Upload folder using huggingface_hub
Browse files- README.md +202 -0
- adapter_config.json +39 -0
- adapter_model.safetensors +3 -0
- global_step2000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- global_step2000/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- global_step2000/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- global_step2000/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- latest +1 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- trainer_state.json +1434 -0
- training_args.bin +3 -0
- zero_to_fp32.py +674 -0
README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: meta-llama/Llama-3.1-8B-Instruct
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.15.2
|
adapter_config.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "meta-llama/Llama-3.1-8B-Instruct",
|
5 |
+
"bias": "none",
|
6 |
+
"corda_config": null,
|
7 |
+
"eva_config": null,
|
8 |
+
"exclude_modules": null,
|
9 |
+
"fan_in_fan_out": false,
|
10 |
+
"inference_mode": true,
|
11 |
+
"init_lora_weights": true,
|
12 |
+
"layer_replication": null,
|
13 |
+
"layers_pattern": null,
|
14 |
+
"layers_to_transform": null,
|
15 |
+
"loftq_config": {},
|
16 |
+
"lora_alpha": 64,
|
17 |
+
"lora_bias": false,
|
18 |
+
"lora_dropout": 0.1,
|
19 |
+
"megatron_config": null,
|
20 |
+
"megatron_core": "megatron.core",
|
21 |
+
"modules_to_save": null,
|
22 |
+
"peft_type": "LORA",
|
23 |
+
"r": 32,
|
24 |
+
"rank_pattern": {},
|
25 |
+
"revision": null,
|
26 |
+
"target_modules": [
|
27 |
+
"gate_proj",
|
28 |
+
"up_proj",
|
29 |
+
"k_proj",
|
30 |
+
"v_proj",
|
31 |
+
"down_proj",
|
32 |
+
"o_proj",
|
33 |
+
"q_proj"
|
34 |
+
],
|
35 |
+
"task_type": "FEATURE_EXTRACTION",
|
36 |
+
"trainable_token_indices": null,
|
37 |
+
"use_dora": false,
|
38 |
+
"use_rslora": false
|
39 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d834a8946d199e927c8a90a6618f5f2ca8d22e2dcf561e28eb61a014c56c2d58
|
3 |
+
size 167830000
|
global_step2000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:21dd4b0a9f05b89675664a0cda1b742341e5bc6a61ae8436a9e93ff3fb7bd23f
|
3 |
+
size 503321221
|
global_step2000/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e34c4ef234d151fb65ce06cd131d88e7409114f0f88b469a17903ec9033f6917
|
3 |
+
size 503321221
|
global_step2000/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fb48c3fc9c0a085913a812cd0f0e0937020d2aac30e06696ac5e5a0f00ae91ca
|
3 |
+
size 7505607949
|
global_step2000/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d6b16f374d498e5cdd2f7871c3711d95acdbfccdffdd96a4469c78c9a8b7806b
|
3 |
+
size 7505607949
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step2000
|
rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3187582f93346ac731063660f77d204a6388aa62af543ba14bb46eb3557256cf
|
3 |
+
size 14917
|
rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8fa719667cb4203b1bf435939440361a7640d442b6d4371fc26ee5d2f66c10f0
|
3 |
+
size 14917
|
trainer_state.json
ADDED
@@ -0,0 +1,1434 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_global_step": null,
|
3 |
+
"best_metric": null,
|
4 |
+
"best_model_checkpoint": null,
|
5 |
+
"epoch": 0.5213764337851929,
|
6 |
+
"eval_steps": 500,
|
7 |
+
"global_step": 2000,
|
8 |
+
"is_hyper_param_search": false,
|
9 |
+
"is_local_process_zero": true,
|
10 |
+
"is_world_process_zero": true,
|
11 |
+
"log_history": [
|
12 |
+
{
|
13 |
+
"epoch": 0.0026068821689259644,
|
14 |
+
"grad_norm": 49.331476986681444,
|
15 |
+
"learning_rate": 3.2668258512966296e-05,
|
16 |
+
"loss": 12.2547,
|
17 |
+
"step": 10
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"epoch": 0.005213764337851929,
|
21 |
+
"grad_norm": 8.763915233449037,
|
22 |
+
"learning_rate": 4.2502384231474356e-05,
|
23 |
+
"loss": 4.8812,
|
24 |
+
"step": 20
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.007820646506777894,
|
28 |
+
"grad_norm": 3.334694167190291,
|
29 |
+
"learning_rate": 4.825497900417907e-05,
|
30 |
+
"loss": 1.6309,
|
31 |
+
"step": 30
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.010427528675703858,
|
35 |
+
"grad_norm": 2.624343181311664,
|
36 |
+
"learning_rate": 5.2336509949982417e-05,
|
37 |
+
"loss": 1.3866,
|
38 |
+
"step": 40
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.013034410844629822,
|
42 |
+
"grad_norm": 2.6057816533089366,
|
43 |
+
"learning_rate": 5.550239130742453e-05,
|
44 |
+
"loss": 1.2347,
|
45 |
+
"step": 50
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.01564129301355579,
|
49 |
+
"grad_norm": 3.3478789899750456,
|
50 |
+
"learning_rate": 5.8089104722687125e-05,
|
51 |
+
"loss": 1.1339,
|
52 |
+
"step": 60
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 0.01824817518248175,
|
56 |
+
"grad_norm": 2.233945689028257,
|
57 |
+
"learning_rate": 6.027613975295318e-05,
|
58 |
+
"loss": 1.1551,
|
59 |
+
"step": 70
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.020855057351407715,
|
63 |
+
"grad_norm": 2.5906299607793,
|
64 |
+
"learning_rate": 6.217063566849047e-05,
|
65 |
+
"loss": 1.0871,
|
66 |
+
"step": 80
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.02346193952033368,
|
70 |
+
"grad_norm": 2.1892355695478547,
|
71 |
+
"learning_rate": 6.384169949539185e-05,
|
72 |
+
"loss": 1.0,
|
73 |
+
"step": 90
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.026068821689259645,
|
77 |
+
"grad_norm": 2.0124093217815813,
|
78 |
+
"learning_rate": 6.533651702593259e-05,
|
79 |
+
"loss": 1.0452,
|
80 |
+
"step": 100
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.02867570385818561,
|
84 |
+
"grad_norm": 2.079141219384628,
|
85 |
+
"learning_rate": 6.668874396522732e-05,
|
86 |
+
"loss": 1.0112,
|
87 |
+
"step": 110
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.03128258602711158,
|
91 |
+
"grad_norm": 1.9554916426797533,
|
92 |
+
"learning_rate": 6.79232304411952e-05,
|
93 |
+
"loss": 1.0344,
|
94 |
+
"step": 120
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.03388946819603754,
|
98 |
+
"grad_norm": 1.9875868563850505,
|
99 |
+
"learning_rate": 6.905884791492633e-05,
|
100 |
+
"loss": 1.0269,
|
101 |
+
"step": 130
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.0364963503649635,
|
105 |
+
"grad_norm": 2.1941623350784516,
|
106 |
+
"learning_rate": 7.011026547146124e-05,
|
107 |
+
"loss": 1.039,
|
108 |
+
"step": 140
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.03910323253388947,
|
112 |
+
"grad_norm": 1.8155718741045461,
|
113 |
+
"learning_rate": 7.10891117986373e-05,
|
114 |
+
"loss": 1.0616,
|
115 |
+
"step": 150
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.04171011470281543,
|
119 |
+
"grad_norm": 1.7586342549475686,
|
120 |
+
"learning_rate": 7.200476138699854e-05,
|
121 |
+
"loss": 1.0547,
|
122 |
+
"step": 160
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.0443169968717414,
|
126 |
+
"grad_norm": 2.100292158595079,
|
127 |
+
"learning_rate": 7.28648819635523e-05,
|
128 |
+
"loss": 1.0031,
|
129 |
+
"step": 170
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.04692387904066736,
|
133 |
+
"grad_norm": 2.0513256959729227,
|
134 |
+
"learning_rate": 7.36758252138999e-05,
|
135 |
+
"loss": 1.0158,
|
136 |
+
"step": 180
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.04953076120959333,
|
140 |
+
"grad_norm": 2.1426958006504897,
|
141 |
+
"learning_rate": 7.444291172327986e-05,
|
142 |
+
"loss": 1.0174,
|
143 |
+
"step": 190
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 0.05213764337851929,
|
147 |
+
"grad_norm": 1.8318521527764522,
|
148 |
+
"learning_rate": 7.517064274444065e-05,
|
149 |
+
"loss": 1.0546,
|
150 |
+
"step": 200
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 0.05474452554744526,
|
154 |
+
"grad_norm": 1.886155228760021,
|
155 |
+
"learning_rate": 7.586286024416594e-05,
|
156 |
+
"loss": 1.0019,
|
157 |
+
"step": 210
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"epoch": 0.05735140771637122,
