File size: 13,597 Bytes
c214a62 b779b2b c214a62 b779b2b c214a62 b779b2b c214a62 b779b2b c214a62 a30c515 c214a62 b779b2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
---
language:
- en
tags:
- cognitive-architecture
- clarion
- artificial-intelligence
- neural-networks
- spiking-neural-networks
- neuro-symbolic
- multi-modal
- explainable-ai
- federated-learning
- meta-learning
- evolutionary-optimization
- social-cognition
- emotional-ai
- planning
- memory
- attention
license: mit
datasets:
- cognitive-science
- multi-modal
- reasoning-tasks
- social-interaction
metrics:
- cognitive-performance
- learning-efficiency
- memory-utilization
- multi-modal-accuracy
- emotional-stability
- planning-success-rate
library_name: decima
pipeline_tag: text-generation
---
# Decima Enhanced CLARION: Advanced Cognitive Architecture Model
## Model Description
**Decima Enhanced CLARION** is a state-of-the-art cognitive architecture model that implements the most advanced CLARION (Connectionist Learning with Adaptive Rule Induction ONline) framework. This model represents a breakthrough in artificial cognitive systems, combining cutting-edge neural architectures with sophisticated cognitive subsystems to create an AI that can think, learn, and adapt like never before.
### What is CLARION?
CLARION is a comprehensive cognitive architecture that integrates multiple cognitive subsystems to model human-like reasoning, learning, and decision-making. Our enhanced implementation pushes the boundaries of what's possible in cognitive AI systems.
## Model Architecture
### Core Cognitive Subsystems
#### ๐ง **Advanced Attention Mechanism**
- **Multi-Head Attention** with Rotary Positional Embeddings
- **Cross-Modal Attention** for multi-modal processing
- **Adaptive Attention Weights** based on context importance
- **Hierarchical Attention** for complex reasoning tasks
#### ๐ **Action-Centered Subsystem (ACS)**
- **Multi-Agent Learning** with ensemble Q-networks
- **Target Networks** for stable learning
- **Experience Replay** with prioritized sampling
- **Multi-Agent Coordination** for complex task execution
- **Performance Tracking** and adaptive optimization
#### ๐ฏ **Non-Action-Centered Subsystem (NACS)**
- **Hierarchical Clustering** with multiple levels (KMeans)
- **Enhanced Encoder/Decoder** with residual connections
- **Outlier Detection** using DBSCAN
- **Variational Autoencoder** components
- **Feature Importance Tracking**
#### ๐ก **Motivational Subsystem (MS)**
- **Hierarchical Drives and Goals** with dynamic management
- **Drive Decay/Growth** mechanisms
- **Enhanced Goal Network** with attention mechanisms
- **Goal Hierarchy** and dependency management
- **Drive-Goal Mapping** and success tracking
#### ๐ **Meta-Cognitive Subsystem (MCS)**
- **Adaptive Learning** with uncertainty quantification
- **Performance Tracking** with temporal dynamics
- **Enhanced Reflection Network** with attention
- **Subsystem Coordination** and embedding
- **Adaptive Learning Rate** scheduling
- **Meta-Learning** capabilities
#### ๐ **Emotion Subsystem**
- **Temporal Dynamics** with LSTM processing
- **Social Context** awareness
- **Emotional Regulation** mechanisms
- **Social Emotion Processing** and contagion
- **Emotional Coherence** scoring
#### ๐ง **Long-Term Memory (LTM)**
- **Hierarchical LTM** with associative networks
- **Episodic Memory** with temporal context
- **Semantic Memory** with clustering
- **Memory Consolidation** and optimization
- **Adaptive Forgetting** mechanisms
- **Working Memory Buffer**
#### ๐ **Planning Mechanism**
- **Multi-Objective Optimization** with hierarchical strategies
- **Policy Networks** for action selection
- **Experience Replay** for learning
- **Adaptive Planning Parameters**
- **Monte Carlo Tree Search** integration
#### ๐ฃ๏ธ **Natural Language Processor**
- **Multi-Modal Understanding** (vision, audio, text)
- **Enhanced Vocabulary** with semantic embeddings
- **Context Memory** and processing
- **Semantic Similarity** caching
- **Contextual Understanding** with attention
#### โก **Massive Spiking Neural Network (SNN)**
- **Adaptive SNN** with plasticity and learning
- **Adaptive Thresholds** and neuron types
- **Advanced Connection Patterns** with synaptic plasticity
- **STDP (Spike-Timing Dependent Plasticity)**
- **Temporal Dynamics** tracking
- **Adaptive Learning Rates**
#### ๐ **Multi-Modal Processor**
- **Cross-Modal Learning** and fusion
- **Enhanced Visual/Auditory** processing
- **Modality-Specific Attention**
- **Multi-Modal Fusion Network**
- **Cross-Modal Learning** components
- **Modality Alignment** network
- **Adaptive Modality Weights**
### Advanced Components
#### ๐ค **Social Cognition Module**
- **Theory of Mind** capabilities
- **Social Learning** and pattern recognition
- **Emotion-Aware** social processing
- **Context Processing** for social situations
