 542 | 
            +
             | 
| 543 | 
            +
                MLP will take the input with h hidden state, project it to 4*h
         | 
| 544 | 
            +
                hidden dimension, perform nonlinear transformation, and project the
         | 
| 545 | 
            +
                state back into h hidden dimension.
         | 
| 546 | 
            +
                """
         | 
| 547 | 
            +
             | 
| 548 | 
            +
                def __init__(self, config: ChatGLMConfig, device=None):
         | 
| 549 | 
            +
                    super(MLP, self).__init__()
         | 
| 550 | 
            +
             | 
| 551 | 
            +
                    self.add_bias = config.add_bias_linear
         | 
| 552 | 
            +
             | 
| 553 | 
            +
                    # Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
         | 
| 554 | 
            +
                    self.dense_h_to_4h = nn.Linear(
         | 
| 555 | 
            +
                        config.hidden_size,
         | 
| 556 | 
            +
                        config.ffn_hidden_size * 2,
         | 
| 557 | 
            +
                        bias=self.add_bias,
         | 
| 558 | 
            +
                        device=device,
         | 
| 559 | 
            +
                        **_config_to_kwargs(config)
         | 
| 560 | 
            +
                    )
         | 
| 561 | 
            +
             | 
| 562 | 
            +
                    def swiglu(x):
         | 
| 563 | 
            +
                        x = torch.chunk(x, 2, dim=-1)
         | 
| 564 | 
            +
                        return F.silu(x[0]) * x[1]
         | 
| 565 | 
            +
             | 
| 566 | 
            +
                    self.activation_func = swiglu
         | 
| 567 | 
            +
             | 
| 568 | 
            +
                    # Project back to h.
         | 
| 569 | 
            +
                    self.dense_4h_to_h = nn.Linear(
         | 
| 570 | 
            +
                        config.ffn_hidden_size,
         | 
| 571 | 
            +
                        config.hidden_size,
         | 
| 572 | 
            +
                        bias=self.add_bias,
         | 
| 573 | 
            +
                        device=device,
         | 
| 574 | 
            +
                        **_config_to_kwargs(config)
         | 
| 575 | 
            +
                    )
         | 
| 576 | 
            +
             | 
| 577 | 
            +
                def forward(self, hidden_states):
         | 
| 578 | 
            +
                    # [s, b, 4hp]
         | 
| 579 | 
            +
                    intermediate_parallel = self.dense_h_to_4h(hidden_states)
         | 
| 580 | 
            +
                    intermediate_parallel = self.activation_func(intermediate_parallel)
         | 
| 581 | 
            +
                    # [s, b, h]
         | 
| 582 | 
            +
                    output = self.dense_4h_to_h(intermediate_parallel)
         | 
| 583 | 
            +
                    return output
         | 
| 584 | 
            +
             | 
| 585 | 
            +
             | 
| 586 | 
            +
            class GLMBlock(torch.nn.Module):
         | 
| 587 | 
            +
                """A single transformer layer.
         | 
| 588 | 
            +
             | 
| 589 | 
            +
                Transformer layer takes input with size [s, b, h] and returns an
         | 
| 590 | 
            +
                output of the same size.
         | 
| 591 | 
            +
                """
         | 
| 592 | 
            +
             | 
| 593 | 
            +
                def __init__(self, config: ChatGLMConfig, layer_number, device=None):
         | 
| 594 | 
            +
                    super(GLMBlock, self).__init__()
         | 
| 595 | 
            +
                    self.layer_number = layer_number
         | 
| 596 | 
            +
             | 
| 597 | 
            +
                    self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
         | 
| 598 | 
            +
             | 
| 599 | 
            +
                    self.fp32_residual_connection = config.fp32_residual_connection
         | 
| 600 | 
            +
             | 
| 601 | 
            +
                    LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
         | 
| 602 | 
            +
                    # Layernorm on the input data.
         | 
| 603 | 
            +
                    self.input_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
         | 
| 604 | 
            +
                                                         dtype=config.torch_dtype)
         | 
| 605 | 
            +
             | 
| 606 | 
            +
                    # Self attention.
         | 
| 607 | 
            +
                    self.self_attention = SelfAttention(config, layer_number, device=device)
         | 
| 608 | 
            +
                    self.hidden_dropout = config.hidden_dropout
         | 
| 609 | 
            +
             | 
| 610 | 
            +
                    # Layernorm on the attention output
         | 
| 611 | 
            +
                    self.post_attention_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
         | 
| 612 | 
            +
                                                                  dtype=config.torch_dtype)
         | 
| 613 | 
            +
             | 
| 614 | 
            +
                    # MLP
         | 
| 615 | 
            +
                    self.mlp = MLP(config, device=device)
         | 
| 616 | 
            +
             | 
| 617 | 
            +
                def forward(
         | 
| 618 | 
            +
                        self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True,
         | 
| 619 | 
            +
                ):
         | 
| 620 | 
            +
                    # hidden_states: [s, b, h]
         | 
| 621 | 
            +
             | 
| 622 | 
            +
                    # Layer norm at the beginning of the transformer layer.
         | 
| 623 | 
            +
                    layernorm_output = self.input_layernorm(hidden_states)
         | 
| 624 | 
            +
                    # Self attention.
         | 
| 625 | 
            +
                    attention_output, kv_cache = self.self_attention(
         | 
| 626 | 
            +
                        layernorm_output,
         | 
| 627 | 
            +
                        attention_mask,
         | 
| 628 | 
            +
                        rotary_pos_emb,
         | 
| 629 | 
            +
                        kv_cache=kv_cache,
         | 
| 630 | 
            +
                        use_cache=use_cache
         | 
| 631 | 
            +
                    )
         | 
| 632 | 
            +
             | 
| 633 | 
            +
                    # Residual connection.
         | 
| 634 | 
            +
                    if self.apply_residual_connection_post_layernorm:
         | 
| 635 | 
            +
                        residual = layernorm_output
         | 
| 636 | 
            +
                    else:
         | 
| 637 | 
            +
                        residual = hidden_states
         | 
| 638 | 
            +
             | 
| 639 | 
            +
                    layernorm_input = torch.nn.functional.dropout(attention_output, p=self.hidden_dropout, training=self.training)
         | 
| 640 | 
            +
                    layernorm_input = residual + layernorm_input
         | 
| 641 | 
            +
             | 
| 642 | 
            +
                    # Layer norm post the self attention.
         | 
| 643 | 
            +
                    layernorm_output = self.post_attention_layernorm(layernorm_input)
         | 
| 644 | 
            +
             | 
| 645 | 
            +
                    # MLP.
         | 
| 646 | 
            +
                    mlp_output = self.mlp(layernorm_output)
         | 
| 647 | 
            +
             | 
| 648 | 
            +
                    # Second residual connection.
         | 
| 649 | 
            +
                    if self.apply_residual_connection_post_layernorm:
         | 
| 650 | 
            +
                        residual = layernorm_output
         | 
| 651 | 
            +
                    else:
         | 
| 652 | 
            +
                        residual = layernorm_input
         | 
| 653 | 
            +
             | 
| 654 | 
            +
                    output = torch.nn.functional.dropout(mlp_output, p=self.hidden_dropout, training=self.training)
         | 
| 655 | 
            +
                    output = residual + output
         | 
| 656 | 
            +
             | 
| 657 | 
            +
                    return output, kv_cache
         | 
| 658 | 
            +
             | 
| 659 | 
            +
             | 
| 660 | 
            +
            class GLMTransformer(torch.nn.Module):
         | 
| 661 | 
            +
                """Transformer class."""
