File size: 13,597 Bytes
c214a62
 
b779b2b
c214a62
b779b2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c214a62
 
b779b2b
 
 
 
c214a62
b779b2b
 
 
 
 
 
c214a62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a30c515
c214a62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b779b2b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
---
language:
- en
tags:
- cognitive-architecture
- clarion
- artificial-intelligence
- neural-networks
- spiking-neural-networks
- neuro-symbolic
- multi-modal
- explainable-ai
- federated-learning
- meta-learning
- evolutionary-optimization
- social-cognition
- emotional-ai
- planning
- memory
- attention
license: mit
datasets:
- cognitive-science
- multi-modal
- reasoning-tasks
- social-interaction
metrics:
- cognitive-performance
- learning-efficiency
- memory-utilization
- multi-modal-accuracy
- emotional-stability
- planning-success-rate
library_name: decima
pipeline_tag: text-generation
---

# Decima Enhanced CLARION: Advanced Cognitive Architecture Model

## Model Description

**Decima Enhanced CLARION** is a state-of-the-art cognitive architecture model that implements the most advanced CLARION (Connectionist Learning with Adaptive Rule Induction ONline) framework. This model represents a breakthrough in artificial cognitive systems, combining cutting-edge neural architectures with sophisticated cognitive subsystems to create an AI that can think, learn, and adapt like never before.

### What is CLARION?

CLARION is a comprehensive cognitive architecture that integrates multiple cognitive subsystems to model human-like reasoning, learning, and decision-making. Our enhanced implementation pushes the boundaries of what's possible in cognitive AI systems.

## Model Architecture

### Core Cognitive Subsystems

#### ๐Ÿง  **Advanced Attention Mechanism**
- **Multi-Head Attention** with Rotary Positional Embeddings
- **Cross-Modal Attention** for multi-modal processing
- **Adaptive Attention Weights** based on context importance
- **Hierarchical Attention** for complex reasoning tasks

#### ๐Ÿš€ **Action-Centered Subsystem (ACS)**
- **Multi-Agent Learning** with ensemble Q-networks
- **Target Networks** for stable learning
- **Experience Replay** with prioritized sampling
- **Multi-Agent Coordination** for complex task execution
- **Performance Tracking** and adaptive optimization

#### ๐ŸŽฏ **Non-Action-Centered Subsystem (NACS)**
- **Hierarchical Clustering** with multiple levels (KMeans)
- **Enhanced Encoder/Decoder** with residual connections
- **Outlier Detection** using DBSCAN
- **Variational Autoencoder** components
- **Feature Importance Tracking**

#### ๐Ÿ’ก **Motivational Subsystem (MS)**
- **Hierarchical Drives and Goals** with dynamic management
- **Drive Decay/Growth** mechanisms
- **Enhanced Goal Network** with attention mechanisms
- **Goal Hierarchy** and dependency management
- **Drive-Goal Mapping** and success tracking

#### ๐Ÿ”„ **Meta-Cognitive Subsystem (MCS)**
- **Adaptive Learning** with uncertainty quantification
- **Performance Tracking** with temporal dynamics
- **Enhanced Reflection Network** with attention
- **Subsystem Coordination** and embedding
- **Adaptive Learning Rate** scheduling
- **Meta-Learning** capabilities

#### ๐Ÿ˜Š **Emotion Subsystem**
- **Temporal Dynamics** with LSTM processing
- **Social Context** awareness
- **Emotional Regulation** mechanisms
- **Social Emotion Processing** and contagion
- **Emotional Coherence** scoring

#### ๐Ÿง  **Long-Term Memory (LTM)**
- **Hierarchical LTM** with associative networks
- **Episodic Memory** with temporal context
- **Semantic Memory** with clustering
- **Memory Consolidation** and optimization
- **Adaptive Forgetting** mechanisms
- **Working Memory Buffer**

#### ๐Ÿ“‹ **Planning Mechanism**
- **Multi-Objective Optimization** with hierarchical strategies
- **Policy Networks** for action selection
- **Experience Replay** for learning
- **Adaptive Planning Parameters**
- **Monte Carlo Tree Search** integration

#### ๐Ÿ—ฃ๏ธ **Natural Language Processor**
- **Multi-Modal Understanding** (vision, audio, text)
- **Enhanced Vocabulary** with semantic embeddings
- **Context Memory** and processing
- **Semantic Similarity** caching
- **Contextual Understanding** with attention

#### โšก **Massive Spiking Neural Network (SNN)**
- **Adaptive SNN** with plasticity and learning
- **Adaptive Thresholds** and neuron types
- **Advanced Connection Patterns** with synaptic plasticity
- **STDP (Spike-Timing Dependent Plasticity)**
- **Temporal Dynamics** tracking
- **Adaptive Learning Rates**