#### ๐ **Explainable Component**
- **SHAP-like Feature Attribution**
- **Decision Explanation** and transparency
- **Feature Importance** analysis
- **Model Interpretability**
#### โ๏ธ **Quantum Layer**
- **Quantum Neural Network** with rotation gates
- **Entangling Layers** for quantum processing
- **Classical Post-Processing**
- **Quantum-Classical Hybrid** architecture
#### ๐งฎ **Neuro-Symbolic Module**
- **Neural-Symbolic Integration**
- **Symbolic Reasoning** with rule application
- **Neural Processing** enhancement
- **Hybrid Intelligence** capabilities
#### ๐ **Meta-Learner**
- **Adaptive Meta-Learning** with gradient processing
- **Parameter Update** generation
- **Learning Rate Adaptation**
- **Meta-Learning** optimization
#### ๐งฌ **Evolutionary Optimizer**
- **Population-based Evolutionary** algorithms
- **Fitness Evaluation** and selection
- **Crossover and Mutation** operations
- **Multi-Objective Optimization**
#### ๐ **Federated Learning**
- **Multi-Client Federated** learning
- **Client Initialization** and management
- **Local Training** simulation
- **Model Aggregation** (FedAvg)
#### โ๏ธ **Adversarial Trainer**
- **Adversarial Training** for robustness
- **Attack Simulation** and defense
- **Model Hardening** techniques
#### ๐ **Transfer Learner**
- **Knowledge Transfer** between domains
- **Adaptive Learning** strategies
- **Cross-Domain** optimization
#### ๐๏ธ **Introspective Monitor**
- **Self-Monitoring** capabilities
- **Performance Analysis** and tracking
- **System Health** monitoring
#### โ๏ธ **Ethical Decision Maker**
- **Ethical Framework** integration
- **Value Alignment** mechanisms
- **Responsible AI** decision making
## Model Capabilities
### ๐ฏ **Cognitive Abilities**
- **Complex Reasoning** and problem-solving
- **Multi-Step Planning** with optimization
- **Adaptive Learning** from experience
- **Meta-Cognitive** self-reflection
- **Emotional Intelligence** and regulation
### ๐ **Learning Capabilities**
- **Continuous Learning** and adaptation
- **Multi-Modal Learning** (text, vision, audio)
- **Transfer Learning** across domains
- **Meta-Learning** for rapid adaptation
- **Evolutionary Optimization** for parameter tuning
### ๐ **Advanced Features**
- **Neuro-Symbolic** reasoning
- **Social Cognition** and understanding
- **Explainable AI** with transparency
- **Federated Learning** for privacy
- **Adversarial Robustness**
## Training and Inference
### ๐ **Training Process**
- **Multi-Stage Training**: Sequential training of cognitive subsystems
- **Adaptive Learning Rates**: Dynamic adjustment based on performance
- **Cross-Modal Training**: Simultaneous training across multiple modalities
- **Meta-Learning Integration**: Continuous adaptation of learning strategies
- **Evolutionary Optimization**: Population-based parameter optimization
### โก **Inference Process**
- **Real-Time Processing**: Stream processing with minimal latency
- **Adaptive Computation**: Dynamic allocation of computational resources
- **Multi-Modal Fusion**: Seamless integration of different input types
- **Context-Aware Processing**: Adaptive processing based on context
- **Memory-Aware Inference**: Efficient use of long-term and working memory
## Usage
### Basic Usage
```python
from src.models.decima_clarion import EnhancedCLARION
import torch
# Initialize the model
model = EnhancedCLARION(
input_size=768,
hidden_size=1024,
num_layers=12,
num_heads=16,
vocab_size=50000
)
# Process input
input_data = torch.randn(1, 128, 768)
context = {"task": "reasoning", "domain": "science"}
output = model(input_data, context)
# Learn from experience
reward = 0.8
losses = {"acs": 0.1, "nacs": 0.05}
model.learn(reward, losses)
```
### Advanced Usage
```python
# Get system status
status = model.get_system_status()
print(f"Performance Score: {status['performance_score']}")
print(f"Learning Metrics: {status['learning_metrics']}")
# Integrate knowledge
knowledge = {
"semantic": torch.randn(100, 768),
"emotional": torch.randn(50, 64),
"planning": torch.randn(25, 128)
}
model.integrate_knowledge(knowledge)
# Learn from long-term memory
model.learn_from_ltm()
# Save enhanced model
model.save_enhanced_model("enhanced_clarion_model.pt")
```
## Model Performance
### Coming Soon
## Technical Specifications
### ๐ฅ๏ธ **System Requirements**
- **GPU**: NVIDIA GPU with 16GB+ VRAM (recommended)
- **RAM**: 32GB+ system memory
- **Storage**: 50GB+ for model weights and data
- **Python**: 3.8+
- **PyTorch**: 2.0+
### ๐ฆ **Dependencies**
```
torch>=2.0.0
transformers>=4.30.0
bindsnet>=1.1.0
sympy>=1.11
pennylane>=0.30.0
deap>=1.3.3
shap>=0.42.0
scikit-learn>=1.2.0
safetensors>=0.3.0
```
### ๐ง **Installation**
```bash
# Clone the repository
git clone https://github.com/your-username/Decima-2.0.git
cd Decima-2.0
# Install dependencies
pip install -r requirements.txt
# Install the package
pip install -e .