         | 
| 662 | 
            +
             | 
| 663 | 
            +
                def __init__(self, config: ChatGLMConfig, device=None):
         | 
| 664 | 
            +
                    super(GLMTransformer, self).__init__()
         | 
| 665 | 
            +
             | 
| 666 | 
            +
                    self.fp32_residual_connection = config.fp32_residual_connection
         | 
| 667 | 
            +
                    self.post_layer_norm = config.post_layer_norm
         | 
| 668 | 
            +
             | 
| 669 | 
            +
                    # Number of layers.
         | 
| 670 | 
            +
                    self.num_layers = config.num_layers
         | 
| 671 | 
            +
             | 
| 672 | 
            +
                    # Transformer layers.
         | 
| 673 | 
            +
                    def build_layer(layer_number):
         | 
| 674 | 
            +
                        return GLMBlock(config, layer_number, device=device)
         | 
| 675 | 
            +
             | 
| 676 | 
            +
                    self.layers = torch.nn.ModuleList([build_layer(i + 1) for i in range(self.num_layers)])
         | 
| 677 | 
            +
             | 
| 678 | 
            +
                    if self.post_layer_norm:
         | 
| 679 | 
            +
                        LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
         | 
| 680 | 
            +
                        # Final layer norm before output.
         | 
| 681 | 
            +
                        self.final_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
         | 
| 682 | 
            +
                                                             dtype=config.torch_dtype)
         | 
| 683 | 
            +
             | 
| 684 | 
            +
                    self.gradient_checkpointing = False
         | 
| 685 | 
            +
             | 
| 686 | 
            +
                def _get_layer(self, layer_number):
         | 
| 687 | 
            +
                    return self.layers[layer_number]
         | 
| 688 | 
            +
             | 
| 689 | 
            +
                def forward(
         | 
| 690 | 
            +
                        self, hidden_states, attention_mask, rotary_pos_emb, kv_caches=None,
         | 
| 691 | 
            +
                        use_cache: Optional[bool] = True,
         | 
| 692 | 
            +
                        output_hidden_states: Optional[bool] = False,
         | 
| 693 | 
            +
                ):
         | 
| 694 | 
            +
                    if not kv_caches:
         | 
| 695 | 
            +
                        kv_caches = [None for _ in range(self.num_layers)]
         | 
| 696 | 
            +
                    presents = () if use_cache else None
         | 
| 697 | 
            +
                    if self.gradient_checkpointing and self.training:
         | 
| 698 | 
            +
                        if use_cache:
         | 
| 699 | 
            +
                            logger.warning_once(
         | 
| 700 | 
            +
                                "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
         | 
| 701 | 
            +
                            )
         | 
| 702 | 
            +
                            use_cache = False
         | 
| 703 | 
            +
             | 
| 704 | 
            +
                    all_self_attentions = None
         | 
| 705 | 
            +
                    all_hidden_states = () if output_hidden_states else None
         | 
| 706 | 
            +
                    for index in range(self.num_layers):
         | 
| 707 | 
            +
                        if output_hidden_states:
         | 
| 708 | 
            +
                            all_hidden_states = all_hidden_states + (hidden_states,)
         | 
| 709 | 
            +
             | 
| 710 | 
            +
                        layer = self._get_layer(index)
         | 
| 711 | 
            +
                        if self.gradient_checkpointing and self.training:
         | 
| 712 | 
            +
                            layer_ret = torch.utils.checkpoint.checkpoint(
         | 
| 713 | 
            +
                                layer,
         | 
| 714 | 
            +
                                hidden_states,
         | 
| 715 | 
            +
                                attention_mask,
         | 
| 716 | 
            +
                                rotary_pos_emb,
         | 
| 717 | 
            +
                                kv_caches[index],
         | 
| 718 | 
            +
                                use_cache,
         | 
| 719 | 
            +
                                use_reentrant=False
         | 
| 720 | 
            +
                            )
         | 
| 721 | 
            +
                        else:
         | 
| 722 | 
            +
                            layer_ret = layer(
         | 
| 723 | 
            +
                                hidden_states,
         | 
| 724 | 
            +
                                attention_mask,
         | 
| 725 | 
            +
                                rotary_pos_emb,
         | 
| 726 | 
            +
                                kv_cache=kv_caches[index],
         | 
| 727 | 
            +
                                use_cache=use_cache
         | 
| 728 | 
            +
                            )
         | 
| 729 | 
            +
                        hidden_states, kv_cache = layer_ret
         | 
| 730 | 
            +
                        if use_cache:
         | 
| 731 | 
            +
                            # token by token decoding, use tuple format
         | 
| 732 | 
            +
                            if kv_caches[0] is not None:
         | 
| 733 | 
            +
                                presents = presents + (kv_cache,)
         | 
| 734 | 
            +
                            # prefilling in decoding, use tensor format to save cuda memory
         | 
| 735 | 
            +
                            else:
         | 
| 736 | 
            +
                                if len(presents) == 0:
         | 
| 737 | 
            +
                                    presents = kv_cache
         | 
| 738 | 
            +
                                else:
         | 
| 739 | 
            +
                                    presents = torch.cat((presents, kv_cache.to(presents.device)), dim=0)
         | 
| 740 | 
            +
             | 
| 741 | 
            +
                    if output_hidden_states:
         | 
| 742 | 
            +
                        all_hidden_states = all_hidden_states + (hidden_states,)
         | 
| 743 | 
            +
             | 
| 744 | 
            +
                    # Final layer norm.
         | 
| 745 | 
            +
                    if self.post_layer_norm:
         | 
| 746 | 
            +
                        hidden_states = self.final_layernorm(hidden_states)
         | 
| 747 | 
            +
             | 
| 748 | 
            +
                    return hidden_states, presents, all_hidden_states, all_self_attentions
         | 
| 749 | 
            +
             | 
| 750 | 
            +
             | 
| 751 | 
            +
            class ChatGLMPreTrainedModel(PreTrainedModel):
         | 
| 752 | 
            +
                """
         | 
| 753 | 
            +
                An abstract class to handle weights initialization and
         | 
| 754 | 
            +
                a simple interface for downloading and loading pretrained models.
         | 
| 755 | 
            +
                """
         | 
| 756 | 
            +
             | 
| 757 | 
            +
                is_parallelizable = False
         | 
| 758 | 
            +
                supports_gradient_checkpointing = True
         | 
| 759 | 
            +
                config_class = ChatGLMConfig
         | 
| 760 | 
            +
                base_model_prefix = "transformer"
         | 
| 761 | 
            +
                _no_split_modules = ["GLMBlock"]
         | 
| 762 | 
            +
                _supports_flash_attn_2 = True
         | 
| 763 | 
            +
                _supports_sdpa = True
         | 
| 764 | 
            +
             | 
| 765 | 
            +
                def _init_weights(self, module: nn.Module):
         | 
| 766 | 
            +
                    """Initialize the weights."""
         | 
| 767 | 
            +
                    return
         | 
| 768 | 
            +
             | 
| 769 | 
            +
                def get_masks(self, input_ids, past_key_values, padding_mask=None):
         | 
| 770 | 
            +
                    if self.config._attn_implementation == "flash_attention_2":
         | 
| 771 | 
            +
                        if padding_mask is not None and not padding_mask.all():
         | 
| 772 | 
            +
                            return padding_mask
         | 
| 773 | 
            +
                        return None
         | 
| 774 | 
            +
                    batch_size, seq_length = input_ids.shape
         | 
| 775 | 
            +
                    full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_ids.device)
         | 
| 776 | 
            +
                    full_attention_mask.tril_()
         | 
| 777 | 
            +
                    past_length = 0
         | 
| 778 | 
            +
                    if past_key_values:
         | 
| 779 | 
            +
                        past_length = past_key_values[0][0].shape[2]
         | 
| 780 | 
            +
                    if past_length:
         | 
| 781 | 
            +
                        full_attention_mask = torch.cat((torch.ones(batch_size, seq_length, past_length,
         | 
| 782 | 
            +
                                                                    device=input_ids.device), full_attention_mask), dim=-1)
         | 
| 783 | 
            +
                    if padding_mask is not None:
         | 
| 784 | 
            +
                        full_attention_mask = full_attention_mask * padding_mask.unsqueeze(1)
         | 
| 785 | 
            +
                    if not past_length and padding_mask is not None:
         | 
| 786 | 
            +
                        full_attention_mask -= padding_mask.unsqueeze(-1) - 1
         | 
| 787 | 
            +
                    full_attention_mask = (full_attention_mask < 0.5).bool()
         | 
| 788 | 
            +
                    full_attention_mask.unsqueeze_(1)
         | 
| 789 | 
            +
                    return full_attention_mask
         | 
| 790 | 
            +
             | 
| 791 | 
            +
                def get_position_ids(self, input_ids, device):
         | 
| 792 | 
            +
                    batch_size, seq_length = input_ids.shape
         | 
| 793 | 
            +
                    position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
         | 
| 794 | 
            +
                    return position_ids
         | 
| 795 | 
            +
             | 
| 796 | 
            +
            class Embedding(torch.nn.Module):
         | 
| 797 | 
            +
                """Language model embeddings."""
