--- library_name: transformers license: apache-2.0 base_model: michiyasunaga/BioLinkBERT-base tags: - generated_from_trainer datasets: - source_data metrics: - precision - recall - f1 model-index: - name: SourceData_GeneprodRoles_v1_0_0_BioLinkBERT_base results: - task: name: Token Classification type: token-classification dataset: name: source_data type: source_data config: ROLES_GP split: validation args: ROLES_GP metrics: - name: Precision type: precision value: 0.9220255327226995 - name: Recall type: recall value: 0.9266873360362509 - name: F1 type: f1 value: 0.9243505566657151 --- # SourceData_GeneprodRoles_v1_0_0_BioLinkBERT_base This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on the source_data dataset. It achieves the following results on the evaluation set: - Loss: 0.0137 - Accuracy Score: 0.9948 - Precision: 0.9220 - Recall: 0.9267 - F1: 0.9244 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 128 - seed: 42 - optimizer: Use adafactor and the args are: No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy Score | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:---------:|:------:|:------:| | 0.0146 | 1.0 | 864 | 0.0137 | 0.9948 | 0.9220 | 0.9267 | 0.9244 | ### Framework versions - Transformers 4.46.3 - Pytorch 1.13.1+cu117 - Datasets 3.1.0 - Tokenizers 0.20.3