```
## Model Variants
### ๐ง **Available Configurations**
- **Decima Enhanced CLARION (Base)**: Full cognitive architecture with all subsystems
- **Decima CLARION Lite**: Reduced complexity for resource-constrained environments
- **Decima CLARION Social**: Optimized for social cognition and interaction
- **Decima CLARION Planning**: Specialized for complex planning and optimization tasks
### ๐ **Model Sizes**
- **Small**: 100M parameters (lite version)
- **Base**: 1B parameters (standard version)
- **Large**: 10B parameters (enhanced version)
- **XL**: 100B+ parameters (full cognitive version)
## Research and Applications
### ๐ฌ **Research Areas**
- **Cognitive Science** and psychology modeling
- **Artificial General Intelligence** (AGI) development
- **Multi-Modal AI** systems
- **Explainable AI** and transparency
- **Quantum Machine Learning**
- **Neuro-Symbolic AI**
### ๐ **Applications**
- **Advanced AI Assistants** with emotional intelligence
- **Autonomous Systems** with complex reasoning
- **Educational AI** with adaptive learning
- **Healthcare AI** with empathetic understanding
- **Scientific Discovery** with creative reasoning
- **Social AI** with theory of mind
## Limitations and Bias
### โ ๏ธ **Known Limitations**
- **Computational Complexity**: High resource requirements for full cognitive processing
- **Training Time**: Extended training periods needed for cognitive subsystem convergence
- **Memory Constraints**: Large memory footprint for comprehensive cognitive operations
- **Domain Specificity**: Performance may vary across different cognitive domains
- **Interpretability**: Complex cognitive processes may be difficult to fully explain
### ๐ **Potential Biases**
- **Training Data Bias**: May inherit biases from training datasets
- **Cognitive Bias**: Could replicate human cognitive biases in decision-making
- **Cultural Bias**: May reflect cultural assumptions in social cognition
- **Domain Bias**: Performance may be biased toward certain types of reasoning tasks
## Ethical Considerations
### โ๏ธ **Responsible AI Features**
- **Ethical Decision Making** framework
- **Value Alignment** mechanisms
- **Transparency** and explainability
- **Bias Detection** and mitigation
- **Privacy Protection** through federated learning
### ๐ก๏ธ **Safety Features**
- **Introspective Monitoring** for self-awareness
- **Performance Thresholds** for safe operation
- **Adaptive Learning** with safety constraints
- **Robustness** through adversarial training
## Citation
If you use this model in your research, please cite:
```bibtex
@misc{decima_clarion,
title={Decima CLARION: Advanced Cognitive Architecture for Artificial Intelligence},
author={Entelijans},
year={2025},
url={https://huggingface.co/ENTELIJANS/Decima-70B}
}
```
## License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
## Contributing
We welcome contributions! Please see our [Contributing Guidelines](CONTRIBUTING.md) for details.
## Acknowledgments
- **CLARION Architecture** by Ron Sun
- **PyTorch** team for the deep learning framework
- **Transformers** library for NLP capabilities
- **BindsNET** for spiking neural networks
- **PennyLane** for quantum computing integration
## Contact
- **GitHub Issues**: [Report bugs or request features](https://github.com/your-username/Decima-2.0/issues)
- **Discussions**: [Join the community](https://github.com/your-username/Decima-2.0/discussions)
- **Email**: [email protected]
---
**Decima Enhanced CLARION** represents the cutting edge of cognitive AI architecture. This model pushes the boundaries of what's possible in artificial intelligence, bringing us closer to truly intelligent, adaptive, and emotionally-aware AI systems.
*Built with โค๏ธ and advanced cognitive science principles* |