         | 
| 798 | 
            +
             | 
| 799 | 
            +
                def __init__(self, config: ChatGLMConfig, device=None):
         | 
| 800 | 
            +
                    super(Embedding, self).__init__()
         | 
| 801 | 
            +
             | 
| 802 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 803 | 
            +
                    # Word embeddings (parallel).
         | 
| 804 | 
            +
                    self.word_embeddings = nn.Embedding(
         | 
| 805 | 
            +
                        config.padded_vocab_size,
         | 
| 806 | 
            +
                        self.hidden_size,
         | 
| 807 | 
            +
                        dtype=config.torch_dtype,
         | 
| 808 | 
            +
                        device=device
         | 
| 809 | 
            +
                    )
         | 
| 810 | 
            +
                    self.fp32_residual_connection = config.fp32_residual_connection
         | 
| 811 | 
            +
             | 
| 812 | 
            +
                def forward(self, input_ids):
         | 
| 813 | 
            +
                    # Embeddings.
         | 
| 814 | 
            +
                    words_embeddings = self.word_embeddings(input_ids)
         | 
| 815 | 
            +
                    embeddings = words_embeddings
         | 
| 816 | 
            +
                    # If the input flag for fp32 residual connection is set, convert for float.
         | 
| 817 | 
            +
                    if self.fp32_residual_connection:
         | 
| 818 | 
            +
                        embeddings = embeddings.float()
         | 
| 819 | 
            +
                    return embeddings
         | 
| 820 | 
            +
             | 
| 821 | 
            +
             | 
| 822 | 
            +
            class ChatGLMModel(ChatGLMPreTrainedModel):
         | 
| 823 | 
            +
                def __init__(self, config: ChatGLMConfig, device=None, empty_init=True):
         | 
| 824 | 
            +
                    super().__init__(config)
         | 
| 825 | 
            +
                    if empty_init:
         | 
| 826 | 
            +
                        init_method = skip_init
         | 
| 827 | 
            +
                    else:
         | 
| 828 | 
            +
                        init_method = default_init
         | 
| 829 | 
            +
                    init_kwargs = {}
         | 
| 830 | 
            +
                    if device is not None:
         | 
| 831 | 
            +
                        init_kwargs["device"] = device
         | 
| 832 | 
            +
                    self.embedding = init_method(Embedding, config, **init_kwargs)
         | 
| 833 | 
            +
                    self.num_layers = config.num_layers
         | 
| 834 | 
            +
                    self.multi_query_group_num = config.multi_query_group_num
         | 
| 835 | 
            +
                    self.kv_channels = config.kv_channels
         | 
| 836 | 
            +
             | 
| 837 | 
            +
                    # Rotary positional embeddings
         | 
| 838 | 
            +
                    self.seq_length = config.seq_length
         | 
| 839 | 
            +
                    rotary_dim = (
         | 
| 840 | 
            +
                        config.hidden_size // config.num_attention_heads if config.kv_channels is None else config.kv_channels
         | 
| 841 | 
            +
                    )
         | 
| 842 | 
            +
             | 
| 843 | 
            +
                    self.rotary_pos_emb = RotaryEmbedding(rotary_dim // 2, rope_ratio=config.rope_ratio,
         | 
| 844 | 
            +
                                                          original_impl=config.original_rope,
         | 
| 845 | 
            +
                                                          device=device, dtype=config.torch_dtype)
         | 
| 846 | 
            +
                    self.encoder = init_method(GLMTransformer, config, **init_kwargs)
         | 
| 847 | 
            +
                    self.output_layer = init_method(nn.Linear, config.hidden_size, config.padded_vocab_size, bias=False,
         | 
| 848 | 
            +
                                                    dtype=config.torch_dtype, **init_kwargs)
         | 
| 849 | 
            +
             | 
| 850 | 
            +
                def get_input_embeddings(self):
         | 
| 851 | 
            +
                    return self.embedding.word_embeddings
         | 
| 852 | 
            +
             | 
| 853 | 
            +
                def set_input_embeddings(self, value):
         | 
| 854 | 
            +
                    self.embedding.word_embeddings = value
         | 
| 855 | 
            +
             | 
| 856 | 
            +
                def forward(
         | 
| 857 | 
            +
                        self,
         | 
| 858 | 
            +
                        input_ids,
         | 
| 859 | 
            +
                        position_ids: Optional[torch.Tensor] = None,
         | 
| 860 | 
            +
                        attention_mask: Optional[torch.BoolTensor] = None,
         | 
| 861 | 
            +
                        full_attention_mask: Optional[torch.BoolTensor] = None,
         | 
| 862 | 
            +
                        past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
         | 
| 863 | 
            +
                        inputs_embeds: Optional[torch.Tensor] = None,
         | 
| 864 | 
            +
                        use_cache: Optional[bool] = None,
         | 
| 865 | 
            +
                        output_attentions: Optional[bool] = None,
         | 
| 866 | 
            +
                        output_hidden_states: Optional[bool] = None,
         | 
| 867 | 
            +
                        return_dict: Optional[bool] = None,
         | 
| 868 | 
            +
                ):
         | 
| 869 | 
            +
                    output_hidden_states = (
         | 
| 870 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 871 | 
            +
                    )
         | 
| 872 | 
            +
                    use_cache = use_cache if use_cache is not None else self.config.use_cache
         | 
| 873 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 874 | 
            +
             | 
| 875 | 
            +
                    batch_size, seq_length = input_ids.shape
         | 
| 876 | 
            +
             | 
| 877 | 
            +
                    if inputs_embeds is None:
         | 
| 878 | 
            +
                        inputs_embeds = self.embedding(input_ids)
         | 
| 879 | 
            +
             | 
| 880 | 
            +
                    if full_attention_mask is None:
         | 
| 881 | 
            +
                        if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1):
         | 
| 882 | 
            +
                            full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask)
         | 
| 883 | 
            +
             | 
| 884 | 
            +
                    # Rotary positional embeddings
         | 
| 885 | 
            +
                    rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
         | 
| 886 | 
            +
                    if position_ids is not None:
         | 
| 887 | 
            +
                        rotary_pos_emb = rotary_pos_emb[position_ids]
         | 
| 888 | 
            +
                    else:
         | 
| 889 | 
            +
                        rotary_pos_emb = rotary_pos_emb[None, :seq_length]