|
161 |
+
"grad_norm": 2.739142325850314,
|
162 |
+
"learning_rate": 7.652286968373537e-05,
|
163 |
+
"loss": 0.9374,
|
164 |
+
"step": 220
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.05995828988529719,
|
168 |
+
"grad_norm": 1.7629924772556742,
|
169 |
+
"learning_rate": 7.715353548429121e-05,
|
170 |
+
"loss": 1.0266,
|
171 |
+
"step": 230
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.06256517205422316,
|
175 |
+
"grad_norm": 2.165683236469649,
|
176 |
+
"learning_rate": 7.775735615970326e-05,
|
177 |
+
"loss": 1.0178,
|
178 |
+
"step": 240
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 0.06517205422314912,
|
182 |
+
"grad_norm": 1.733337560836944,
|
183 |
+
"learning_rate": 7.833652410188277e-05,
|
184 |
+
"loss": 0.9352,
|
185 |
+
"step": 250
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.06777893639207508,
|
189 |
+
"grad_norm": 1.4644627780270372,
|
190 |
+
"learning_rate": 7.88929736334344e-05,
|
191 |
+
"loss": 0.9917,
|
192 |
+
"step": 260
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 0.07038581856100104,
|
196 |
+
"grad_norm": 1.8822940709742961,
|
197 |
+
"learning_rate": 7.942841998660462e-05,
|
198 |
+
"loss": 1.01,
|
199 |
+
"step": 270
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 0.072992700729927,
|
203 |
+
"grad_norm": 1.796235628150547,
|
204 |
+
"learning_rate": 7.99443911899693e-05,
|
205 |
+
"loss": 0.9574,
|
206 |
+
"step": 280
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.07559958289885298,
|
210 |
+
"grad_norm": 1.7794624205157685,
|
211 |
+
"learning_rate": 8.044225435717374e-05,
|
212 |
+
"loss": 0.9455,
|
213 |
+
"step": 290
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.07820646506777894,
|
217 |
+
"grad_norm": 1.845721579155461,
|
218 |
+
"learning_rate": 8.092323751714537e-05,
|
219 |
+
"loss": 0.9842,
|
220 |
+
"step": 300
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"epoch": 0.0808133472367049,
|
224 |
+
"grad_norm": 1.5340232922646442,
|
225 |
+
"learning_rate": 8.13884478634796e-05,
|
226 |
+
"loss": 1.0016,
|
227 |
+
"step": 310
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 0.08342022940563086,
|
231 |
+
"grad_norm": 1.7408053834467931,
|
232 |
+
"learning_rate": 8.18388871055066e-05,
|
233 |
+
"loss": 0.9408,
|
234 |
+
"step": 320
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 0.08602711157455684,
|
238 |
+
"grad_norm": 2.002334563523922,
|
239 |
+
"learning_rate": 8.227546445644009e-05,
|
240 |
+
"loss": 1.011,
|
241 |
+
"step": 330
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 0.0886339937434828,
|
245 |
+
"grad_norm": 1.5325036507169985,
|
246 |
+
"learning_rate": 8.269900768206035e-05,
|
247 |
+
"loss": 0.9431,
|
248 |
+
"step": 340
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.09124087591240876,
|
252 |
+
"grad_norm": 1.656179096323659,
|
253 |
+
"learning_rate": 8.31102725474114e-05,
|
254 |
+
"loss": 0.948,
|
255 |
+
"step": 350
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.09384775808133472,
|
259 |
+
"grad_norm": 1.579268561671285,
|
260 |
+
"learning_rate": 8.350995093240796e-05,
|
261 |
+
"loss": 0.9828,
|
262 |
+
"step": 360
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"epoch": 0.09645464025026068,
|
266 |
+
"grad_norm": 1.430642284312776,
|
267 |
+
"learning_rate": 8.389867783526633e-05,
|
268 |
+
"loss": 0.9933,
|
269 |
+
"step": 370
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 0.09906152241918666,
|
273 |
+
"grad_norm": 1.834119895542427,
|
274 |
+
"learning_rate": 8.427703744178792e-05,
|
275 |
+
"loss": 0.9299,
|
276 |
+
"step": 380
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"epoch": 0.10166840458811262,
|
280 |
+
"grad_norm": 1.615728296022092,
|
281 |
+
"learning_rate": 8.46455684061391e-05,
|
282 |
+
"loss": 0.933,
|
283 |
+
"step": 390
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"epoch": 0.10427528675703858,
|
287 |
+
"grad_norm": 1.5075395597879127,
|
288 |
+
"learning_rate": 8.500476846294871e-05,
|
289 |
+
"loss": 0.9402,
|
290 |
+
"step": 400
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.10688216892596454,
|
294 |
+
"grad_norm": 2.318206330951205,
|
295 |
+
"learning_rate": 8.535509846982542e-05,
|
296 |
+
"loss": 0.9586,
|
297 |
+
"step": 410
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.10948905109489052,
|
301 |
+
"grad_norm": 1.7156459393153987,
|
302 |
+
"learning_rate": 8.5696985962674e-05,
|
303 |
+
"loss": 0.9669,
|
304 |
+
"step": 420
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"epoch": 0.11209593326381648,
|
308 |
+
"grad_norm": 1.661507066068275,
|
309 |
+
"learning_rate": 8.603082829261603e-05,
|
310 |
+
"loss": 0.9069,
|
311 |
+
"step": 430
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 0.11470281543274244,
|
315 |
+
"grad_norm": 1.4599548493342727,
|
316 |
+
"learning_rate": 8.635699540224343e-05,
|
317 |
+
"loss": 0.9652,
|
318 |
+
"step": 440
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"epoch": 0.1173096976016684,
|
322 |
+
"grad_norm": 1.7927399177658685,
|
323 |
+
"learning_rate": 8.667583228985008e-05,
|
324 |
+
"loss": 0.9607,
|
325 |
+
"step": 450
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"epoch": 0.11991657977059438,
|
329 |
+
"grad_norm": 1.4930927495338642,
|
330 |
+
"learning_rate": 8.698766120279926e-05,
|
331 |
+
"loss": 0.9299,
|
332 |
+
"step": 460
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 0.12252346193952034,
|
336 |
+
"grad_norm": 1.6044841258937315,
|
337 |
+
"learning_rate": 8.729278359498751e-05,
|
338 |
+
"loss": 0.9433,
|
339 |
+
"step": 470
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.1251303441084463,
|
343 |
+
"grad_norm": 1.9302309005632683,
|
344 |
+
"learning_rate": 8.75914818782113e-05,
|
345 |
+
"loss": 0.9274,
|
346 |
+
"step": 480
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 0.12773722627737227,
|
350 |
+
"grad_norm": 1.728242732565303,
|
351 |
+
"learning_rate": 8.788402099294005e-05,
|
352 |
+
"loss": 0.9181,
|
353 |
+
"step": 490
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 0.13034410844629823,
|
357 |
+
"grad_norm": 1.4910517402601842,
|
358 |
+
"learning_rate": 8.817064982039083e-05,
|
359 |
+
"loss": 0.9234,
|
360 |
+
"step": 500
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"epoch": 0.1329509906152242,
|
364 |
+
"grad_norm": 1.5741224965672913,
|
365 |
+
"learning_rate": 8.845160245476505e-05,
|
366 |
+
"loss": 0.8945,
|
367 |
+
"step": 510
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"epoch": 0.13555787278415016,
|
371 |
+
"grad_norm": 1.3822257084676812,
|
372 |
+
"learning_rate": 8.872709935194245e-05,
|
373 |
+
"loss": 0.982,
|
374 |
+
"step": 520
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.13816475495307612,
|
378 |
+
"grad_norm": 1.4357135301136048,
|
379 |
+
"learning_rate": 8.899734836875464e-05,
|
380 |
+
"loss": 0.9525,
|
381 |
+
"step": 530
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.14077163712200208,
|
385 |
+
"grad_norm": 1.4310342833260414,
|
386 |
+
"learning_rate": 8.926254570511269e-05,
|
387 |
+
"loss": 0.9697,
|
388 |
+
"step": 540
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 0.14337851929092804,
|
392 |
+
"grad_norm": 1.3185832595803366,
|
393 |
+
"learning_rate": 8.952287675968555e-05,
|
394 |
+
"loss": 0.9374,
|
395 |
+
"step": 550
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 0.145985401459854,
|
399 |
+
"grad_norm": 1.194013911012122,
|
400 |
+
"learning_rate": 8.977851690847735e-05,
|
401 |
+
"loss": 0.9299,
|
402 |
+
"step": 560
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 0.14859228362878,
|
406 |
+
"grad_norm": 1.6923709597781003,
|
407 |
+
"learning_rate": 9.002963221449265e-05,
|
408 |
+
"loss": 0.9219,
|
409 |
+
"step": 570
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"epoch": 0.15119916579770595,
|
413 |
+
"grad_norm": 1.526862442225114,