#### ๐Ÿ”— **Multi-Modal Processor**
- **Cross-Modal Learning** and fusion
- **Enhanced Visual/Auditory** processing
- **Modality-Specific Attention**
- **Multi-Modal Fusion Network**
- **Cross-Modal Learning** components
- **Modality Alignment** network
- **Adaptive Modality Weights**

### Advanced Components

#### ๐Ÿค **Social Cognition Module**
- **Theory of Mind** capabilities
- **Social Learning** and pattern recognition
- **Emotion-Aware** social processing
- **Context Processing** for social situations

#### ๐Ÿ” **Explainable Component**
- **SHAP-like Feature Attribution**
- **Decision Explanation** and transparency
- **Feature Importance** analysis
- **Model Interpretability**

#### โš›๏ธ **Quantum Layer**
- **Quantum Neural Network** with rotation gates
- **Entangling Layers** for quantum processing
- **Classical Post-Processing**
- **Quantum-Classical Hybrid** architecture

#### ๐Ÿงฎ **Neuro-Symbolic Module**
- **Neural-Symbolic Integration**
- **Symbolic Reasoning** with rule application
- **Neural Processing** enhancement
- **Hybrid Intelligence** capabilities

#### ๐ŸŽ“ **Meta-Learner**
- **Adaptive Meta-Learning** with gradient processing
- **Parameter Update** generation
- **Learning Rate Adaptation**
- **Meta-Learning** optimization

#### ๐Ÿงฌ **Evolutionary Optimizer**
- **Population-based Evolutionary** algorithms
- **Fitness Evaluation** and selection
- **Crossover and Mutation** operations
- **Multi-Objective Optimization**

#### ๐ŸŒ **Federated Learning**
- **Multi-Client Federated** learning
- **Client Initialization** and management
- **Local Training** simulation
- **Model Aggregation** (FedAvg)

#### โš”๏ธ **Adversarial Trainer**
- **Adversarial Training** for robustness
- **Attack Simulation** and defense
- **Model Hardening** techniques

#### ๐Ÿ”„ **Transfer Learner**
- **Knowledge Transfer** between domains
- **Adaptive Learning** strategies
- **Cross-Domain** optimization

#### ๐Ÿ‘๏ธ **Introspective Monitor**
- **Self-Monitoring** capabilities
- **Performance Analysis** and tracking
- **System Health** monitoring

#### โš–๏ธ **Ethical Decision Maker**
- **Ethical Framework** integration
- **Value Alignment** mechanisms
- **Responsible AI** decision making

## Model Capabilities

### ๐ŸŽฏ **Cognitive Abilities**
- **Complex Reasoning** and problem-solving
- **Multi-Step Planning** with optimization
- **Adaptive Learning** from experience
- **Meta-Cognitive** self-reflection
- **Emotional Intelligence** and regulation

### ๐Ÿ”„ **Learning Capabilities**
- **Continuous Learning** and adaptation
- **Multi-Modal Learning** (text, vision, audio)
- **Transfer Learning** across domains
- **Meta-Learning** for rapid adaptation
- **Evolutionary Optimization** for parameter tuning

### ๐ŸŒŸ **Advanced Features**
- **Neuro-Symbolic** reasoning
- **Social Cognition** and understanding
- **Explainable AI** with transparency
- **Federated Learning** for privacy
- **Adversarial Robustness**

## Training and Inference

### ๐Ÿš€ **Training Process**
- **Multi-Stage Training**: Sequential training of cognitive subsystems
- **Adaptive Learning Rates**: Dynamic adjustment based on performance
- **Cross-Modal Training**: Simultaneous training across multiple modalities
- **Meta-Learning Integration**: Continuous adaptation of learning strategies
- **Evolutionary Optimization**: Population-based parameter optimization

### โšก **Inference Process**
- **Real-Time Processing**: Stream processing with minimal latency
- **Adaptive Computation**: Dynamic allocation of computational resources
- **Multi-Modal Fusion**: Seamless integration of different input types
- **Context-Aware Processing**: Adaptive processing based on context
- **Memory-Aware Inference**: Efficient use of long-term and working memory

## Usage

### Basic Usage

```python
from src.models.decima_clarion import EnhancedCLARION
import torch

# Initialize the model
model = EnhancedCLARION(
    input_size=768,
    hidden_size=1024,
    num_layers=12,
    num_heads=16,
    vocab_size=50000
)

# Process input
input_data = torch.randn(1, 128, 768)
context = {"task": "reasoning", "domain": "science"}
output = model(input_data, context)

# Learn from experience
reward = 0.8
losses = {"acs": 0.1, "nacs": 0.05}
model.learn(reward, losses)
```

### Advanced Usage

```python
# Get system status
status = model.get_system_status()
print(f"Performance Score: {status['performance_score']}")
print(f"Learning Metrics: {status['learning_metrics']}")

# Integrate knowledge
knowledge = {
    "semantic": torch.randn(100, 768),
    "emotional": torch.randn(50, 64),
    "planning": torch.randn(25, 128)
}
model.integrate_knowledge(knowledge)

# Learn from long-term memory
model.learn_from_ltm()

# Save enhanced model
model.save_enhanced_model("enhanced_clarion_model.pt")
```