         | 
| 890 | 
            +
             | 
| 891 | 
            +
                    # Run encoder.
         | 
| 892 | 
            +
                    hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder(
         | 
| 893 | 
            +
                        inputs_embeds, full_attention_mask, rotary_pos_emb=rotary_pos_emb,
         | 
| 894 | 
            +
                        kv_caches=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states
         | 
| 895 | 
            +
                    )
         | 
| 896 | 
            +
                    if presents is not None and type(presents) is torch.Tensor:
         | 
| 897 | 
            +
                        presents = presents.split(1, dim=0)
         | 
| 898 | 
            +
                        presents = list(presents)
         | 
| 899 | 
            +
                        presents = [list(x.squeeze(0).split(1, dim=0)) for x in presents]
         | 
| 900 | 
            +
                        presents = [tuple([x.squeeze(0) for x in y]) for y in presents]
         | 
| 901 | 
            +
                        presents = tuple(presents)
         | 
| 902 | 
            +
             | 
| 903 | 
            +
                    if not return_dict:
         | 
| 904 | 
            +
                        return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
         | 
| 905 | 
            +
             | 
| 906 | 
            +
                    return BaseModelOutputWithPast(
         | 
| 907 | 
            +
                        last_hidden_state=hidden_states,
         | 
| 908 | 
            +
                        past_key_values=presents,
         | 
| 909 | 
            +
                        hidden_states=all_hidden_states,
         | 
| 910 | 
            +
                        attentions=all_self_attentions,
         | 
| 911 | 
            +
                    )
         | 
| 912 | 
            +
             | 
| 913 | 
            +
             | 
| 914 | 
            +
            class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
         | 
| 915 | 
            +
                def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
         | 
| 916 | 
            +
                    super().__init__(config)
         | 
| 917 | 
            +
             | 
| 918 | 
            +
                    self.max_sequence_length = config.max_length
         | 
| 919 | 
            +
                    self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device)
         | 
| 920 | 
            +
                    self.config = config
         | 
| 921 | 
            +
             | 
| 922 | 
            +
                def _update_model_kwargs_for_generation(
         | 
| 923 | 
            +
                        self,
         | 
| 924 | 
            +
                        outputs: ModelOutput,
         | 
| 925 | 
            +
                        model_kwargs: Dict[str, Any],
         | 
| 926 | 
            +
                        is_encoder_decoder: bool = False,
         | 
| 927 | 
            +
                ) -> Dict[str, Any]:
         | 
| 928 | 
            +
                    # update past_key_values
         | 
| 929 | 
            +
                    cache_name, cache = self._extract_past_from_model_output(outputs)
         | 
| 930 | 
            +
                    model_kwargs[cache_name] = cache
         | 
| 931 | 
            +
             | 
| 932 | 
            +
                    # update attention mask
         | 
| 933 | 
            +
                    if "attention_mask" in model_kwargs:
         | 
| 934 | 
            +
                        attention_mask = model_kwargs["attention_mask"]
         | 
| 935 | 
            +
                        model_kwargs["attention_mask"] = torch.cat(
         | 
| 936 | 
            +
                            [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
         | 
| 937 | 
            +
                        )
         | 
| 938 | 
            +
             | 
| 939 | 
            +
                    # update position ids
         | 
| 940 | 
            +
                    if "position_ids" in model_kwargs:
         | 
| 941 | 
            +
                        position_ids = model_kwargs["position_ids"]
         | 
| 942 | 
            +
                        new_position_id = position_ids[..., -1:].clone()
         | 
| 943 | 
            +
                        new_position_id += 1
         | 
| 944 | 
            +
                        model_kwargs["position_ids"] = torch.cat(
         | 
| 945 | 
            +
                            [position_ids, new_position_id], dim=-1
         | 
| 946 | 
            +
                        )
         | 
| 947 | 
            +
             | 
| 948 | 
            +
                    model_kwargs["is_first_forward"] = False
         | 
| 949 | 
            +
                    return model_kwargs
         | 
| 950 | 
            +
             | 
| 951 | 
            +
                def prepare_inputs_for_generation(
         | 
| 952 | 
            +
                        self,
         | 
| 953 | 
            +
                        input_ids: torch.LongTensor,
         | 
| 954 | 
            +
                        past_key_values: Optional[torch.Tensor] = None,
         | 
| 955 | 
            +
                        attention_mask: Optional[torch.Tensor] = None,
         | 
| 956 | 
            +
                        position_ids: Optional[torch.Tensor] = None,
         | 
| 957 | 
            +
                        use_cache: Optional[bool] = None,
         | 
| 958 | 
            +
                        is_first_forward: bool = True,
         | 
| 959 | 
            +
                        **kwargs
         | 
| 960 | 
            +
                ) -> dict:
         | 
| 961 | 
            +
                    # only last token for input_ids if past is not None
         | 
| 962 | 
            +
                    if position_ids is None:
         | 
| 963 | 
            +
                        position_ids = self.get_position_ids(input_ids, device=input_ids.device)
         | 
| 964 | 
            +
                    if not is_first_forward:
         | 
| 965 | 
            +
                        if past_key_values is not None:
         | 
| 966 | 
            +
                            position_ids = position_ids[..., -1:]
         | 
| 967 | 
            +
                            input_ids = input_ids[:, -1:]
         | 
| 968 | 
            +
                    return {
         | 
| 969 | 
            +
                        "input_ids": input_ids,
         | 
| 970 | 
            +
                        "past_key_values": past_key_values,
         | 
| 971 | 
            +
                        "position_ids": position_ids,
         | 
| 972 | 
            +
                        "attention_mask": attention_mask,
         | 
| 973 | 
            +
                        "return_last_logit": True,
         | 
| 974 | 
            +
                        "use_cache": use_cache
         | 
| 975 | 
            +
                    }
         | 
| 976 | 
            +
             | 
| 977 | 
            +
                def forward(
         | 
| 978 | 
            +
                        self,
         | 
| 979 | 
            +
                        input_ids: Optional[torch.Tensor] = None,
         | 
| 980 | 
            +
                        position_ids: Optional[torch.Tensor] = None,
         | 
| 981 | 
            +
                        attention_mask: Optional[torch.Tensor] = None,
         | 
| 982 | 
            +
                        past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
         | 
| 983 | 
            +
                        inputs_embeds: Optional[torch.Tensor] = None,
         | 
| 984 | 
            +
                        labels: Optional[torch.Tensor] = None,
         | 
| 985 | 
            +
                        use_cache: Optional[bool] = None,
         | 
| 986 | 
            +
                        output_attentions: Optional[bool] = None,
         | 
| 987 | 
            +
                        output_hidden_states: Optional[bool] = None,
         | 
| 988 | 
            +
                        return_dict: Optional[bool] = None,
         | 
| 989 | 
            +
                        return_last_logit: Optional[bool] = False,
         | 
| 990 | 
            +
                ):
         | 
| 991 | 
            +
                    use_cache = use_cache if use_cache is not None else self.config.use_cache
         | 
| 992 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 993 | 
            +
             | 
| 994 | 
            +
                    transformer_outputs = self.transformer(
         | 
| 995 | 
            +
                        input_ids=input_ids,
         | 
| 996 | 
            +
                        position_ids=position_ids,
         | 
| 997 | 
            +
                        attention_mask=attention_mask,
         | 
| 998 | 
            +
                        past_key_values=past_key_values,
         | 
| 999 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 1000 | 
            +
                        use_cache=use_cache,
         | 
| 1001 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 1002 | 
            +
                        return_dict=return_dict,
         | 
| 1003 | 
            +
                    )
         | 
| 1004 | 
            +
             | 
| 1005 | 
            +
                    hidden_states = transformer_outputs[0]
         | 
| 1006 | 
            +
                    if return_last_logit:
         | 
| 1007 | 
            +
                        hidden_states = hidden_states[:, -1:]
         | 
| 1008 | 
            +
                    lm_logits = self.transformer.output_layer(hidden_states)
         | 
| 1009 | 
            +
             | 
| 1010 | 
            +
                    loss = None
         | 
| 1011 | 
            +
                    if labels is not None:
         | 
| 1012 | 
            +
                        lm_logits = lm_logits.to(torch.float32)
         | 
| 1013 | 
            +
             | 
| 1014 | 
            +
                        # Shift so that tokens < n predict n
         | 
| 1015 | 
            +
                        shift_logits = lm_logits[..., :-1, :].contiguous()
         | 
| 1016 | 
            +
                        shift_labels = labels[..., 1:].contiguous()
         | 
| 1017 | 
            +
                        # Flatten the tokens
         | 
| 1018 | 
            +
                        loss_fct = CrossEntropyLoss(ignore_index=-100)
         | 
| 1019 | 
            +
                        loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
         | 
| 1020 | 
            +
             | 
| 1021 | 
            +
                        lm_logits = lm_logits.to(hidden_states.dtype)
         | 
| 1022 | 
            +
                        loss = loss.to(hidden_states.dtype)
         | 
| 1023 | 
            +
             | 
| 1024 | 
            +
                    if not return_dict:
         | 
| 1025 | 
            +
                        output = (lm_logits,) + transformer_outputs[1:]
         | 
| 1026 | 
            +
                        return ((loss,) + output) if loss is not None else output
         | 
| 1027 | 
            +
             | 
| 1028 | 
            +
                    return CausalLMOutputWithPast(
         | 
| 1029 | 
            +
                        loss=loss,
         | 
| 1030 | 
            +
                        logits=lm_logits,
         | 
| 1031 | 
            +
                        past_key_values=transformer_outputs.past_key_values,
         | 
| 1032 | 
            +
                        hidden_states=transformer_outputs.hidden_states,
         | 
| 1033 | 
            +
                        attentions=transformer_outputs.attentions,
         | 
| 1034 | 
            +
                    )
         | 
| 1035 | 
            +
             | 
| 1036 | 
            +
                @staticmethod
         | 
| 1037 | 
            +
                def _reorder_cache(
         | 
| 1038 | 
            +
                        past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
         | 
| 1039 | 
            +
                ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
         | 
| 1040 | 
            +
                    """
         | 
| 1041 | 
            +
                    This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
         | 
| 1042 | 
            +
                    [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
         | 
| 1043 | 
            +
                    beam_idx at every generation step.