|
414 |
+
"learning_rate": 9.02763800756818e-05,
|
415 |
+
"loss": 0.9628,
|
416 |
+
"step": 580
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.15380604796663191,
|
420 |
+
"grad_norm": 1.5075661508716671,
|
421 |
+
"learning_rate": 9.051890981749827e-05,
|
422 |
+
"loss": 0.9135,
|
423 |
+
"step": 590
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.15641293013555788,
|
427 |
+
"grad_norm": 1.4428334009023258,
|
428 |
+
"learning_rate": 9.075736323565343e-05,
|
429 |
+
"loss": 0.909,
|
430 |
+
"step": 600
|
431 |
+
},
|
432 |
+
{
|
433 |
+
"epoch": 0.15901981230448384,
|
434 |
+
"grad_norm": 1.741611639128364,
|
435 |
+
"learning_rate": 9.09918750940095e-05,
|
436 |
+
"loss": 0.897,
|
437 |
+
"step": 610
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 0.1616266944734098,
|
441 |
+
"grad_norm": 1.187339694623765,
|
442 |
+
"learning_rate": 9.122257358198768e-05,
|
443 |
+
"loss": 0.9161,
|
444 |
+
"step": 620
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 0.16423357664233576,
|
448 |
+
"grad_norm": 1.7239405643085177,
|
449 |
+
"learning_rate": 9.144958073537873e-05,
|
450 |
+
"loss": 0.9275,
|
451 |
+
"step": 630
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 0.16684045881126172,
|
455 |
+
"grad_norm": 1.4934424469320755,
|
456 |
+
"learning_rate": 9.167301282401467e-05,
|
457 |
+
"loss": 0.9181,
|
458 |
+
"step": 640
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.16944734098018768,
|
462 |
+
"grad_norm": 1.5887533903293958,
|
463 |
+
"learning_rate": 9.189298070938457e-05,
|
464 |
+
"loss": 0.8614,
|
465 |
+
"step": 650
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.17205422314911367,
|
469 |
+
"grad_norm": 1.3073452168799204,
|
470 |
+
"learning_rate": 9.210959017494815e-05,
|
471 |
+
"loss": 0.9295,
|
472 |
+
"step": 660
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"epoch": 0.17466110531803963,
|
476 |
+
"grad_norm": 1.6241911957261628,
|
477 |
+
"learning_rate": 9.232294223161082e-05,
|
478 |
+
"loss": 0.9024,
|
479 |
+
"step": 670
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"epoch": 0.1772679874869656,
|
483 |
+
"grad_norm": 1.353634519365756,
|
484 |
+
"learning_rate": 9.25331334005684e-05,
|
485 |
+
"loss": 1.002,
|
486 |
+
"step": 680
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"epoch": 0.17987486965589156,
|
490 |
+
"grad_norm": 1.3805701443193243,
|
491 |
+
"learning_rate": 9.274025597550396e-05,
|
492 |
+
"loss": 0.9504,
|
493 |
+
"step": 690
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"epoch": 0.18248175182481752,
|
497 |
+
"grad_norm": 1.349628444790834,
|
498 |
+
"learning_rate": 9.294439826591947e-05,
|
499 |
+
"loss": 0.8845,
|
500 |
+
"step": 700
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 0.18508863399374348,
|
504 |
+
"grad_norm": 1.6959737374830173,
|
505 |
+
"learning_rate": 9.314564482320817e-05,
|
506 |
+
"loss": 0.8913,
|
507 |
+
"step": 710
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.18769551616266944,
|
511 |
+
"grad_norm": 1.214625729911582,
|
512 |
+
"learning_rate": 9.334407665091604e-05,
|
513 |
+
"loss": 0.9063,
|
514 |
+
"step": 720
|
515 |
+
},
|
516 |
+
{
|
517 |
+
"epoch": 0.1903023983315954,
|
518 |
+
"grad_norm": 1.8898319277908309,
|
519 |
+
"learning_rate": 9.353977140050108e-05,
|
520 |
+
"loss": 0.9611,
|
521 |
+
"step": 730
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 0.19290928050052136,
|
525 |
+
"grad_norm": 1.3636119152062076,
|
526 |
+
"learning_rate": 9.373280355377439e-05,
|
527 |
+
"loss": 0.9486,
|
528 |
+
"step": 740
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"epoch": 0.19551616266944735,
|
532 |
+
"grad_norm": 1.5038687436039977,
|
533 |
+
"learning_rate": 9.392324459309554e-05,
|
534 |
+
"loss": 0.8918,
|
535 |
+
"step": 750
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"epoch": 0.1981230448383733,
|
539 |
+
"grad_norm": 1.437881387105274,
|
540 |
+
"learning_rate": 9.411116316029599e-05,
|
541 |
+
"loss": 0.9538,
|
542 |
+
"step": 760
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 0.20072992700729927,
|
546 |
+
"grad_norm": 1.4684627474926828,
|
547 |
+
"learning_rate": 9.429662520521419e-05,
|
548 |
+
"loss": 0.9875,
|
549 |
+
"step": 770
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.20333680917622524,
|
553 |
+
"grad_norm": 1.2498034963556186,
|
554 |
+
"learning_rate": 9.447969412464717e-05,
|
555 |
+
"loss": 0.8688,
|
556 |
+
"step": 780
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 0.2059436913451512,
|
560 |
+
"grad_norm": 1.6662177047291735,
|
561 |
+
"learning_rate": 9.466043089245074e-05,
|
562 |
+
"loss": 0.9125,
|
563 |
+
"step": 790
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"epoch": 0.20855057351407716,
|
567 |
+
"grad_norm": 1.866989275221486,
|
568 |
+
"learning_rate": 9.483889418145677e-05,
|
569 |
+
"loss": 0.9201,
|
570 |
+
"step": 800
|
571 |
+
},
|
572 |
+
{
|
573 |
+
"epoch": 0.21115745568300312,
|
574 |
+
"grad_norm": 1.3968953751850115,
|
575 |
+
"learning_rate": 9.501514047781739e-05,
|
576 |
+
"loss": 0.8627,
|
577 |
+
"step": 810
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"epoch": 0.21376433785192908,
|
581 |
+
"grad_norm": 1.471933908900232,
|
582 |
+
"learning_rate": 9.518922418833347e-05,
|
583 |
+
"loss": 0.8386,
|
584 |
+
"step": 820
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 0.21637122002085507,
|
588 |
+
"grad_norm": 1.5563986530773524,
|
589 |
+
"learning_rate": 9.536119774127809e-05,
|
590 |
+
"loss": 0.9067,
|
591 |
+
"step": 830
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 0.21897810218978103,
|
595 |
+
"grad_norm": 1.3658584392037696,
|
596 |
+
"learning_rate": 9.553111168118207e-05,
|
597 |
+
"loss": 0.8931,
|
598 |
+
"step": 840
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"epoch": 0.221584984358707,
|
602 |
+
"grad_norm": 1.3728098970120093,
|
603 |
+
"learning_rate": 9.569901475801053e-05,
|
604 |
+
"loss": 0.8876,
|
605 |
+
"step": 850
|
606 |
+
},
|
607 |
+
{
|
608 |
+
"epoch": 0.22419186652763295,
|
609 |
+
"grad_norm": 1.3264474456198803,
|
610 |
+
"learning_rate": 9.58649540111241e-05,
|
611 |
+
"loss": 0.908,
|
612 |
+
"step": 860
|
613 |
+
},
|
614 |
+
{
|
615 |
+
"epoch": 0.22679874869655892,
|
616 |
+
"grad_norm": 1.4306688515313286,
|
617 |
+
"learning_rate": 9.602897484838651e-05,
|
618 |
+
"loss": 0.8527,
|
619 |
+
"step": 870
|
620 |
+
},
|
621 |
+
{
|
622 |
+
"epoch": 0.22940563086548488,
|
623 |
+
"grad_norm": 1.359364809712028,
|
624 |
+
"learning_rate": 9.619112112075149e-05,
|
625 |
+
"loss": 0.8834,
|
626 |
+
"step": 880
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 0.23201251303441084,
|
630 |
+
"grad_norm": 1.6419437685113607,
|
631 |
+
"learning_rate": 9.63514351926354e-05,
|
632 |
+
"loss": 0.9578,
|
633 |
+
"step": 890
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 0.2346193952033368,
|
637 |
+
"grad_norm": 1.4939985595932985,
|
638 |
+
"learning_rate": 9.650995800835814e-05,
|
639 |
+
"loss": 0.9139,
|
640 |
+
"step": 900
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"epoch": 0.23722627737226276,
|
644 |
+
"grad_norm": 1.7581353118072822,
|
645 |
+
"learning_rate": 9.66667291549132e-05,
|
646 |
+
"loss": 0.8936,
|
647 |
+
"step": 910
|
648 |
+
},
|
649 |
+
{
|
650 |
+
"epoch": 0.23983315954118875,
|
651 |
+
"grad_norm": 1.4500851564730863,
|
652 |
+
"learning_rate": 9.682178692130732e-05,
|
653 |
+
"loss": 0.8767,
|
654 |
+
"step": 920
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 0.2424400417101147,
|
658 |
+
"grad_norm": 1.7403153499682062,
|
659 |
+
"learning_rate": 9.697516835469238e-05,
|
660 |
+
"loss": 0.8915,
|
661 |
+
"step": 930
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 0.24504692387904067,
|
665 |
+
"grad_norm": 1.7325737919906712,
|
666 |
+
"learning_rate": 9.712690931349557e-05,
|
667 |
+
"loss": 0.8679,
|
668 |
+