## Model Performance

### Coming Soon

## Technical Specifications

### ๐Ÿ–ฅ๏ธ **System Requirements**
- **GPU**: NVIDIA GPU with 16GB+ VRAM (recommended)
- **RAM**: 32GB+ system memory
- **Storage**: 50GB+ for model weights and data
- **Python**: 3.8+
- **PyTorch**: 2.0+

### ๐Ÿ“ฆ **Dependencies**
```
torch>=2.0.0
transformers>=4.30.0
bindsnet>=1.1.0
sympy>=1.11
pennylane>=0.30.0
deap>=1.3.3
shap>=0.42.0
scikit-learn>=1.2.0
safetensors>=0.3.0
```

### ๐Ÿ”ง **Installation**

```bash
# Clone the repository
git clone https://github.com/your-username/Decima-2.0.git
cd Decima-2.0

# Install dependencies
pip install -r requirements.txt

# Install the package
pip install -e .
```

## Model Variants

### ๐Ÿ”ง **Available Configurations**
- **Decima Enhanced CLARION (Base)**: Full cognitive architecture with all subsystems
- **Decima CLARION Lite**: Reduced complexity for resource-constrained environments
- **Decima CLARION Social**: Optimized for social cognition and interaction
- **Decima CLARION Planning**: Specialized for complex planning and optimization tasks

### ๐Ÿ“Š **Model Sizes**
- **Small**: 100M parameters (lite version)
- **Base**: 1B parameters (standard version)
- **Large**: 10B parameters (enhanced version)
- **XL**: 100B+ parameters (full cognitive version)

## Research and Applications

### ๐Ÿ”ฌ **Research Areas**
- **Cognitive Science** and psychology modeling
- **Artificial General Intelligence** (AGI) development
- **Multi-Modal AI** systems
- **Explainable AI** and transparency
- **Quantum Machine Learning**
- **Neuro-Symbolic AI**

### ๐Ÿš€ **Applications**
- **Advanced AI Assistants** with emotional intelligence
- **Autonomous Systems** with complex reasoning
- **Educational AI** with adaptive learning
- **Healthcare AI** with empathetic understanding
- **Scientific Discovery** with creative reasoning
- **Social AI** with theory of mind

## Limitations and Bias

### โš ๏ธ **Known Limitations**
- **Computational Complexity**: High resource requirements for full cognitive processing
- **Training Time**: Extended training periods needed for cognitive subsystem convergence
- **Memory Constraints**: Large memory footprint for comprehensive cognitive operations
- **Domain Specificity**: Performance may vary across different cognitive domains
- **Interpretability**: Complex cognitive processes may be difficult to fully explain

### ๐Ÿ” **Potential Biases**
- **Training Data Bias**: May inherit biases from training datasets
- **Cognitive Bias**: Could replicate human cognitive biases in decision-making
- **Cultural Bias**: May reflect cultural assumptions in social cognition
- **Domain Bias**: Performance may be biased toward certain types of reasoning tasks

## Ethical Considerations

### โš–๏ธ **Responsible AI Features**
- **Ethical Decision Making** framework
- **Value Alignment** mechanisms
- **Transparency** and explainability
- **Bias Detection** and mitigation
- **Privacy Protection** through federated learning

### ๐Ÿ›ก๏ธ **Safety Features**
- **Introspective Monitoring** for self-awareness
- **Performance Thresholds** for safe operation
- **Adaptive Learning** with safety constraints
- **Robustness** through adversarial training

## Citation

If you use this model in your research, please cite:

```bibtex
@misc{decima_clarion,
  title={Decima CLARION: Advanced Cognitive Architecture for Artificial Intelligence},
  author={Entelijans},
  year={2025},
  url={https://huggingface.co/ENTELIJANS/Decima-70B}
}
```

## License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

## Contributing

We welcome contributions! Please see our [Contributing Guidelines](CONTRIBUTING.md) for details.

## Acknowledgments

- **CLARION Architecture** by Ron Sun
- **PyTorch** team for the deep learning framework
- **Transformers** library for NLP capabilities
- **BindsNET** for spiking neural networks
- **PennyLane** for quantum computing integration

## Contact

- **GitHub Issues**: [Report bugs or request features](https://github.com/your-username/Decima-2.0/issues)
- **Discussions**: [Join the community](https://github.com/your-username/Decima-2.0/discussions)
- **Email**: [email protected]

---

**Decima Enhanced CLARION** represents the cutting edge of cognitive AI architecture. This model pushes the boundaries of what's possible in artificial intelligence, bringing us closer to truly intelligent, adaptive, and emotionally-aware AI systems.

*Built with โค๏ธ and advanced cognitive science principles*