         | 
| 1044 | 
            +
             | 
| 1045 | 
            +
                    Output shares the same memory storage as `past`.
         | 
| 1046 | 
            +
                    """
         | 
| 1047 | 
            +
                    return tuple(
         | 
| 1048 | 
            +
                        (
         | 
| 1049 | 
            +
                            layer_past[0].index_select(0, beam_idx.to(layer_past[0].device)),
         | 
| 1050 | 
            +
                            layer_past[1].index_select(0, beam_idx.to(layer_past[1].device)),
         | 
| 1051 | 
            +
                        )
         | 
| 1052 | 
            +
                        for layer_past in past
         | 
| 1053 | 
            +
                    )
         | 
| 1054 | 
            +
             | 
| 1055 | 
            +
             | 
| 1056 | 
            +
            class ChatGLMForSequenceClassification(ChatGLMPreTrainedModel):
         | 
| 1057 | 
            +
                def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
         | 
| 1058 | 
            +
                    super().__init__(config)
         | 
| 1059 | 
            +
             | 
| 1060 | 
            +
                    self.num_labels = config.num_labels
         | 
| 1061 | 
            +
                    self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device)
         | 
| 1062 | 
            +
             | 
| 1063 | 
            +
                    self.classifier_head = nn.Linear(config.hidden_size, config.num_labels, bias=True, dtype=config.torch_dtype)
         | 
| 1064 | 
            +
                    if config.classifier_dropout is not None:
         | 
| 1065 | 
            +
                        self.dropout = nn.Dropout(config.classifier_dropout)
         | 
| 1066 | 
            +
                    else:
         | 
| 1067 | 
            +
                        self.dropout = None
         | 
| 1068 | 
            +
                    self.config = config
         | 
| 1069 | 
            +
             | 
| 1070 | 
            +
                def forward(
         | 
| 1071 | 
            +
                        self,
         | 
| 1072 | 
            +
                        input_ids: Optional[torch.LongTensor] = None,
         | 
| 1073 | 
            +
                        position_ids: Optional[torch.LongTensor] = None,
         | 
| 1074 | 
            +
                        attention_mask: Optional[torch.Tensor] = None,
         | 
| 1075 | 
            +
                        full_attention_mask: Optional[torch.Tensor] = None,
         | 
| 1076 | 
            +
                        past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
         | 
| 1077 | 
            +
                        inputs_embeds: Optional[torch.LongTensor] = None,
         | 
| 1078 | 
            +
                        labels: Optional[torch.LongTensor] = None,
         | 
| 1079 | 
            +
                        use_cache: Optional[bool] = None,
         | 
| 1080 | 
            +
                        output_attentions: Optional[bool] = None,
         | 
| 1081 | 
            +
                        output_hidden_states: Optional[bool] = None,
         | 
| 1082 | 
            +
                        return_dict: Optional[bool] = None,
         | 
| 1083 | 
            +
                ) -> Union[Tuple[torch.Tensor, ...], SequenceClassifierOutputWithPast]:
         | 
| 1084 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 1085 | 
            +
             | 
| 1086 | 
            +
                    transformer_outputs = self.transformer(
         | 
| 1087 | 
            +
                        input_ids=input_ids,
         | 
| 1088 | 
            +
                        position_ids=position_ids,
         | 
| 1089 | 
            +
                        attention_mask=attention_mask,
         | 
| 1090 | 
            +
                        full_attention_mask=full_attention_mask,
         | 
| 1091 | 
            +
                        past_key_values=past_key_values,
         | 
| 1092 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 1093 | 
            +
                        use_cache=use_cache,
         | 
| 1094 | 
            +
                        output_attentions=output_attentions,
         | 
| 1095 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 1096 | 
            +
                        return_dict=return_dict,
         | 
| 1097 | 
            +
                    )
         | 
| 1098 | 
            +
             | 
| 1099 | 
            +
                    hidden_states = transformer_outputs[0]
         | 
| 1100 | 
            +
                    pooled_hidden_states = hidden_states[:, -1]
         | 
| 1101 | 
            +
                    if self.dropout is not None:
         | 
| 1102 | 
            +
                        pooled_hidden_states = self.dropout(pooled_hidden_states)
         | 
| 1103 | 
            +
                    logits = self.classifier_head(pooled_hidden_states)
         | 
| 1104 | 
            +
             | 
| 1105 | 
            +
                    loss = None
         | 
| 1106 | 
            +
                    if labels is not None:
         | 
| 1107 | 
            +
                        if self.config.problem_type is None:
         | 
| 1108 | 
            +
                            if self.num_labels == 1:
         | 
| 1109 | 
            +
                                self.config.problem_type = "regression"
         | 
| 1110 | 
            +
                            elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
         | 
| 1111 | 
            +
                                self.config.problem_type = "single_label_classification"
         | 
| 1112 | 
            +
                            else:
         | 
| 1113 | 
            +
                                self.config.problem_type = "multi_label_classification"
         | 
| 1114 | 
            +
             | 
| 1115 | 
            +
                        if self.config.problem_type == "regression":
         | 
| 1116 | 
            +
                            loss_fct = MSELoss()
         | 
| 1117 | 
            +
                            if self.num_labels == 1:
         | 
| 1118 | 
            +
                                loss = loss_fct(logits.squeeze().float(), labels.squeeze())
         | 
| 1119 | 
            +
                            else:
         | 
| 1120 | 
            +
                                loss = loss_fct(logits.float(), labels)
         | 
| 1121 | 
            +
                        elif self.config.problem_type == "single_label_classification":
         | 
| 1122 | 
            +
                            loss_fct = CrossEntropyLoss()
         | 
| 1123 | 
            +
                            loss = loss_fct(logits.view(-1, self.num_labels).float(), labels.view(-1))
         | 
| 1124 | 
            +
                        elif self.config.problem_type == "multi_label_classification":
         | 
| 1125 | 
            +
                            loss_fct = BCEWithLogitsLoss()
         | 
| 1126 | 
            +
                            loss = loss_fct(logits.float(), labels.view(-1, self.num_labels))
         | 
| 1127 | 
            +
             | 
| 1128 | 
            +
                    if not return_dict:
         | 
| 1129 | 
            +
                        output = (logits,) + transformer_outputs[1:]
         | 
| 1130 | 
            +
                        return ((loss,) + output) if loss is not None else output
         | 
| 1131 | 
            +
             | 
| 1132 | 
            +
                    return SequenceClassifierOutputWithPast(
         | 
| 1133 | 
            +
                        loss=loss,
         | 
| 1134 | 
            +
                        logits=logits,
         | 
| 1135 | 
            +
                        past_key_values=transformer_outputs.past_key_values,
         | 
| 1136 | 
            +
                        hidden_states=transformer_outputs.hidden_states,
         | 
| 1137 | 
            +
                        attentions=transformer_outputs.attentions,
         | 
| 1138 | 
            +
                    )
         | 
    	
        special_tokens_map.json
    ADDED
    
    | @@ -0,0 +1,32 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "additional_special_tokens": [
         | 
| 3 | 
            +
                "<|endoftext|>",
         | 
| 4 | 
            +
                "[MASK]",
         | 
| 5 | 
            +
                "[gMASK]",
         | 
| 6 | 
            +
                "[sMASK]",
         | 
| 7 | 
            +
                "<sop>",
         | 
| 8 | 
            +
                "<eop>",
         | 
| 9 | 
            +
                "<|system|>",
         | 
| 10 | 
            +
                "<|user|>",
         | 
| 11 | 
            +
                "<|assistant|>",
         | 
| 12 | 
            +
                "<|observation|>",
         | 
| 13 | 
            +
                "<|begin_of_image|>",
         | 
| 14 | 
            +
                "<|end_of_image|>",
         | 
| 15 | 
            +