"step": 940
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 0.24765380604796663,
|
672 |
+
"grad_norm": 1.2607566606772898,
|
673 |
+
"learning_rate": 9.72770445177381e-05,
|
674 |
+
"loss": 0.9302,
|
675 |
+
"step": 950
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 0.2502606882168926,
|
679 |
+
"grad_norm": 1.3948857503153305,
|
680 |
+
"learning_rate": 9.742560759671938e-05,
|
681 |
+
"loss": 0.9622,
|
682 |
+
"step": 960
|
683 |
+
},
|
684 |
+
{
|
685 |
+
"epoch": 0.2528675703858186,
|
686 |
+
"grad_norm": 1.4990971836866378,
|
687 |
+
"learning_rate": 9.757263113423036e-05,
|
688 |
+
"loss": 0.8862,
|
689 |
+
"step": 970
|
690 |
+
},
|
691 |
+
{
|
692 |
+
"epoch": 0.25547445255474455,
|
693 |
+
"grad_norm": 1.26002568302247,
|
694 |
+
"learning_rate": 9.771814671144811e-05,
|
695 |
+
"loss": 0.902,
|
696 |
+
"step": 980
|
697 |
+
},
|
698 |
+
{
|
699 |
+
"epoch": 0.2580813347236705,
|
700 |
+
"grad_norm": 1.6328643018778433,
|
701 |
+
"learning_rate": 9.786218494765286e-05,
|
702 |
+
"loss": 0.9177,
|
703 |
+
"step": 990
|
704 |
+
},
|
705 |
+
{
|
706 |
+
"epoch": 0.26068821689259647,
|
707 |
+
"grad_norm": 1.5208345584967045,
|
708 |
+
"learning_rate": 9.800477553889888e-05,
|
709 |
+
"loss": 0.9209,
|
710 |
+
"step": 1000
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 0.26329509906152243,
|
714 |
+
"grad_norm": 1.7155524494692724,
|
715 |
+
"learning_rate": 9.814594729476141e-05,
|
716 |
+
"loss": 0.9237,
|
717 |
+
"step": 1010
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 0.2659019812304484,
|
721 |
+
"grad_norm": 1.2913660127117599,
|
722 |
+
"learning_rate": 9.828572817327313e-05,
|
723 |
+
"loss": 0.9243,
|
724 |
+
"step": 1020
|
725 |
+
},
|
726 |
+
{
|
727 |
+
"epoch": 0.26850886339937435,
|
728 |
+
"grad_norm": 1.7535505034210201,
|
729 |
+
"learning_rate": 9.84241453141565e-05,
|
730 |
+
"loss": 0.8931,
|
731 |
+
"step": 1030
|
732 |
+
},
|
733 |
+
{
|
734 |
+
"epoch": 0.2711157455683003,
|
735 |
+
"grad_norm": 1.2898088323947252,
|
736 |
+
"learning_rate": 9.856122507045051e-05,
|
737 |
+
"loss": 0.8526,
|
738 |
+
"step": 1040
|
739 |
+
},
|
740 |
+
{
|
741 |
+
"epoch": 0.2737226277372263,
|
742 |
+
"grad_norm": 1.463455335110262,
|
743 |
+
"learning_rate": 9.869699303862418e-05,
|
744 |
+
"loss": 0.8793,
|
745 |
+
"step": 1050
|
746 |
+
},
|
747 |
+
{
|
748 |
+
"epoch": 0.27632950990615224,
|
749 |
+
"grad_norm": 1.3899833101623003,
|
750 |
+
"learning_rate": 9.88314740872627e-05,
|
751 |
+
"loss": 0.9302,
|
752 |
+
"step": 1060
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 0.2789363920750782,
|
756 |
+
"grad_norm": 1.5658975524017984,
|
757 |
+
"learning_rate": 9.896469238440684e-05,
|
758 |
+
"loss": 0.9169,
|
759 |
+
"step": 1070
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 0.28154327424400416,
|
763 |
+
"grad_norm": 1.3907147804328621,
|
764 |
+
"learning_rate": 9.909667142362075e-05,
|
765 |
+
"loss": 0.9001,
|
766 |
+
"step": 1080
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 0.2841501564129301,
|
770 |
+
"grad_norm": 1.6141986396288779,
|
771 |
+
"learning_rate": 9.922743404885818e-05,
|
772 |
+
"loss": 0.8768,
|
773 |
+
"step": 1090
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"epoch": 0.2867570385818561,
|
777 |
+
"grad_norm": 1.3427468296126188,
|
778 |
+
"learning_rate": 9.935700247819361e-05,
|
779 |
+
"loss": 0.8774,
|
780 |
+
"step": 1100
|
781 |
+
},
|
782 |
+
{
|
783 |
+
"epoch": 0.28936392075078204,
|
784 |
+
"grad_norm": 1.466877011233847,
|
785 |
+
"learning_rate": 9.94853983264791e-05,
|
786 |
+
"loss": 0.8975,
|
787 |
+
"step": 1110
|
788 |
+
},
|
789 |
+
{
|
790 |
+
"epoch": 0.291970802919708,
|
791 |
+
"grad_norm": 1.5146408692829303,
|
792 |
+
"learning_rate": 9.961264262698542e-05,
|
793 |
+
"loss": 0.9306,
|
794 |
+
"step": 1120
|
795 |
+
},
|
796 |
+
{
|
797 |
+
"epoch": 0.29457768508863397,
|
798 |
+
"grad_norm": 1.267673391297586,
|
799 |
+
"learning_rate": 9.97387558520811e-05,
|
800 |
+
"loss": 0.9058,
|
801 |
+
"step": 1130
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"epoch": 0.29718456725756,
|
805 |
+
"grad_norm": 1.4730762854067057,
|
806 |
+
"learning_rate": 9.98637579330007e-05,
|
807 |
+
"loss": 0.9042,
|
808 |
+
"step": 1140
|
809 |
+
},
|
810 |
+
{
|
811 |
+
"epoch": 0.29979144942648595,
|
812 |
+
"grad_norm": 1.3202056072894564,
|
813 |
+
"learning_rate": 9.998766827874944e-05,
|
814 |
+
"loss": 0.9109,
|
815 |
+
"step": 1150
|
816 |
+
},
|
817 |
+
{
|
818 |
+
"epoch": 0.3023983315954119,
|
819 |
+
"grad_norm": 1.7165734727653075,
|
820 |
+
"learning_rate": 9.992275755527663e-05,
|
821 |
+
"loss": 0.9557,
|
822 |
+
"step": 1160
|
823 |
+
},
|
824 |
+
{
|
825 |
+
"epoch": 0.30500521376433787,
|
826 |
+
"grad_norm": 1.4663092625643357,
|
827 |
+
"learning_rate": 9.982620449937241e-05,
|
828 |
+
"loss": 0.9291,
|
829 |
+
"step": 1170
|
830 |
+
},
|
831 |
+
{
|
832 |
+
"epoch": 0.30761209593326383,
|
833 |
+
"grad_norm": 1.4879041927617032,
|
834 |
+
"learning_rate": 9.972965144346819e-05,
|
835 |
+
"loss": 0.9282,
|
836 |
+
"step": 1180
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"epoch": 0.3102189781021898,
|
840 |
+
"grad_norm": 1.246157859500466,
|
841 |
+
"learning_rate": 9.963309838756398e-05,
|
842 |
+
"loss": 0.8993,
|
843 |
+
"step": 1190
|
844 |
+
},
|
845 |
+
{
|
846 |
+
"epoch": 0.31282586027111575,
|
847 |
+
"grad_norm": 1.5069087106646166,
|
848 |
+
"learning_rate": 9.953654533165974e-05,
|
849 |
+
"loss": 0.8619,
|
850 |
+
"step": 1200
|
851 |
+
},
|
852 |
+
{
|
853 |
+
"epoch": 0.3154327424400417,
|
854 |
+
"grad_norm": 1.6313981760455594,
|
855 |
+
"learning_rate": 9.943999227575553e-05,
|
856 |
+
"loss": 0.9107,
|
857 |
+
"step": 1210
|
858 |
+
},
|
859 |
+
{
|
860 |
+
"epoch": 0.3180396246089677,
|
861 |
+
"grad_norm": 1.7942805182458694,
|
862 |
+
"learning_rate": 9.934343921985131e-05,
|
863 |
+
"loss": 0.8675,
|
864 |
+
"step": 1220
|
865 |
+
},
|
866 |
+
{
|
867 |
+
"epoch": 0.32064650677789364,
|
868 |
+
"grad_norm": 1.8369591575858806,
|
869 |
+
"learning_rate": 9.924688616394709e-05,
|
870 |
+
"loss": 0.9358,
|
871 |
+
"step": 1230
|
872 |
+
},
|
873 |
+
{
|
874 |
+
"epoch": 0.3232533889468196,
|
875 |
+
"grad_norm": 1.7610189048584648,
|
876 |
+
"learning_rate": 9.915033310804287e-05,
|
877 |
+
"loss": 0.8879,
|
878 |
+
"step": 1240
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"epoch": 0.32586027111574556,
|
882 |
+
"grad_norm": 1.1839900127231098,
|
883 |
+
"learning_rate": 9.905378005213866e-05,
|
884 |
+
"loss": 0.8603,
|
885 |
+
"step": 1250
|
886 |
+
},
|
887 |
+
{
|
888 |
+
"epoch": 0.3284671532846715,
|
889 |
+
"grad_norm": 1.3882705515733773,
|
890 |
+
"learning_rate": 9.895722699623443e-05,
|
891 |
+
"loss": 0.892,
|
892 |
+
"step": 1260
|
893 |
+
},
|
894 |
+
{
|
895 |
+
"epoch": 0.3310740354535975,
|
896 |
+
"grad_norm": 1.327576256659297,
|
897 |
+
"learning_rate": 9.886067394033022e-05,
|
898 |
+
"loss": 0.9003,
|
899 |
+
"step": 1270
|
900 |
+
},
|
901 |
+
{
|
902 |
+
"epoch": 0.33368091762252344,
|
903 |
+
"grad_norm": 1.8987128563646904,
|
904 |
+
"learning_rate": 9.8764120884426e-05,
|
905 |
+
"loss": 0.8824,
|
906 |
+
"step": 1280
|
907 |
+
},
|
908 |
+
{
|
909 |
+
"epoch": 0.3362877997914494,
|
910 |
+
"grad_norm": 1.3623197435419394,
|
911 |
+
"learning_rate": 9.866756782852177e-05,
|
912 |
+
"loss": 0.8985,
|
913 |
+
"step": 1290
|
914 |
+
},
|
915 |
+
{
|
916 |
+
"epoch": 0.33889468196037537,
|
917 |
+
"grad_norm": 1.5687193453586346,
|
918 |
+
"learning_rate": 9.857101477261755e-05,
|
919 |
+
"loss": 0.9256,
|
920 |
+
"step": 1300
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"epoch": 0.3415015641293014,
|
924 |
+
"grad_norm": 1.7026203127602761,
|
925 |
+
"learning_rate": 9.847446171671334e-05,
|
926 |
+
"loss": 0.892,
|
927 |
+
"step": 1310
|
928 |
+
},
|
929 |
+
{
|
930 |
+
"epoch": 0.34410844629822734,
|
931 |
+
"grad_norm": 1.452492802061833,
|
932 |
+
"learning_rate": 9.837790866080911e-05,
|
933 |
+
"loss": 0.9324,
|
934 |
+
"step": 1320
|
935 |
+
},
|
936 |
+
{
|
937 |
+
"epoch": 0.3467153284671533,
|
938 |
+
"grad_norm": 1.3446352406962594,
|
939 |
+
"learning_rate": 9.82813556049049e-05,
|
940 |
+
"loss": 0.9037,
|
941 |
+
"step": 1330
|
942 |
+
},
|
943 |
+
{
|
944 |
+
"epoch": 0.34932221063607927,
|
945 |
+
"grad_norm": 1.5312444025461112,
|
946 |
+
"learning_rate": 9.818480254900068e-05,
|
947 |
+
"loss": 0.8823,
|
948 |
+
"step": 1340
|
949 |
+
},
|
950 |
+
{
|
951 |
+
"epoch": 0.35192909280500523,
|
952 |
+
"grad_norm": 1.2547101152696145,
|
953 |
+
"learning_rate": 9.808824949309646e-05,
|
954 |
+
"loss": 0.8986,
|
955 |
+
"step": 1350
|
956 |
+
},
|
957 |
+
{
|
958 |
+
"epoch": 0.3545359749739312,
|
959 |
+
"grad_norm": 1.7576893497240795,
|
960 |
+
"learning_rate": 9.799169643719224e-05,
|
961 |
+
"loss": 0.8729,
|
962 |
+
"step": 1360
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"epoch": 0.35714285714285715,
|
966 |
+
"grad_norm": 1.2979110987807732,
|
967 |
+
"learning_rate": 9.789514338128803e-05,
|
968 |
+
"loss": 0.8368,
|
969 |
+
"step": 1370
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 0.3597497393117831,
|
973 |
+
"grad_norm": 1.3445976041661503,
|
974 |
+
"learning_rate": 9.77985903253838e-05,
|
975 |
+
"loss": 0.9255,
|
976 |
+
"step": 1380
|
977 |
+
},
|
978 |
+
{
|
979 |
+
"epoch": 0.3623566214807091,
|
980 |
+
"grad_norm": 1.5914212414708893,
|
981 |
+
"learning_rate": 9.770203726947958e-05,
|
982 |
+
"loss": 0.868,
|
983 |
+
"step": 1390
|
984 |
+
},
|
985 |
+
{
|
986 |
+
"epoch": 0.36496350364963503,
|
987 |
+
"grad_norm": 1.6920255872918506,
|
988 |
+
"learning_rate": 9.760548421357536e-05,
|
989 |
+
"loss": 0.9099,
|
990 |
+
"step": 1400
|
991 |
+
},
|
992 |
+
{
|
993 |
+
"epoch": 0.367570385818561,
|
994 |
+
"grad_norm": 1.5488187265112325,
|
995 |
+
"learning_rate": 9.750893115767114e-05,
|
996 |
+
"loss": 0.8716,
|
997 |
+
"step": 1410
|
998 |
+
},
|
999 |
+
{
|
1000 |
+
"epoch": 0.37017726798748696,
|
1001 |
+
"grad_norm": 1.451972780765123,
|
1002 |
+
"learning_rate": 9.741237810176692e-05,
|
1003 |
+
"loss": 0.8561,
|
1004 |
+
"step": 1420
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"epoch": 0.3727841501564129,
|
1008 |
+
"grad_norm": 1.295850263704956,
|
1009 |
+
"learning_rate": 9.731582504586271e-05,
|
1010 |
+
"loss": 0.9015,
|
1011 |
+
"step": 1430
|
1012 |
+
},
|
1013 |
+
{
|
1014 |
+
"epoch": 0.3753910323253389,
|
1015 |
+
"grad_norm": 1.5842277075718598,
|
1016 |
+
"learning_rate": 9.721927198995849e-05,
|
1017 |
+
"loss": 0.9298,
|
1018 |
+
"step": 1440
|
1019 |
+
},
|
1020 |
+
{
|
1021 |
+
"epoch": 0.37799791449426484,
|
1022 |
+
"grad_norm": 1.3596224626112259,
|
1023 |
+
"learning_rate": 9.712271893405427e-05,
|
1024 |
+
"loss": 0.8806,
|
1025 |
+
"step": 1450
|
1026 |
+
},
|
1027 |
+
{
|
1028 |
+
"epoch": 0.3806047966631908,
|
1029 |
+
"grad_norm": 1.615036427471816,
|
1030 |
+
"learning_rate": 9.702616587815004e-05,
|
1031 |
+
"loss": 0.8381,
|
1032 |
+
"step": 1460
|
1033 |
+
},
|
1034 |
+
{
|
1035 |
+
"epoch": 0.38321167883211676,
|
1036 |
+
"grad_norm": 1.3877699271760322,
|
1037 |
+
"learning_rate": 9.692961282224584e-05,
|
1038 |
+
"loss": 0.8688,
|
1039 |
+
"step": 1470
|
1040 |
+
},
|
1041 |
+
{
|
1042 |
+
"epoch": 0.3858185610010427,
|
1043 |
+
"grad_norm": 1.4359747663434173,
|
1044 |
+
"learning_rate": 9.68330597663416e-05,
|
1045 |
+
"loss": 0.8943,
|
1046 |
+
"step": 1480
|
1047 |
+
},
|
1048 |
+
{
|
1049 |
+
"epoch": 0.38842544316996874,
|
1050 |
+
"grad_norm": 1.4881531927353704,
|
1051 |
+
"learning_rate": 9.673650671043739e-05,
|
1052 |
+
"loss": 0.906,
|
1053 |
+
"step": 1490
|
1054 |
+
},
|
1055 |
+
{
|
1056 |
+
"epoch": 0.3910323253388947,
|
1057 |
+
"grad_norm": 1.4488364078976648,
|
1058 |
+
"learning_rate": 9.663995365453317e-05,
|
1059 |
+
"loss": 0.8626,
|
1060 |
+
"step": 1500
|
1061 |
+
},
|
1062 |
+
{
|
1063 |
+
"epoch": 0.39363920750782067,
|
1064 |
+
"grad_norm": 1.4207762959482324,
|
1065 |
+
"learning_rate": 9.654340059862895e-05,
|
1066 |
+
"loss": 0.8339,
|
1067 |
+
"step": 1510
|
1068 |
+
},
|
1069 |
+
{
|
1070 |
+
"epoch": 0.3962460896767466,
|
1071 |
+
"grad_norm": 1.2660341079423447,
|
1072 |
+
"learning_rate": 9.644684754272473e-05,
|
1073 |
+
"loss": 0.9113,
|
1074 |
+
"step": 1520
|
1075 |
+
},
|
1076 |
+
{
|
1077 |
+
"epoch": 0.3988529718456726,
|
1078 |
+
"grad_norm": 1.277561759581565,
|
1079 |
+
"learning_rate": 9.635029448682052e-05,
|
1080 |
+
"loss": 0.9101,
|
1081 |
+
"step": 1530
|
1082 |
+
},
|
1083 |
+
{
|
1084 |
+
"epoch": 0.40145985401459855,
|
1085 |
+
"grad_norm": 1.3307684337403334,
|
1086 |
+
"learning_rate": 9.625374143091628e-05,
|
1087 |
+
"loss": 0.9213,
|
1088 |
+
"step": 1540
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"epoch": 0.4040667361835245,
|
1092 |
+
"grad_norm": 1.415345659530655,
|
1093 |
+
"learning_rate": 9.615718837501208e-05,
|
1094 |
+
"loss": 0.858,
|
1095 |
+
"step": 1550
|
1096 |
+
},
|
1097 |
+
{
|
1098 |
+
"epoch": 0.40667361835245047,
|
1099 |
+
"grad_norm": 1.7317695266528055,
|
1100 |
+
"learning_rate": 9.606063531910785e-05,
|
1101 |
+
"loss": 0.8247,
|
1102 |
+
"step": 1560
|
1103 |
+
},
|
1104 |
+
{
|
1105 |
+
"epoch": 0.40928050052137643,
|
1106 |
+
"grad_norm": 1.3841397564289928,
|
1107 |
+
"learning_rate": 9.596408226320363e-05,
|
1108 |
+
"loss": 0.9004,
|
1109 |
+
"step": 1570
|
1110 |
+
},
|
1111 |
+
{
|
1112 |
+
"epoch": 0.4118873826903024,
|
1113 |
+
"grad_norm": 1.6542817351437331,
|
1114 |
+
"learning_rate": 9.586752920729941e-05,
|
1115 |
+
"loss": 0.8688,
|
1116 |
+
"step": 1580
|
1117 |
+
},
|
1118 |
+
{
|
1119 |
+
"epoch": 0.41449426485922836,
|
1120 |
+
"grad_norm": 1.1741335364390655,
|
1121 |
+
"learning_rate": 9.57709761513952e-05,
|
1122 |
+
"loss": 0.8711,
|
1123 |
+
"step": 1590
|
1124 |
+
},
|
1125 |
+
{
|
1126 |
+
"epoch": 0.4171011470281543,
|
1127 |
+
"grad_norm": 1.6436036502277707,
|
1128 |
+
"learning_rate": 9.567442309549097e-05,
|
1129 |
+
"loss": 0.843,
|
1130 |
+
"step": 1600
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"epoch": 0.4197080291970803,
|
1134 |
+
"grad_norm": 1.5352723465358284,
|
1135 |
+
"learning_rate": 9.557787003958676e-05,
|
1136 |
+
"loss": 0.908,
|
1137 |
+
"step": 1610
|
1138 |
+
},
|
1139 |
+
{
|
1140 |
+
"epoch": 0.42231491136600624,
|
1141 |
+
"grad_norm": 1.5272500363549157,
|
1142 |
+
"learning_rate": 9.548131698368254e-05,
|
1143 |
+
"loss": 0.8234,
|
1144 |
+
"step": 1620
|
1145 |
+
},
|
1146 |
+
{
|
1147 |
+
"epoch": 0.4249217935349322,
|
1148 |
+
"grad_norm": 1.2675860878774323,
|
1149 |
+
"learning_rate": 9.538476392777832e-05,
|
1150 |
+
"loss": 0.8992,
|
1151 |
+
"step": 1630
|
1152 |
+
},
|
1153 |
+
{
|
1154 |
+
"epoch": 0.42752867570385816,
|
1155 |
+
"grad_norm": 1.2425270593669835,
|
1156 |
+
"learning_rate": 9.52882108718741e-05,
|
1157 |
+
"loss": 0.8693,
|
1158 |
+
"step": 1640
|
1159 |
+
},
|
1160 |
+
{
|
1161 |
+
"epoch": 0.4301355578727841,
|
1162 |
+
"grad_norm": 1.570064901663505,
|
1163 |
+
"learning_rate": 9.519165781596989e-05,
|
1164 |
+
"loss": 0.8652,
|
1165 |
+
"step": 1650
|
1166 |
+
},
|
1167 |
+
{
|
1168 |
+
"epoch": 0.43274244004171014,
|
1169 |
+
"grad_norm": 1.3621769054786714,
|
1170 |
+
"learning_rate": 9.509510476006565e-05,
|
1171 |
+
"loss": 0.8596,
|
1172 |
+
"step": 1660
|
1173 |
+
},
|
1174 |
+
{
|
1175 |
+
"epoch": 0.4353493222106361,
|
1176 |
+
"grad_norm": 1.4560708789685335,
|
1177 |
+
"learning_rate": 9.499855170416144e-05,
|
1178 |
+
"loss": 0.8062,
|
1179 |
+
"step": 1670
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"epoch": 0.43795620437956206,
|
1183 |
+
"grad_norm": 1.315052892176818,
|
1184 |
+
"learning_rate": 9.490199864825722e-05,
|
1185 |
+
"loss": 0.8548,
|
1186 |
+
"step": 1680
|