                "<|begin_of_video|>",
         | 
| 16 | 
            +
                "<|end_of_video|>"
         | 
| 17 | 
            +
              ],
         | 
| 18 | 
            +
              "eos_token": {
         | 
| 19 | 
            +
                "content": "<|endoftext|>",
         | 
| 20 | 
            +
                "lstrip": false,
         | 
| 21 | 
            +
                "normalized": false,
         | 
| 22 | 
            +
                "rstrip": false,
         | 
| 23 | 
            +
                "single_word": false
         | 
| 24 | 
            +
              },
         | 
| 25 | 
            +
              "pad_token": {
         | 
| 26 | 
            +
                "content": "<|endoftext|>",
         | 
| 27 | 
            +
                "lstrip": false,
         | 
| 28 | 
            +
                "normalized": false,
         | 
| 29 | 
            +
                "rstrip": false,
         | 
| 30 | 
            +
                "single_word": false
         | 
| 31 | 
            +
              }
         | 
| 32 | 
            +
            }
         | 
    	
        tokenization_chatglm.py
    ADDED
    
    | @@ -0,0 +1,224 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import regex as re
         | 
| 2 | 
            +
            import base64
         | 
| 3 | 
            +
            import os
         | 
| 4 | 
            +
            import tiktoken
         | 
| 5 | 
            +
            from typing import List, Optional, Union, Dict
         | 
| 6 | 
            +
            from transformers import PreTrainedTokenizer
         | 
| 7 | 
            +
            from transformers.utils import PaddingStrategy
         | 
| 8 | 
            +
            from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
         | 
| 9 | 
            +
             | 
| 10 | 
            +
             | 
| 11 | 
            +
            class ChatGLM4Tokenizer(PreTrainedTokenizer):
         | 
| 12 | 
            +
                vocab_files_names = {"vocab_file": "tokenizer.model"}
         | 
| 13 | 
            +
                model_input_names = ["input_ids", "attention_mask", "position_ids"]
         | 
| 14 | 
            +
             | 
| 15 | 
            +
                def __init__(
         | 
| 16 | 
            +
                        self,
         | 
| 17 | 
            +
                        vocab_file,
         | 
| 18 | 
            +
                        clean_up_tokenization_spaces=False,
         | 
| 19 | 
            +
                        **kwargs
         | 
| 20 | 
            +
                ):
         | 
| 21 | 
            +
                    self.name = "GLM4Tokenizer"
         | 
| 22 | 
            +
                    self.vocab_file = vocab_file
         | 
| 23 | 
            +
                    pat_str = "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
         | 
| 24 | 
            +
                    self.pat_str = re.compile(pat_str)
         | 
| 25 | 
            +
             | 
| 26 | 
            +
                    mergeable_ranks = {}
         | 
| 27 | 
            +
                    with open(vocab_file) as f:
         | 
| 28 | 
            +
                        for line in f:
         | 
| 29 | 
            +
                            token, rank = line.strip().split()
         | 
| 30 | 
            +
                            rank = int(rank)
         | 
| 31 | 
            +
                            token = base64.b64decode(token)
         | 
| 32 | 
            +
                            mergeable_ranks[token] = rank
         | 
| 33 | 
            +
             | 
| 34 | 
            +
                    self.mergeable_ranks = mergeable_ranks
         | 
| 35 | 
            +
             | 
| 36 | 
            +
                    self.tokenizer = tiktoken.Encoding(
         | 
| 37 | 
            +
                        name="my_tokenizer",
         | 
| 38 | 
            +
                        pat_str=pat_str,
         | 
| 39 | 
            +
                        mergeable_ranks=mergeable_ranks,
         | 
| 40 | 
            +
                        special_tokens={}
         | 
| 41 | 
            +
                    )
         | 
| 42 | 
            +
                    self.decoder = {rank: token for token, rank in mergeable_ranks.items()}
         | 
| 43 | 
            +
                    self.n_words = len(self.decoder)
         | 
| 44 | 
            +
             | 
| 45 | 
            +
                    super().__init__(
         | 
| 46 | 
            +
                        clean_up_tokenization_spaces=clean_up_tokenization_spaces,
         | 
| 47 | 
            +
                        **kwargs
         | 
| 48 | 
            +
                    )
         | 
| 49 | 
            +
             | 
| 50 | 
            +
                @property
         | 
| 51 | 
            +
                def vocab_size(self):
         | 
| 52 | 
            +
                    return self.n_words
         | 
| 53 | 
            +
             | 
| 54 | 
            +
                def get_vocab(self):
         | 
| 55 | 
            +
                    """ Returns vocab as a dict """
         | 
| 56 | 
            +
                    vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
         | 
| 57 | 
            +
                    vocab.update(self.added_tokens_encoder)
         | 
| 58 | 
            +
                    return vocab
         | 
| 59 | 
            +
             | 
| 60 | 
            +
                def convert_tokens_to_string(self, tokens: List[Union[bytes, str, int]]) -> str:
         | 
| 61 | 
            +
                    """
         | 
| 62 | 
            +
                    Converts a sequence of tokens in a single string.
         | 
| 63 | 
            +
                    """
         | 
| 64 | 
            +
                    text = ""
         | 
| 65 | 
            +
                    temp = b""
         | 
| 66 | 
            +
                    for t in tokens:
         | 
| 67 | 
            +
                        if isinstance(t, int):
         | 
| 68 | 
            +
                            t = chr(t)
         | 
| 69 | 
            +
                        if isinstance(t, str):
         | 
| 70 | 
            +
                            if temp:
         | 
| 71 | 
            +
                                text += temp.decode("utf-8", errors="replace")
         | 
| 72 | 
            +
                        elif isinstance(t, bytes):
         | 
| 73 | 
            +
                            temp += t
         | 
| 74 | 
            +
                        else:
         | 
| 75 | 
            +
                            raise TypeError("token should only be of type int, bytes or str")
         | 
| 76 | 
            +
                    if temp:
         | 
| 77 | 
            +
                        text += temp.decode("utf-8", errors="replace")
         | 
| 78 | 
            +
                    return text
         | 
| 79 | 
            +
             | 
| 80 | 
            +
                def _tokenize(self, text, **kwargs):
         | 
| 81 | 
            +
                    tokens = []
         | 
| 82 | 
            +
                    ids = self.tokenizer.encode(text)
         | 
| 83 | 
            +
                    for t in ids:
         | 
| 84 | 
            +
                        tokens.append(self.decoder[t])
         | 
| 85 | 
            +
                    return tokens
         | 
| 86 | 
            +
             | 
| 87 | 
            +
                def _convert_token_to_id(self, token):
         | 
| 88 | 
            +
                    """ Converts a token (str) in an id using the vocab. """
         | 
| 89 | 
            +
                    return self.mergeable_ranks[token]
         | 
| 90 | 
            +
             | 
| 91 | 
            +
                def _convert_id_to_token(self, index):
         | 
| 92 | 
            +
                    """Converts an index (integer) in a token (str) using the vocab."""
         | 
| 93 | 
            +
                    return self.decoder.get(index, "")
         | 
| 94 | 
            +
             | 
| 95 | 
            +
                def save_vocabulary(self, save_directory, filename_prefix=None):
         | 
| 96 | 
            +
                    """
         | 
| 97 | 
            +
                    Save the vocabulary and special tokens file to a directory.
         | 
| 98 | 
            +
             | 
| 99 | 
            +
                    Args:
         | 
| 100 | 
            +
                        save_directory (`str`):
         | 
| 101 | 
            +
                            The directory in which to save the vocabulary.
         | 
| 102 | 
            +
                        filename_prefix (`str`, *optional*):
         | 
| 103 | 
            +
                            An optional prefix to add to the named of the saved files.
         | 
| 104 | 
            +
             | 
| 105 | 
            +
                    Returns:
         | 
| 106 | 
            +
                        `Tuple(str)`: Paths to the files saved.