1187 |
+
},
|
1188 |
+
{
|
1189 |
+
"epoch": 0.440563086548488,
|
1190 |
+
"grad_norm": 1.3293319921282323,
|
1191 |
+
"learning_rate": 9.4805445592353e-05,
|
1192 |
+
"loss": 0.9029,
|
1193 |
+
"step": 1690
|
1194 |
+
},
|
1195 |
+
{
|
1196 |
+
"epoch": 0.443169968717414,
|
1197 |
+
"grad_norm": 1.6758016698805198,
|
1198 |
+
"learning_rate": 9.470889253644878e-05,
|
1199 |
+
"loss": 0.8288,
|
1200 |
+
"step": 1700
|
1201 |
+
},
|
1202 |
+
{
|
1203 |
+
"epoch": 0.44577685088633995,
|
1204 |
+
"grad_norm": 1.4994197671525644,
|
1205 |
+
"learning_rate": 9.461233948054457e-05,
|
1206 |
+
"loss": 0.8813,
|
1207 |
+
"step": 1710
|
1208 |
+
},
|
1209 |
+
{
|
1210 |
+
"epoch": 0.4483837330552659,
|
1211 |
+
"grad_norm": 1.4043994377616684,
|
1212 |
+
"learning_rate": 9.451578642464035e-05,
|
1213 |
+
"loss": 0.8745,
|
1214 |
+
"step": 1720
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 0.45099061522419187,
|
1218 |
+
"grad_norm": 1.3750450980048579,
|
1219 |
+
"learning_rate": 9.441923336873612e-05,
|
1220 |
+
"loss": 0.9459,
|
1221 |
+
"step": 1730
|
1222 |
+
},
|
1223 |
+
{
|
1224 |
+
"epoch": 0.45359749739311783,
|
1225 |
+
"grad_norm": 1.7045501519636879,
|
1226 |
+
"learning_rate": 9.43226803128319e-05,
|
1227 |
+
"loss": 0.8674,
|
1228 |
+
"step": 1740
|
1229 |
+
},
|
1230 |
+
{
|
1231 |
+
"epoch": 0.4562043795620438,
|
1232 |
+
"grad_norm": 1.6497345479066228,
|
1233 |
+
"learning_rate": 9.422612725692768e-05,
|
1234 |
+
"loss": 0.8646,
|
1235 |
+
"step": 1750
|
1236 |
+
},
|
1237 |
+
{
|
1238 |
+
"epoch": 0.45881126173096975,
|
1239 |
+
"grad_norm": 1.5931163752198003,
|
1240 |
+
"learning_rate": 9.412957420102346e-05,
|
1241 |
+
"loss": 0.8455,
|
1242 |
+
"step": 1760
|
1243 |
+
},
|
1244 |
+
{
|
1245 |
+
"epoch": 0.4614181438998957,
|
1246 |
+
"grad_norm": 1.7230724221709457,
|
1247 |
+
"learning_rate": 9.403302114511925e-05,
|
1248 |
+
"loss": 0.9131,
|
1249 |
+
"step": 1770
|
1250 |
+
},
|
1251 |
+
{
|
1252 |
+
"epoch": 0.4640250260688217,
|
1253 |
+
"grad_norm": 1.46180495132515,
|
1254 |
+
"learning_rate": 9.393646808921503e-05,
|
1255 |
+
"loss": 0.8871,
|
1256 |
+
"step": 1780
|
1257 |
+
},
|
1258 |
+
{
|
1259 |
+
"epoch": 0.46663190823774764,
|
1260 |
+
"grad_norm": 1.5935162065821926,
|
1261 |
+
"learning_rate": 9.383991503331081e-05,
|
1262 |
+
"loss": 0.8675,
|
1263 |
+
"step": 1790
|
1264 |
+
},
|
1265 |
+
{
|
1266 |
+
"epoch": 0.4692387904066736,
|
1267 |
+
"grad_norm": 1.1992013716756416,
|
1268 |
+
"learning_rate": 9.374336197740659e-05,
|
1269 |
+
"loss": 0.8699,
|
1270 |
+
"step": 1800
|
1271 |
+
},
|
1272 |
+
{
|
1273 |
+
"epoch": 0.47184567257559956,
|
1274 |
+
"grad_norm": 1.2641218432215904,
|
1275 |
+
"learning_rate": 9.364680892150238e-05,
|
1276 |
+
"loss": 0.8158,
|
1277 |
+
"step": 1810
|
1278 |
+
},
|
1279 |
+
{
|
1280 |
+
"epoch": 0.4744525547445255,
|
1281 |
+
"grad_norm": 1.2473362593090205,
|
1282 |
+
"learning_rate": 9.355025586559814e-05,
|
1283 |
+
"loss": 0.888,
|
1284 |
+
"step": 1820
|
1285 |
+
},
|
1286 |
+
{
|
1287 |
+
"epoch": 0.4770594369134515,
|
1288 |
+
"grad_norm": 1.464832534464096,
|
1289 |
+
"learning_rate": 9.345370280969393e-05,
|
1290 |
+
"loss": 0.86,
|
1291 |
+
"step": 1830
|
1292 |
+
},
|
1293 |
+
{
|
1294 |
+
"epoch": 0.4796663190823775,
|
1295 |
+
"grad_norm": 1.4843223334337357,
|
1296 |
+
"learning_rate": 9.335714975378971e-05,
|
1297 |
+
"loss": 0.8826,
|
1298 |
+
"step": 1840
|
1299 |
+
},
|
1300 |
+
{
|
1301 |
+
"epoch": 0.48227320125130346,
|
1302 |
+
"grad_norm": 1.4314799678240455,
|
1303 |
+
"learning_rate": 9.326059669788549e-05,
|
1304 |
+
"loss": 0.9123,
|
1305 |
+
"step": 1850
|
1306 |
+
},
|
1307 |
+
{
|
1308 |
+
"epoch": 0.4848800834202294,
|
1309 |
+
"grad_norm": 1.5671717582839904,
|
1310 |
+
"learning_rate": 9.316404364198127e-05,
|
1311 |
+
"loss": 0.8619,
|
1312 |
+
"step": 1860
|
1313 |
+
},
|
1314 |
+
{
|
1315 |
+
"epoch": 0.4874869655891554,
|
1316 |
+
"grad_norm": 1.5285351609841458,
|
1317 |
+
"learning_rate": 9.306749058607706e-05,
|
1318 |
+
"loss": 0.8608,
|
1319 |
+
"step": 1870
|
1320 |
+
},
|
1321 |
+
{
|
1322 |
+
"epoch": 0.49009384775808135,
|
1323 |
+
"grad_norm": 1.4572720749431034,
|
1324 |
+
"learning_rate": 9.297093753017283e-05,
|
1325 |
+
"loss": 0.8562,
|
1326 |
+
"step": 1880
|
1327 |
+
},
|
1328 |
+
{
|
1329 |
+
"epoch": 0.4927007299270073,
|
1330 |
+
"grad_norm": 1.3144129556287165,
|
1331 |
+
"learning_rate": 9.287438447426862e-05,
|
1332 |
+
"loss": 0.8674,
|
1333 |
+
"step": 1890
|
1334 |
+
},
|
1335 |
+
{
|
1336 |
+
"epoch": 0.49530761209593327,
|
1337 |
+
"grad_norm": 1.765323561126351,
|
1338 |
+
"learning_rate": 9.27778314183644e-05,
|
1339 |
+
"loss": 0.8338,
|
1340 |
+
"step": 1900
|
1341 |
+
},
|
1342 |
+
{
|
1343 |
+
"epoch": 0.49791449426485923,
|
1344 |
+
"grad_norm": 1.440502764478305,
|
1345 |
+
"learning_rate": 9.268127836246017e-05,
|
1346 |
+
"loss": 0.8791,
|
1347 |
+
"step": 1910
|
1348 |
+
},
|
1349 |
+
{
|
1350 |
+
"epoch": 0.5005213764337852,
|
1351 |
+
"grad_norm": 1.5684279942469967,
|
1352 |
+
"learning_rate": 9.258472530655595e-05,
|
1353 |
+
"loss": 0.8177,
|
1354 |
+
"step": 1920
|
1355 |
+
},
|
1356 |
+
{
|
1357 |
+
"epoch": 0.5031282586027112,
|
1358 |
+
"grad_norm": 1.310102072350701,
|
1359 |
+
"learning_rate": 9.248817225065174e-05,
|
1360 |
+
"loss": 0.8493,
|
1361 |
+
"step": 1930
|
1362 |
+
},
|
1363 |
+
{
|
1364 |
+
"epoch": 0.5057351407716372,
|
1365 |
+
"grad_norm": 1.5214634407076848,
|
1366 |
+
"learning_rate": 9.239161919474751e-05,
|
1367 |
+
"loss": 0.8537,
|
1368 |
+
"step": 1940
|
1369 |
+
},
|
1370 |
+
{
|
1371 |
+
"epoch": 0.5083420229405631,
|
1372 |
+
"grad_norm": 1.5587847023414687,
|
1373 |
+
"learning_rate": 9.22950661388433e-05,
|
1374 |
+
"loss": 0.9156,
|
1375 |
+
"step": 1950
|
1376 |
+
},
|
1377 |
+
{
|
1378 |
+
"epoch": 0.5109489051094891,
|
1379 |
+
"grad_norm": 1.388133145041633,
|
1380 |
+
"learning_rate": 9.219851308293908e-05,
|
1381 |
+
"loss": 0.8231,
|
1382 |
+
"step": 1960
|
1383 |
+
},
|
1384 |
+
{
|
1385 |
+
"epoch": 0.513555787278415,
|
1386 |
+
"grad_norm": 1.5926213586780094,
|
1387 |
+
"learning_rate": 9.210196002703486e-05,
|
1388 |
+
"loss": 0.8427,
|
1389 |
+
"step": 1970
|
1390 |
+
},
|
1391 |
+
{
|
1392 |
+
"epoch": 0.516162669447341,
|
1393 |
+
"grad_norm": 1.3201354229543043,
|
1394 |
+
"learning_rate": 9.200540697113063e-05,
|
1395 |
+
"loss": 0.8208,
|
1396 |
+
"step": 1980
|
1397 |
+
},
|
1398 |
+
{
|
1399 |
+
"epoch": 0.5187695516162669,
|
1400 |
+
"grad_norm": 1.393366393240565,
|
1401 |
+
"learning_rate": 9.190885391522643e-05,
|
1402 |
+
"loss": 0.8929,
|
1403 |
+
"step": 1990
|
1404 |
+
},
|
1405 |
+
{
|
1406 |
+
"epoch": 0.5213764337851929,
|
1407 |
+
"grad_norm": 1.362764482222623,
|
1408 |
+
"learning_rate": 9.18123008593222e-05,
|
1409 |
+
"loss": 0.8929,
|
1410 |
+
"step": 2000
|
1411 |
+
}
|
1412 |
+
],
|
1413 |
+
"logging_steps": 10,
|
1414 |
+
"max_steps": 11508,
|
1415 |
+
"num_input_tokens_seen": 0,
|
1416 |
+
"num_train_epochs": 3,
|
1417 |
+
"save_steps": 1000,
|
1418 |
+
"stateful_callbacks": {
|
1419 |
+
"TrainerControl": {
|
1420 |
+
"args": {
|
1421 |
+
"should_epoch_stop": false,
|
1422 |
+
"should_evaluate": false,
|
1423 |
+
"should_log": false,
|
1424 |
+
"should_save": true,
|
1425 |
+
"should_training_stop": false
|
1426 |
+
},
|
1427 |
+
"attributes": {}
|
1428 |
+
}
|
1429 |
+
},
|
1430 |
+
"total_flos": 0.0,
|
1431 |
+
"train_batch_size": 16,
|
1432 |
+
"trial_name": null,
|
1433 |
+
"trial_params": null
|
1434 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a226f6c1a516d7f4d2c2f86a40c3dfb06f1dfbfa39d092d3b825fb40fe7fa84f
|
3 |
+
size 8401
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import json
|
25 |
+
from tqdm import tqdm
|
26 |
+
from collections import OrderedDict
|
27 |
+
from dataclasses import dataclass
|
28 |
+
|
29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
31 |
+
from deepspeed.utils import logger
|
32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
35 |
+
|
36 |
+
|
37 |
+
@dataclass
|
38 |
+
class zero_model_state:
|
39 |
+
buffers: dict()
|
40 |
+
param_shapes: dict()
|
41 |
+
shared_params: list
|
42 |
+
ds_version: int
|
43 |
+
frozen_param_shapes: dict()
|
44 |
+
frozen_param_fragments: dict()
|
45 |
+
|
46 |
+
|
47 |
+
debug = 0
|
48 |
+
|
49 |
+
# load to cpu
|
50 |
+
device = torch.device('cpu')
|
51 |
+
|
52 |
+
|
53 |
+
def atoi(text):
|
54 |
+
return int(text) if text.isdigit() else text
|
55 |
+
|
56 |
+
|
57 |
+
def natural_keys(text):
|
58 |
+
'''
|
59 |
+
alist.sort(key=natural_keys) sorts in human order
|
60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
61 |
+
(See Toothy's implementation in the comments)
|
62 |
+
'''
|
63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
64 |
+
|
65 |
+
|
66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
67 |
+
if not os.path.isdir(checkpoint_dir):
|
68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
69 |
+
|
70 |
+
# there should be only one file
|
71 |
+
if zero_stage <= 2:
|
72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
73 |
+
elif zero_stage == 3:
|
74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
75 |
+
|
76 |
+
if not os.path.exists(file):
|
77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
78 |
+
|
79 |
+
return file
|
80 |
+
|
81 |
+
|
82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
85 |
+
|
86 |
+
if len(ckpt_files) == 0:
|
87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
88 |
+
|
89 |
+
return ckpt_files
|
90 |
+
|
91 |
+
|
92 |
+
def get_optim_files(checkpoint_dir):
|
93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
94 |
+
|
95 |
+
|
96 |
+
def get_model_state_files(checkpoint_dir):
|
97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
98 |
+
|
99 |
+
|
100 |
+
def parse_model_states(files):
|
101 |
+
zero_model_states = []
|
102 |
+
for file in files:
|
103 |
+
state_dict = torch.load(file, map_location=device)
|
104 |
+
|
105 |
+
if BUFFER_NAMES not in state_dict:
|
106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
108 |
+
if debug:
|
109 |
+
print("Found buffers:", buffer_names)
|
110 |
+
|
111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
114 |
+
|
115 |
+
# collect parameters that are included in param_shapes
|
116 |
+
param_names = []
|
117 |
+
for s in param_shapes:
|
118 |
+
for name in s.keys():
|
119 |
+
param_names.append(name)
|
120 |
+
|
121 |
+
# update with frozen parameters
|
122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
123 |
+
if frozen_param_shapes is not None:
|
124 |
+
if debug:
|
125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
126 |
+
param_names += list(frozen_param_shapes.keys())
|
127 |
+
|
128 |
+
# handle shared params
|
129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
130 |
+
|
131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
132 |
+
|
133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
134 |
+
|
135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
136 |
+
param_shapes=param_shapes,
|
137 |
+
shared_params=shared_params,
|
138 |
+
ds_version=ds_version,
|
139 |
+
frozen_param_shapes=frozen_param_shapes,
|
140 |
+
frozen_param_fragments=frozen_param_fragments)
|
141 |
+
zero_model_states.append(z_model_state)
|
142 |
+
|
143 |
+
return zero_model_states
|
144 |
+
|
145 |
+
|
146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
147 |
+
total_files = len(files)
|
148 |
+
state_dicts = []
|
149 |
+
for f in files:
|
150 |
+
state_dict = torch.load(f, map_location=device)
|
151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
152 |
+
# and also handle the case where it was already removed by another helper script
|
153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
154 |
+
state_dicts.append(state_dict)
|
155 |
+
|
156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
160 |
+
|
161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
163 |
+
# use the max of the partition_count to get the dp world_size.
|
164 |
+
|
165 |
+
if type(world_size) is list:
|
166 |
+
world_size = max(world_size)
|
167 |
+
|
168 |
+
if world_size != total_files:
|
169 |
+
raise ValueError(
|
170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
172 |
+
)
|
173 |
+
|
174 |
+
# the groups are named differently in each stage
|
175 |
+
if zero_stage <= 2:
|
176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
177 |
+
elif zero_stage == 3:
|
178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
179 |
+
else:
|
180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
181 |
+
|
182 |
+
if zero_stage <= 2:
|
183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
184 |
+
elif zero_stage == 3:
|
185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
187 |
+
#
|
188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
190 |
+
|
191 |
+
fp32_flat_groups = [
|
192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
193 |
+
]
|
194 |
+
|
195 |
+
return zero_stage, world_size, fp32_flat_groups
|
196 |
+
|
197 |
+
|
198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
199 |
+
"""
|
200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
201 |
+
|
202 |
+
Args:
|
203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
204 |
+
|
205 |
+
"""
|
206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
207 |
+
|
208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
211 |
+
|
212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
213 |
+
|
214 |
+
zero_model_states = parse_model_states(model_files)
|
215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
216 |
+
|
217 |
+
if zero_stage <= 2:
|
218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
219 |
+
exclude_frozen_parameters)
|
220 |
+
elif zero_stage == 3:
|
221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
222 |
+
exclude_frozen_parameters)
|
223 |
+
|
224 |
+
|
225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
227 |
+
return
|
228 |
+
|
229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
231 |
+
|
232 |
+
if debug:
|
233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
235 |
+
|
236 |
+
wanted_params = len(frozen_param_shapes)
|
237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
241 |
+
|
242 |
+
total_params = 0
|
243 |
+
total_numel = 0
|
244 |
+
for name, shape in frozen_param_shapes.items():
|
245 |
+
total_params += 1
|
246 |
+
unpartitioned_numel = shape.numel()
|
247 |
+
total_numel += unpartitioned_numel
|
248 |
+
|
249 |
+
state_dict[name] = frozen_param_fragments[name]
|
250 |
+
|
251 |
+
if debug:
|
252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
253 |
+
|
254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
255 |
+
|
256 |
+
|
257 |
+
def _has_callable(obj, fn):
|
258 |
+
attr = getattr(obj, fn, None)
|
259 |
+
return callable(attr)
|
260 |
+
|
261 |
+
|
262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
263 |
+
param_shapes = zero_model_states[0].param_shapes
|
264 |
+
|
265 |
+
# Reconstruction protocol:
|
266 |
+
#
|
267 |
+
# XXX: document this
|
268 |
+
|
269 |
+
if debug:
|
270 |
+
for i in range(world_size):
|
271 |
+
for j in range(len(fp32_flat_groups[0])):
|
272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
273 |
+
|
274 |
+
# XXX: memory usage doubles here (zero2)
|
275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
276 |
+
merged_single_partition_of_fp32_groups = []
|
277 |
+
for i in range(num_param_groups):
|
278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
281 |
+
avail_numel = sum(
|
282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
283 |
+
|
284 |
+
if debug:
|
285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
287 |
+
# not asserting if there is a mismatch due to possible padding
|
288 |
+
print(f"Have {avail_numel} numels to process.")