         | 
| 107 | 
            +
                    """
         | 
| 108 | 
            +
                    if os.path.isdir(save_directory):
         | 
| 109 | 
            +
                        vocab_file = os.path.join(
         | 
| 110 | 
            +
                            save_directory, self.vocab_files_names["vocab_file"]
         | 
| 111 | 
            +
                        )
         | 
| 112 | 
            +
                    else:
         | 
| 113 | 
            +
                        vocab_file = save_directory
         | 
| 114 | 
            +
             | 
| 115 | 
            +
                    with open(self.vocab_file, 'rb') as fin:
         | 
| 116 | 
            +
                        proto_str = fin.read()
         | 
| 117 | 
            +
             | 
| 118 | 
            +
                    with open(vocab_file, "wb") as writer:
         | 
| 119 | 
            +
                        writer.write(proto_str)
         | 
| 120 | 
            +
             | 
| 121 | 
            +
                    return (vocab_file,)
         | 
| 122 | 
            +
             | 
| 123 | 
            +
                def get_prefix_tokens(self):
         | 
| 124 | 
            +
                    prefix_tokens = [self.convert_tokens_to_ids("[gMASK]"), self.convert_tokens_to_ids("<sop>")]
         | 
| 125 | 
            +
                    return prefix_tokens
         | 
| 126 | 
            +
             | 
| 127 | 
            +
                def build_single_message(self, role, metadata, message, tokenize=True):
         | 
| 128 | 
            +
                    assert role in ["system", "user", "assistant", "observation"], role
         | 
| 129 | 
            +
                    if tokenize:
         | 
| 130 | 
            +
                        role_tokens = [self.convert_tokens_to_ids(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n",
         | 
| 131 | 
            +
                                                                                                          disallowed_special=())
         | 
| 132 | 
            +
                        message_tokens = self.tokenizer.encode(message, disallowed_special=())
         | 
| 133 | 
            +
                        tokens = role_tokens + message_tokens
         | 
| 134 | 
            +
                        return tokens
         | 
| 135 | 
            +
                    else:
         | 
| 136 | 
            +
                        return str(f"<|{role}|>{metadata}\n{message}")
         | 
| 137 | 
            +
             | 
| 138 | 
            +
                def build_inputs_with_special_tokens(
         | 
| 139 | 
            +
                        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
         | 
| 140 | 
            +
                ) -> List[int]:
         | 
| 141 | 
            +
                    """
         | 
| 142 | 
            +
                    Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
         | 
| 143 | 
            +
                    adding special tokens. A BERT sequence has the following format:
         | 
| 144 | 
            +
             | 
| 145 | 
            +
                    - single sequence: `[CLS] X [SEP]`
         | 
| 146 | 
            +
                    - pair of sequences: `[CLS] A [SEP] B [SEP]`
         | 
| 147 | 
            +
             | 
| 148 | 
            +
                    Args:
         | 
| 149 | 
            +
                        token_ids_0 (`List[int]`):
         | 
| 150 | 
            +
                            List of IDs to which the special tokens will be added.
         | 
| 151 | 
            +
                        token_ids_1 (`List[int]`, *optional*):
         | 
| 152 | 
            +
                            Optional second list of IDs for sequence pairs.
         | 
| 153 | 
            +
             | 
| 154 | 
            +
                    Returns:
         | 
| 155 | 
            +
                        `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
         | 
| 156 | 
            +
                    """
         | 
| 157 | 
            +
                    prefix_tokens = self.get_prefix_tokens()
         | 
| 158 | 
            +
                    token_ids_0 = prefix_tokens + token_ids_0
         | 
| 159 | 
            +
                    if token_ids_1 is not None:
         | 
| 160 | 
            +
                        token_ids_0 = token_ids_0 + token_ids_1 + [self.convert_tokens_to_ids("<eos>")]
         | 
| 161 | 
            +
                    return token_ids_0
         | 
| 162 | 
            +
             | 
| 163 | 
            +
                def _pad(
         | 
| 164 | 
            +
                        self,
         | 
| 165 | 
            +
                        encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
         | 
| 166 | 
            +
                        max_length: Optional[int] = None,
         | 
| 167 | 
            +
                        padding_side: str = "left",
         | 
| 168 | 
            +
                        padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
         | 
| 169 | 
            +
                        pad_to_multiple_of: Optional[int] = None,
         | 
| 170 | 
            +
                        return_attention_mask: Optional[bool] = None,
         | 
| 171 | 
            +
                ) -> dict:
         | 
| 172 | 
            +
                    """
         | 
| 173 | 
            +
                    Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
         | 
| 174 | 
            +
             | 
| 175 | 
            +
                    Args:
         | 
| 176 | 
            +
                        encoded_inputs:
         | 
| 177 | 
            +
                            Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
         | 
| 178 | 
            +
                        max_length: maximum length of the returned list and optionally padding length (see below).
         | 
| 179 | 
            +
                            Will truncate by taking into account the special tokens.
         | 
| 180 | 
            +
                        padding_strategy: PaddingStrategy to use for padding.
         | 
| 181 | 
            +
             | 
| 182 | 
            +
                            - PaddingStrategy.LONGEST Pad to the longest sequence in the batch
         | 
| 183 | 
            +
                            - PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
         | 
| 184 | 
            +
                            - PaddingStrategy.DO_NOT_PAD: Do not pad
         | 
| 185 | 
            +
                            The tokenizer padding sides are defined in self.padding_side:
         | 
| 186 | 
            +
             | 
| 187 | 
            +
                                - 'left': pads on the left of the sequences
         | 
| 188 | 
            +
                                - 'right': pads on the right of the sequences
         | 
| 189 | 
            +
                        pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
         | 
| 190 | 
            +
                            This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
         | 
| 191 | 
            +
                            `>= 7.5` (Volta).
         | 
| 192 | 
            +
                        return_attention_mask:
         | 
| 193 | 
            +
                            (optional) Set to False to avoid returning attention mask (default: set to model specifics)
         | 
| 194 | 
            +
                    """
         | 
| 195 | 
            +
                    # Load from model defaults
         | 
| 196 | 
            +
             | 
| 197 | 
            +
                    required_input = encoded_inputs[self.model_input_names[0]]
         | 
| 198 | 
            +
                    seq_length = len(required_input)
         | 
| 199 | 
            +
             | 
| 200 | 
            +
                    if padding_strategy == PaddingStrategy.LONGEST:
         | 
| 201 | 
            +
                        max_length = len(required_input)