|
289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
290 |
+
|
291 |
+
# params
|
292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
293 |
+
# out-of-core computing solution
|
294 |
+
total_numel = 0
|
295 |
+
total_params = 0
|
296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
297 |
+
offset = 0
|
298 |
+
avail_numel = full_single_fp32_vector.numel()
|
299 |
+
for name, shape in shapes.items():
|
300 |
+
|
301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
302 |
+
total_numel += unpartitioned_numel
|
303 |
+
total_params += 1
|
304 |
+
|
305 |
+
if debug:
|
306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
308 |
+
offset += unpartitioned_numel
|
309 |
+
|
310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
314 |
+
align_to = 2 * world_size
|
315 |
+
|
316 |
+
def zero2_align(x):
|
317 |
+
return align_to * math.ceil(x / align_to)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
offset = zero2_align(offset)
|
323 |
+
avail_numel = zero2_align(avail_numel)
|
324 |
+
|
325 |
+
if debug:
|
326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
327 |
+
|
328 |
+
# Sanity check
|
329 |
+
if offset != avail_numel:
|
330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
331 |
+
|
332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
333 |
+
|
334 |
+
|
335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
336 |
+
exclude_frozen_parameters):
|
337 |
+
state_dict = OrderedDict()
|
338 |
+
|
339 |
+
# buffers
|
340 |
+
buffers = zero_model_states[0].buffers
|
341 |
+
state_dict.update(buffers)
|
342 |
+
if debug:
|
343 |
+
print(f"added {len(buffers)} buffers")
|
344 |
+
|
345 |
+
if not exclude_frozen_parameters:
|
346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
347 |
+
|
348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
349 |
+
|
350 |
+
# recover shared parameters
|
351 |
+
for pair in zero_model_states[0].shared_params:
|
352 |
+
if pair[1] in state_dict:
|
353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
354 |
+
|
355 |
+
return state_dict
|
356 |
+
|
357 |
+
|
358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
359 |
+
remainder = unpartitioned_numel % world_size
|
360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
362 |
+
return partitioned_numel, padding_numel
|
363 |
+
|
364 |
+
|
365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
367 |
+
return
|
368 |
+
|
369 |
+
if debug:
|
370 |
+
for i in range(world_size):
|
371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
373 |
+
|
374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
375 |
+
wanted_params = len(frozen_param_shapes)
|
376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
380 |
+
|
381 |
+
total_params = 0
|
382 |
+
total_numel = 0
|
383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
384 |
+
total_params += 1
|
385 |
+
unpartitioned_numel = shape.numel()
|
386 |
+
total_numel += unpartitioned_numel
|
387 |
+
|
388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
390 |
+
|
391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
392 |
+
|
393 |
+
if debug:
|
394 |
+
print(
|
395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
396 |
+
)
|
397 |
+
|
398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
399 |
+
|
400 |
+
|
401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
402 |
+
param_shapes = zero_model_states[0].param_shapes
|
403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
406 |
+
|
407 |
+
# merge list of dicts, preserving order
|
408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
409 |
+
|
410 |
+
if debug:
|
411 |
+
for i in range(world_size):
|
412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
413 |
+
|
414 |
+
wanted_params = len(param_shapes)
|
415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
416 |
+
# not asserting if there is a mismatch due to possible padding
|
417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
420 |
+
|
421 |
+
# params
|
422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
423 |
+
# out-of-core computing solution
|
424 |
+
offset = 0
|
425 |
+
total_numel = 0
|
426 |
+
total_params = 0
|
427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
428 |
+
unpartitioned_numel = shape.numel()
|
429 |
+
total_numel += unpartitioned_numel
|
430 |
+
total_params += 1
|
431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
432 |
+
|
433 |
+
if debug:
|
434 |
+
print(
|
435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
436 |
+
)
|
437 |
+
|
438 |
+
# XXX: memory usage doubles here
|
439 |
+
state_dict[name] = torch.cat(
|
440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
442 |
+
offset += partitioned_numel
|
443 |
+
|
444 |
+
offset *= world_size
|
445 |
+
|
446 |
+
# Sanity check
|
447 |
+
if offset != avail_numel:
|
448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
449 |
+
|
450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
451 |
+
|
452 |
+
|
453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
454 |
+
exclude_frozen_parameters):
|
455 |
+
state_dict = OrderedDict()
|
456 |
+
|
457 |
+
# buffers
|
458 |
+
buffers = zero_model_states[0].buffers
|
459 |
+
state_dict.update(buffers)
|
460 |
+
if debug:
|
461 |
+
print(f"added {len(buffers)} buffers")
|
462 |
+
|
463 |
+
if not exclude_frozen_parameters:
|
464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
465 |
+
|
466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
467 |
+
|
468 |
+
# recover shared parameters
|
469 |
+
for pair in zero_model_states[0].shared_params:
|
470 |
+
if pair[1] in state_dict:
|
471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
472 |
+
|
473 |
+
return state_dict
|
474 |
+
|
475 |
+
|
476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
477 |
+
"""
|
478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
480 |
+
via a model hub.
|
481 |
+
|
482 |
+
Args:
|
483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
486 |
+
|
487 |
+
Returns:
|
488 |
+
- pytorch ``state_dict``
|
489 |
+
|
490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
492 |
+
the checkpoint.
|
493 |
+
|
494 |
+
A typical usage might be ::
|
495 |
+
|
496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
497 |
+
# do the training and checkpoint saving
|
498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
499 |
+
model = model.cpu() # move to cpu
|
500 |
+
model.load_state_dict(state_dict)
|
501 |
+
# submit to model hub or save the model to share with others
|
502 |
+
|
503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
506 |
+
|
507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
508 |
+
|
509 |
+
"""
|
510 |
+
if tag is None:
|
511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
512 |
+
if os.path.isfile(latest_path):
|
513 |
+
with open(latest_path, 'r') as fd:
|
514 |
+
tag = fd.read().strip()
|
515 |
+
else:
|
516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
517 |
+
|
518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
519 |
+
|
520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
522 |
+
|
523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
524 |
+
|
525 |
+
|
526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
527 |
+
output_dir,
|
528 |
+
max_shard_size="5GB",
|
529 |
+
safe_serialization=False,
|
530 |
+
tag=None,
|
531 |
+
exclude_frozen_parameters=False):
|
532 |
+
"""
|
533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
535 |
+
|
536 |
+
Args:
|
537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
543 |
+
"""
|
544 |
+
# Dependency pre-check
|
545 |
+
if safe_serialization:
|
546 |
+
try:
|
547 |
+
from safetensors.torch import save_file
|
548 |
+
except ImportError:
|
549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
550 |
+
raise
|
551 |
+
if max_shard_size is not None:
|
552 |
+
try:
|
553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
554 |
+
except ImportError:
|
555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
556 |
+
raise
|
557 |
+
|
558 |
+
# Convert zero checkpoint to state_dict
|
559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
560 |
+
|
561 |
+
# Shard the model if it is too big.
|
562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
563 |
+
if max_shard_size is not None:
|
564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
566 |
+
filename_pattern=filename_pattern,
|
567 |
+
max_shard_size=max_shard_size)
|
568 |
+
else:
|
569 |
+
from collections import namedtuple
|
570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
573 |
+
|
574 |
+
# Save the model
|
575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
578 |
+
output_path = os.path.join(output_dir, shard_file)
|
579 |
+
if safe_serialization:
|
580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
581 |
+
else:
|
582 |
+
torch.save(shard, output_path)
|
583 |
+
|
584 |
+
# Save index if sharded
|
585 |
+
if state_dict_split.is_sharded:
|
586 |
+
index = {
|
587 |
+
"metadata": state_dict_split.metadata,
|
588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
589 |
+
}
|
590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
594 |
+
f.write(content)
|
595 |
+
|
596 |
+
|
597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
598 |
+
"""
|
599 |
+
1. Put the provided model to cpu
|
600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
601 |
+
3. Load it into the provided model
|
602 |
+
|
603 |
+
Args:
|
604 |
+
- ``model``: the model object to update
|
605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
607 |
+
|
608 |
+
Returns:
|
609 |
+
- ``model`: modified model
|
610 |
+
|
611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
613 |
+
conveniently placed for you in the checkpoint folder.
|
614 |
+
|
615 |
+
A typical usage might be ::
|
616 |
+
|
617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
619 |
+
# submit to model hub or save the model to share with others
|
620 |
+
|
621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
624 |
+
|
625 |
+
"""
|
626 |
+
logger.info(f"Extracting fp32 weights")
|
627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
628 |
+
|
629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
630 |
+
model = model.cpu()
|
631 |
+
model.load_state_dict(state_dict, strict=False)
|
632 |
+
|
633 |
+
return model
|
634 |
+
|
635 |
+
|
636 |
+
if __name__ == "__main__":
|
637 |
+
parser = argparse.ArgumentParser()
|
638 |
+
parser.add_argument("checkpoint_dir",
|
639 |
+
type=str,
|
640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
641 |
+
parser.add_argument("output_dir",
|
642 |
+
type=str,
|
643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
644 |
+
"(e.g. path/checkpoint-12-output/)")
|
645 |
+
parser.add_argument(
|
646 |
+
"--max_shard_size",
|
647 |
+
type=str,
|
648 |
+
default="5GB",
|
649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
652 |
+
"without CPU OOM issues.")
|
653 |
+
parser.add_argument(
|
654 |
+
"--safe_serialization",
|
655 |
+
default=False,
|
656 |
+
action='store_true',
|
657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
658 |
+
parser.add_argument("-t",
|
659 |
+
"--tag",
|
660 |
+
type=str,
|
661 |
+
default=None,
|
662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
665 |
+
args = parser.parse_args()
|
666 |
+
|
667 |
+
debug = args.debug
|
668 |
+
|
669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
670 |
+
args.output_dir,
|
671 |
+
max_shard_size=args.max_shard_size,
|
672 |
+
safe_serialization=args.safe_serialization,
|
673 |
+
tag=args.tag,
|
674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|