         | 
| 202 | 
            +
             | 
| 203 | 
            +
                    if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
         | 
| 204 | 
            +
                        max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
         | 
| 205 | 
            +
             | 
| 206 | 
            +
                    needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
         | 
| 207 | 
            +
             | 
| 208 | 
            +
                    # Initialize attention mask if not present.
         | 
| 209 | 
            +
                    if "attention_mask" not in encoded_inputs:
         | 
| 210 | 
            +
                        encoded_inputs["attention_mask"] = [1] * seq_length
         | 
| 211 | 
            +
             | 
| 212 | 
            +
                    if "position_ids" not in encoded_inputs:
         | 
| 213 | 
            +
                        encoded_inputs["position_ids"] = list(range(seq_length))
         | 
| 214 | 
            +
             | 
| 215 | 
            +
                    if needs_to_be_padded:
         | 
| 216 | 
            +
                        difference = max_length - len(required_input)
         | 
| 217 | 
            +
             | 
| 218 | 
            +
                        if "attention_mask" in encoded_inputs:
         | 
| 219 | 
            +
                            encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
         | 
| 220 | 
            +
                        if "position_ids" in encoded_inputs:
         | 
| 221 | 
            +
                            encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"]
         | 
| 222 | 
            +
                        encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
         | 
| 223 | 
            +
             | 
| 224 | 
            +
                    return encoded_inputs
         | 
    	
        tokenizer.model
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:5a493598071550244b2ee7f26118f3edec2150b9dfa967929a99052ac83fe716
         | 
| 3 | 
            +
            size 2623634
         | 
    	
        tokenizer_config.json
    ADDED
    
    | @@ -0,0 +1,148 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "added_tokens_decoder": {
         | 
| 3 | 
            +
                "151329": {
         | 
| 4 | 
            +
                  "content": "<|endoftext|>",
         | 
| 5 | 
            +
                  "lstrip": false,
         | 
| 6 | 
            +
                  "normalized": false,
         | 
| 7 | 
            +
                  "rstrip": false,
         | 
| 8 | 
            +
                  "single_word": false,
         | 
| 9 | 
            +
                  "special": true
         | 
| 10 | 
            +
                },
         | 
| 11 | 
            +
                "151330": {
         | 
| 12 | 
            +
                  "content": "[MASK]",
         | 
| 13 | 
            +
                  "lstrip": false,
         | 
| 14 | 
            +
                  "normalized": false,
         | 
| 15 | 
            +
                  "rstrip": false,
         | 
| 16 | 
            +
                  "single_word": false,
         | 
| 17 | 
            +
                  "special": true
         | 
| 18 | 
            +
                },
         | 
| 19 | 
            +
                "151331": {
         | 
| 20 | 
            +
                  "content": "[gMASK]",
         | 
| 21 | 
            +
                  "lstrip": false,
         | 
| 22 | 
            +
                  "normalized": false,
         | 
| 23 | 
            +
                  "rstrip": false,
         | 
| 24 | 
            +
                  "single_word": false,
         | 
| 25 | 
            +
                  "special": true
         | 
| 26 | 
            +
                },
         | 
| 27 | 
            +
                "151332": {
         | 
| 28 | 
            +
                  "content": "[sMASK]",
         | 
| 29 | 
            +
                  "lstrip": false,
         | 
| 30 | 
            +
                  "normalized": false,
         | 
| 31 | 
            +
                  "rstrip": false,
         | 
| 32 | 
            +
                  "single_word": false,
         | 
| 33 | 
            +
                  "special": true
         | 
| 34 | 
            +
                },
         | 
| 35 | 
            +
                "151333": {
         | 
| 36 | 
            +
                  "content": "<sop>",
         | 
| 37 | 
            +
                  "lstrip": false,
         | 
| 38 | 
            +
                  "normalized": false,
         | 
| 39 | 
            +
                  "rstrip": false,
         | 
| 40 | 
            +
                  "single_word": false,
         | 
| 41 | 
            +
                  "special": true
         | 
| 42 | 
            +
                },
         | 
| 43 | 
            +
                "151334": {
         | 
| 44 | 
            +
                  "content": "<eop>",
         | 
| 45 | 
            +
                  "lstrip": false,
         | 
| 46 | 
            +
                  "normalized": false,
         | 
| 47 | 
            +
                  "rstrip": false,
         | 
| 48 | 
            +
                  "single_word": false,
         | 
| 49 | 
            +
                  "special": true
         | 
| 50 | 
            +
                },
         | 
| 51 | 
            +
                "151335": {
         | 
| 52 | 
            +
                  "content": "<|system|>",
         | 
| 53 | 
            +
                  "lstrip": false,
         | 
| 54 | 
            +
                  "normalized": false,
         | 
| 55 | 
            +
                  "rstrip": false,
         | 
| 56 | 
            +
                  "single_word": false,
         | 
| 57 | 
            +
                  "special": true
         | 
| 58 | 
            +
                },
         | 
| 59 | 
            +
                "151336": {
         | 
| 60 | 
            +
                  "content": "<|user|>",
         | 
| 61 | 
            +
                  "lstrip": false,
         | 
| 62 | 
            +
                  "normalized": false,
         | 
| 63 | 
            +
                  "rstrip": false,
         | 
| 64 | 
            +
                  "single_word": false,
         | 
| 65 | 
            +
                  "special": true
         | 
| 66 | 
            +
                },
         | 
| 67 | 
            +
                "151337": {
         | 
| 68 | 
            +
                  "content": "<|assistant|>",
         | 
| 69 | 
            +
                  "lstrip": false,
         | 
| 70 | 
            +
                  "normalized": false,
         | 
| 71 | 
            +
                  "rstrip": false,
         | 
| 72 | 
            +
                  "single_word": false,
         | 
| 73 | 
            +
                  "special": true
         | 
| 74 | 
            +
                },
         | 
| 75 | 
            +
                "151338": {
         | 
| 76 | 
            +
                  "content": "<|observation|>",
         | 
| 77 | 
            +
                  "lstrip": false,
         | 
| 78 | 
            +
                  "normalized": false,
         | 
| 79 | 
            +
                  "rstrip": false,
         | 
| 80 | 
            +
                  "single_word": false,
         | 
| 81 | 
            +
                  "special": true
         | 
| 82 | 
            +
                },
         | 
| 83 | 
            +
                "151339": {
         | 
| 84 | 
            +
                  "content": "<|begin_of_image|>",
         | 
| 85 | 
            +
                  "lstrip": false,
         | 
| 86 | 
            +
                  "normalized": false,
         | 
| 87 | 
            +
                  "rstrip": false,
         | 
| 88 | 
            +
                  "single_word": false,
         | 
| 89 | 
            +
                  "special": true
         | 
| 90 | 
            +
                },
         | 
| 91 | 
            +
                "151340": {
         | 
| 92 | 
            +
                  "content": "<|end_of_image|>",
         | 
| 93 | 
            +
                  "lstrip": false,
         | 
| 94 | 
            +
                  "normalized": false,
         | 
| 95 | 
            +
                  "rstrip": false,
         | 
| 96 | 
            +
                  "single_word": false,
         | 
| 97 | 
            +
                  "special": true
         | 
| 98 | 
            +
                },
         | 
| 99 | 
            +
                "151341": {
         | 
| 100 | 
            +
                  "content": "<|begin_of_video|>",
         | 
| 101 | 
            +
                  "lstrip": false,
         | 
| 102 | 
            +
                  "normalized": false,
         | 
| 103 | 
            +
                  "rstrip": false,
         | 
| 104 | 
            +
                  "single_word": false,
         | 
| 105 | 
            +
                  "special": true
         | 
| 106 | 
            +
                },
         | 
| 107 | 
            +
                "151342": {
         | 
| 108 | 
            +
                  "content": "<|end_of_video|>",
         | 
| 109 | 
            +
                  "lstrip": false,
         | 
| 110 | 
            +
                  "normalized": false,
         | 
| 111 | 
            +
                  "rstrip": false,
         | 
| 112 | 
            +
                  "single_word": false,
         | 
| 113 | 
            +
                  "special": true
         | 
| 114 | 
            +
                }
         | 
| 115 | 
            +
              },
         | 
| 116 | 
            +
              "additional_special_tokens": [
         | 
| 117 | 
            +
                "<|endoftext|>",
         | 
| 118 | 
            +
                "[MASK]",
         | 
| 119 | 
            +
                "[gMASK]",
         | 
| 120 | 
            +
                "[sMASK]",
         | 
| 121 | 
            +
                "<sop>",
         | 
| 122 | 
            +
                "<eop>",
         | 
| 123 | 
            +
                "<|system|>",
         | 
| 124 | 
            +
                "<|user|>",
         | 
| 125 | 
            +
                "<|assistant|>",
         | 
| 126 | 
            +
                "<|observation|>",
         | 
| 127 | 
            +
                "<|begin_of_image|>",
         | 
| 128 | 
            +
                "<|end_of_image|>",
         | 
| 129 | 
            +
                "<|begin_of_video|>",
         | 
| 130 | 
            +
                "<|end_of_video|>"
         | 
| 131 | 
            +
              ],
         | 
| 132 | 
            +
              "auto_map": {
         | 
| 133 | 
            +
                "AutoTokenizer": [
         | 
| 134 | 
            +
                  "tokenization_chatglm.ChatGLM4Tokenizer",
         | 
| 135 | 
            +
                  null
         | 
| 136 | 
            +
                ]
         | 
| 137 | 
            +
              },
         | 
| 138 | 
            +
              "chat_template": "{{ '[gMASK]<sop>' }}{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% endif %}{% if system_message is defined %}{{ '<|system|>\n' + system_message }}{% endif %}{% for message in loop_messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|user|>\n' + content + '<|assistant|>' }}{% elif message['role'] == 'assistant' %}{{ '\n' + content }}{% endif %}{% endfor %}",
         | 
| 139 | 
            +
              "clean_up_tokenization_spaces": false,
         | 
| 140 | 
            +
              "do_lower_case": false,
         | 
| 141 | 
            +
              "eos_token": "<|endoftext|>",
         | 
| 142 | 
            +
              "model_max_length": 128000,
         | 
| 143 | 
            +
              "pad_token": "<|endoftext|>",
         | 
| 144 | 
            +
              "padding_side": "left",
         | 
| 145 | 
            +
              "remove_space": false,
         | 
| 146 | 
            +
              "split_special_tokens": false,
         | 
| 147 | 
            +
              "tokenizer_class": "ChatGLM4Tokenizer"
         | 
| 148 | 
            +
            }
         | 
